Modelación no estacionaria de caudales máximos para obras de protección en el río Piura, considerando cambio climático y El Niño
Loading...
Código QR
Authors
Farias Zegada de Reyes, Clara Marina
Contact Email
Abstract
Con la finalidad de desarrollar una metodología práctica de modelación hidrológica que incorpore tanto las condiciones actuales como los escenarios futuros de variabilidad y cambio climático, se tomó como caso de estudio la cuenca del río Piura. Se analizó la ocurrencia y distribución espacial de El Niño en la cuenca, así como la variabilidad y el cambio climático en la precipitación, con el propósito de modelar caudales de diseño en régimen no estacionario. Se identificaron dos tipos de anomalías climáticas —ENOS y eventos costeros— con fases cálidas y frías, y se estableció metodología de clasificación estadística basada en cuantiles de los parámetros océano-atmosféricos e hidrometeorológicos. Desde 1994 se observa una tendencia creciente en la precipitación extrema en las cuencas media y alta, con desplazamiento de los máximos hacia la cuenca media, asociado a El Niño. Los modelos climáticos globales y PISCO subestimaron las precipitaciones observadas, por lo que se prefiere el uso de registros recientes del SENAMHI (1993-94/2022-23). La zona baja se ajustó mejor con modelos estacionarios y en el resto de la cuenca se ajustaron modelos no estacionarios GEV con el índice EN como covariable. El modelo hidrológico, implementado en HEC-HMS, calibrado y validado con los eventos de marzo de 2017, permitió estimar el incremento de la eficiencia de escorrentía desde la parte alta de la cuenca (Escorrentía/Precipitación de 10 31 % en Ñácara) hasta aguas abajo (70–84 % en Los Ejidos), evidenciando su importancia en la magnitud de las crecidas. Finalmente, los resultados permitieron la estimación de caudales máximos realistas para distintos períodos de retorno en tres puntos de control, aportando insumos relevantes para el diseño de obras de protección y sistemas de alerta temprana frente a eventos extremos en un contexto de alta incertidumbre climática.
This study aimed to develop a practical hydrological modeling methodology that incorporates both current conditions and future scenarios of climate variability and change, with the Piura River basin as a case study. The occurrence of El Niño and the spatial distribution of its impacts were analyzed, along with variability and climate change in precipitation, in order to model design flows under non-stationary conditions. Two types of climate anomalies were identified—ENSO and coastal El Niño events— with warm and cold phases were identified, and a statistical classification methodology based on quantiles of ocean-atmospheric and hydrometeorological parameters was established. Since 1994, an increasing trend in extreme precipitation has been observed in the middle and upper basins, with a shift of maximum values toward the middle basin, mainly associated with El Niño events. Global climate models and the PISCO product underestimated observed precipitation; therefore, the use of recent SENAMHI records (1993–94/2022-23) is preferred. The lower basin was better represented by stationary models, while non-stationary GEV models with the EN index as a covariate were fitted for the rest of the basin. The hydrological model, implemented in HEC-HMS, calibrated and validated with the March 2017 events, allowed the estimation of increasing runoff efficiency from the upper basin (Runoff/Precipitation of 10–31% in Ñácara) to downstream areas (70–84% in Los Ejidos), highlighting its role in the magnitude of floods. Finally, the results enabled the estimation of realistic peak discharges for different return periods at three control points, providing valuable inputs for the design of protection works and early warning systems against extreme events in a context of high climatic uncertainty.
This study aimed to develop a practical hydrological modeling methodology that incorporates both current conditions and future scenarios of climate variability and change, with the Piura River basin as a case study. The occurrence of El Niño and the spatial distribution of its impacts were analyzed, along with variability and climate change in precipitation, in order to model design flows under non-stationary conditions. Two types of climate anomalies were identified—ENSO and coastal El Niño events— with warm and cold phases were identified, and a statistical classification methodology based on quantiles of ocean-atmospheric and hydrometeorological parameters was established. Since 1994, an increasing trend in extreme precipitation has been observed in the middle and upper basins, with a shift of maximum values toward the middle basin, mainly associated with El Niño events. Global climate models and the PISCO product underestimated observed precipitation; therefore, the use of recent SENAMHI records (1993–94/2022-23) is preferred. The lower basin was better represented by stationary models, while non-stationary GEV models with the EN index as a covariate were fitted for the rest of the basin. The hydrological model, implemented in HEC-HMS, calibrated and validated with the March 2017 events, allowed the estimation of increasing runoff efficiency from the upper basin (Runoff/Precipitation of 10–31% in Ñácara) to downstream areas (70–84% in Los Ejidos), highlighting its role in the magnitude of floods. Finally, the results enabled the estimation of realistic peak discharges for different return periods at three control points, providing valuable inputs for the design of protection works and early warning systems against extreme events in a context of high climatic uncertainty.
Description
Universidad Nacional Agraria La Molina. Escuela de Posgrado. Doctorado en
Recursos Hídricos
Keywords
Río Piura
Citation
Date
2025
Collections
Seleccionar año de consulta:
Licencia de uso

Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess

