Impactos del cambio climático bajo escenarios CMIP6 en el potencial hidroenergético de la cuenca del río Pativilca
Loading...
Código QR
Authors
Pachac Huerta, Yénica Cirila
Contact Email
Abstract
La presente investigación evalúa los impactos del cambio climático en el potencial hidroenergético de la cuenca del río Pativilca, ubicada en los Andes del Perú, mediante la simulación de caudales futuros con el modelo hidrológico SWAT y proyecciones climáticas del CMIP6 bajo los escenarios SSP2-4.5 y SSP5-8.5. Se utilizaron series históricas de precipitación (RAIN4PE) y temperatura (PISCO v2) para calibrar y validar el modelo con datos observados en la estación Cahua, obteniéndose desempeños satisfactorios. Para corregir los sesgos de 14 modelos de circulación general, se aplicó el método de quantile mapping, generando proyecciones de caudal para los periodos 2030–2060 y 2070–2100. Los resultados muestran un incremento en la temperatura (hasta 4.8 °C) y en la precipitación estacional (hasta 106 %), lo que genera mayor escorrentía durante los meses húmedos. A partir de los caudales simulados y características topográficas como pendiente y altitud, se estimó el potencial hidroenergético teórico por unidad hidrográfica. La unidad 07 (estación Cahua) destaca con incrementos entre 22 % y 64 % en el futuro cercano, y entre 36 % y 142 % en el futuro lejano, según el escenario. Se identificaron 24 unidades hidrográficas con alta viabilidad técnica y energética, distribuidas en las regiones A (3), B (3), C (6), D (6), E (4) y F (2). Se concluye que el cambio climático, pese a sus riesgos, genera oportunidades para el desarrollo de centrales hidroeléctricas de pasada en zonas altoandinas. La integración de modelación hidrológica, análisis topográfico y escenarios climáticos permite identificar zonas prioritarias y diseñar estrategias de planificación energética resiliente y sostenible en contextos de montaña afectados por la variabilidad climática.
This study assesses the impacts of climate change on the hydropower potential of the Pativilca River basin, located in the Peruvian Andes, through the simulation of future streamflows using the Soil and Water Assessment Tool (SWAT) and climate projections from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios. Historical precipitation (RAIN4PE) and temperature (PISCO v2) datasets were used to calibrate and validate the model with observed data from the Cahua station, achieving satisfactory performance. To correct biases from 14 general circulation models (GCMs), the quantile mapping statistical method was applied, generating streamflow projections for the periods 2030–2060 and 2070–2100. Results indicate increases in temperature (up to 4.8 °C) and seasonal precipitation (up to 106 %), leading to higher runoff during the wet season. Based on the simulated streamflows and topographic parameters such as slope and elevation, the theoretical hydropower potential was estimated for each hydrologic unit. Hydrologic Unit 07 (Cahua station) stands out with projected increases ranging from 22 % to 64 % in the near future, and from 36 % to 142 % in the distant future, depending on the emission scenario. A total of 24 hydrologic units with high technical and energy viability were identified, distributed across regions A (3), B (3), C (6), D (6), E (4), and F (2). It is concluded that, despite the risks associated with climate change, there are concrete opportunities for the development of run-of-river hydropower plants in high-Andean regions. The integration of hydrological modeling, topographic analysis, and climate scenarios proves to be a key tool for identifying priority areas and guiding resilient and sustainable energy planning in mountain basins affected by climatic variability.
This study assesses the impacts of climate change on the hydropower potential of the Pativilca River basin, located in the Peruvian Andes, through the simulation of future streamflows using the Soil and Water Assessment Tool (SWAT) and climate projections from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios. Historical precipitation (RAIN4PE) and temperature (PISCO v2) datasets were used to calibrate and validate the model with observed data from the Cahua station, achieving satisfactory performance. To correct biases from 14 general circulation models (GCMs), the quantile mapping statistical method was applied, generating streamflow projections for the periods 2030–2060 and 2070–2100. Results indicate increases in temperature (up to 4.8 °C) and seasonal precipitation (up to 106 %), leading to higher runoff during the wet season. Based on the simulated streamflows and topographic parameters such as slope and elevation, the theoretical hydropower potential was estimated for each hydrologic unit. Hydrologic Unit 07 (Cahua station) stands out with projected increases ranging from 22 % to 64 % in the near future, and from 36 % to 142 % in the distant future, depending on the emission scenario. A total of 24 hydrologic units with high technical and energy viability were identified, distributed across regions A (3), B (3), C (6), D (6), E (4), and F (2). It is concluded that, despite the risks associated with climate change, there are concrete opportunities for the development of run-of-river hydropower plants in high-Andean regions. The integration of hydrological modeling, topographic analysis, and climate scenarios proves to be a key tool for identifying priority areas and guiding resilient and sustainable energy planning in mountain basins affected by climatic variability.
Description
Universidad Nacional Agraria La Molina. Escuela de Posgrado. Doctorado en Recursos Hídricos
Keywords
Hidroenergía
Citation
Date
2025
Collections
Seleccionar año de consulta:
Licencia de uso

Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess