Mecanismo y evolución océano-atmosférico de El Niño frente a la costa sudamericana
Loading...
Authors
Icochea Salas, Luis Alfredo
Contact Email
Abstract
Este trabajo analiza información oceanográfica histórica y en tiempo real para monitorear los cambios en el Océano Pacífico Ecuatorial, especialmente aquellos relacionados con la variabilidad de los vientos alisios. La inversión o debilitamiento de estos vientos puede generar el desplazamiento de la denominada “piscina de agua cálida” desde las cercanías de Australia hacia la costa de Sudamérica. El análisis de datos correspondientes a los eventos El NiñoOscilación del Sur (ENOS) de 1997–98 y 2015–16 evidencia una estrecha relación entre estos eventos y la alteración de los vientos alisios. Esta variabilidad atmosférica origina ondas Kelvin en el Pacífico occidental, las cuales se propagan en la interfase subsuperficial (termoclina o picnoclina), facilitando la intensificación de la Contracorriente Ecuatorial Subsuperficial (CCESS), también conocida como Corriente Cromwell. Dichas ondas profundizan la termoclina hacia el este, lo que permite el avance de la piscina cálida hasta Sudamérica, generando precipitaciones intensas en la costa peruana durante varios meses, con el consiguiente incremento de caudales de los ríos, desbordes e impactos en áreas urbanas. El monitoreo continuo de variables clave como los vientos alisios en el Pacífico occidental, el nivel del mar (altura dinámica), la profundidad de la isoterma de 20°C, la temperatura superficial del mar y la velocidad en el núcleo de la CCESS es fundamental para la predicción temprana de eventos El Niño. Para la ocurrencia de un evento de gran magnitud, no solo es necesario un cambio en los vientos, sino también anomalías positivas significativas en el nivel del mar y una termoclina más profunda. Se resalta el pronóstico emitido en mayo de 2023 en el boletín del CIO Challenger, que anticipó correctamente la ausencia de un evento El Niño extremo entre diciembre de 2023 y febrero de 2024, en contraste con la mayoría de las predicciones oficiales.
This study analyzes historical and real-time oceanographic data to monitor changes in the Equatorial Pacific Ocean, particularly those associated with the variability of trade winds. The weakening or reversal of these winds can lead to the eastward displacement of the so-called “warm water pool” from near Australia toward the South American Coast. The analysis of data from the 1997–1998 and 2015–2016 El Niño–Southern Oscillation (ENSO) events reveal a strong correlation between these phenomena and trade wind anomalies. Such atmospheric variability generates Kelvin waves in the western Pacific, which propagate along the subsurface interface (thermocline or pycnocline), facilitating the intensification of the Subsurface Equatorial Countercurrent (SECC), also known as the Cromwell Current. These waves deepen the thermocline toward the east, enabling the eastward migration of the warm water pool to South America. Upon arrival, this warm pool often triggers intense rainfall along the Peruvian coast over several months, resulting an increased river discharge, overflows, and significant impacts in urban areas. Continuous monitoring of key variables—including trade winds in the western Pacific, sea level anomalies (dynamic height), the depth of the 20 °C isotherm, sea surface temperature, and the core velocity of the SECC—is essential for the early prediction of El Niño events. The occurrence of a strong El Niño not only requires a reversal or weakening of the trade winds but also significant positive sea level anomalies and a deeper thermocline. Emphasis is placed on the forecast issued in May 2023 in the CIO Challenger bulletin, which correctly predicted the absence of an extreme El Niño event between December 2023 and February 2024, in contrast to the majority of official forecasts issued by national and international agencies.
This study analyzes historical and real-time oceanographic data to monitor changes in the Equatorial Pacific Ocean, particularly those associated with the variability of trade winds. The weakening or reversal of these winds can lead to the eastward displacement of the so-called “warm water pool” from near Australia toward the South American Coast. The analysis of data from the 1997–1998 and 2015–2016 El Niño–Southern Oscillation (ENSO) events reveal a strong correlation between these phenomena and trade wind anomalies. Such atmospheric variability generates Kelvin waves in the western Pacific, which propagate along the subsurface interface (thermocline or pycnocline), facilitating the intensification of the Subsurface Equatorial Countercurrent (SECC), also known as the Cromwell Current. These waves deepen the thermocline toward the east, enabling the eastward migration of the warm water pool to South America. Upon arrival, this warm pool often triggers intense rainfall along the Peruvian coast over several months, resulting an increased river discharge, overflows, and significant impacts in urban areas. Continuous monitoring of key variables—including trade winds in the western Pacific, sea level anomalies (dynamic height), the depth of the 20 °C isotherm, sea surface temperature, and the core velocity of the SECC—is essential for the early prediction of El Niño events. The occurrence of a strong El Niño not only requires a reversal or weakening of the trade winds but also significant positive sea level anomalies and a deeper thermocline. Emphasis is placed on the forecast issued in May 2023 in the CIO Challenger bulletin, which correctly predicted the absence of an extreme El Niño event between December 2023 and February 2024, in contrast to the majority of official forecasts issued by national and international agencies.
Description
Universidad Nacional Agraria La Molina. Facultad de Pesquería. Departamento Académico de Manejo Pesquero y Medio Ambiente
Keywords
El Niño Oscilación Sur (ENOS)
Citation
Date
2025
Collections
Seleccionar año de consulta:

Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess