Diseño y evaluación de ensayos qPCR para la cuantificación y detección simultánea de genes de resistencia a antibióticos
Loading...
Código QR
Authors
Guerrero Arias, Jannireth Lucia
Contact Email
Abstract
El uso indiscriminado de los antibióticos causó la generación de resistencia bacteriana a los mismos, complicando significativamente el tratamiento de infecciones y aumentando la mortalidad a nivel global y teniendo un impacto en el medio ambiente, la economía, entre otros. En respuesta, a nivel mundial y nacional se han implementado planes para combatir este problema bajo el enfoque de "Una sola salud". Sin embargo, un desafío crítico es la necesidad de métodos de detección más eficientes y accesibles, lo que resalta la importancia de tecnologías moleculares como la PCR en tiempo real (qPCR) en el diagnóstico de resistencia a antibióticos. Esta investigación tuvo como objetivo desarrollar y validar in vitro pruebas de qPCR multiplex para la detección simultánea de genes de resistencia a antibióticos. Para lograrlo, se seleccionaron genes de resistencia clave, cuyos cebadores y sondas fueron evaluados in silico mediante herramientas bioinformáticas. Se realizaron pruebas qPCR simplex optimizando las concentraciones de cebadores y sondas, y se evaluó la sensibilidad analítica, reproducibilidad y eficiencia de la reacción. Posteriormente, se desarrollaron pruebas qPCR multiplex, agrupando los genes de resistencia según reportes de copresencia, y se evaluó su reproducibilidad y eficiencia. Los resultados de la evaluación in silico de los oligonucleótidos indicaron que todos se encuentran dentro de los rangos óptimos para su aplicación en qPCR, siendo adecuados para detectar los genes de resistencia fosB, mcr-1, ermB, cmlA, qnrA, tetM y ampC. Los ensayos qPCR simplex realizados con las concentraciones óptimas de cebadores y sondas mostraron un límite de detección cercano a 10³ copias/µL, mientras que los ensayos qPCR simplex y multiplex mostraron eficiencias de amplificación entre 90.65% y 105.77%, todas dentro del rango óptimo para qPCR, con coeficientes de determinación (R²) superiores a 0.98. Estos resultados establecen una base sólida para la detección precisa de genes de resistencia a antibióticos, pero se sugieren futuras validaciones para afinar la determinación del límite de detección y optimizar la eficiencia bajo condiciones variadas.
The indiscriminate use of antibiotics has led to the development of bacterial resistance, significantly complicating the treatment of infections, increasing global mortality, and impacting the environment, the economy, among others. In response, both globally and nationally, plans have been implemented to address this issue under the "One Health" approach. However, a critical challenge remains the need for more efficient and accessible detection methods, highlighting the importance of molecular technologies such as real-time PCR (qPCR) in diagnosing antibiotic resistance. This study aimed to develop and validate in vitro multiplex qPCR assays for the simultaneous detection of antibiotic resistance genes. To achieve this, key resistance genes were selected, and their primers and probes were evaluated in silico using bioinformatic tools. Simplex qPCR assays were conducted by optimizing the primer and probe concentrations, and their analytical sensitivity, reproducibility, and reaction efficiency were assessed. Subsequently, multiplex qPCR assays were developed, grouping the resistance genes based on co-occurrence reports, and their reproducibility and efficiency were evaluated. The in silico evaluation of the oligonucleotides indicated that all primers and probes fell within the optimal ranges for qPCR application, making them suitable for detecting the resistance genes fosB, mcr-1, ermB, cmlA, qnrA, tetM, and ampC. The simplex qPCR assays conducted with the optimal primer and probe concentrations showed a detection limit close to 10³ copies/µL, while both simplex and multiplex qPCR assays demonstrated amplification efficiencies ranging from 90.65% to 105.77%, all within the optimal range for qPCR, with determination coefficients (R²) exceeding 0.98. These results establish a solid foundation for the accurate detection of antibiotic resistance genes, though further validations are recommended to refine the determination of the detection limit and optimize efficiency under varying conditions.
The indiscriminate use of antibiotics has led to the development of bacterial resistance, significantly complicating the treatment of infections, increasing global mortality, and impacting the environment, the economy, among others. In response, both globally and nationally, plans have been implemented to address this issue under the "One Health" approach. However, a critical challenge remains the need for more efficient and accessible detection methods, highlighting the importance of molecular technologies such as real-time PCR (qPCR) in diagnosing antibiotic resistance. This study aimed to develop and validate in vitro multiplex qPCR assays for the simultaneous detection of antibiotic resistance genes. To achieve this, key resistance genes were selected, and their primers and probes were evaluated in silico using bioinformatic tools. Simplex qPCR assays were conducted by optimizing the primer and probe concentrations, and their analytical sensitivity, reproducibility, and reaction efficiency were assessed. Subsequently, multiplex qPCR assays were developed, grouping the resistance genes based on co-occurrence reports, and their reproducibility and efficiency were evaluated. The in silico evaluation of the oligonucleotides indicated that all primers and probes fell within the optimal ranges for qPCR application, making them suitable for detecting the resistance genes fosB, mcr-1, ermB, cmlA, qnrA, tetM, and ampC. The simplex qPCR assays conducted with the optimal primer and probe concentrations showed a detection limit close to 10³ copies/µL, while both simplex and multiplex qPCR assays demonstrated amplification efficiencies ranging from 90.65% to 105.77%, all within the optimal range for qPCR, with determination coefficients (R²) exceeding 0.98. These results establish a solid foundation for the accurate detection of antibiotic resistance genes, though further validations are recommended to refine the determination of the detection limit and optimize efficiency under varying conditions.
Description
Universidad Nacional Agraria La Molina. Facultad de Ciencias. Departamento
Académico de Biología
Keywords
Gen; Gen de resistencia; Gen de resistencia a los antibióticos
Citation
Date
2026
Collections
Seleccionar año de consulta:
Licencia de uso

Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess

