UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

"MODELACIÓN HIDRÁULICA UNIDIMENSIONAL CON MUROS TRANSVERSALES EN EL TRAMO KM 25+000 AL 40+700 DEL RÍO RÍMAC"

TRABAJO DE SUFICIENCIA PROFESIONAL PARA

OPTAR EL TÍTULO DE

INGENIERA AGRÍCOLA

BRENDA STHEFANIE LUCERO QUITO SUSANIBAR

LIMA – PERÚ

2023

TSP_	_BQ			
ORIGINA	ALITY REPORT			
SIMILA	3% ARITY INDEX	13% INTERNET SOURCES	2% PUBLICATIONS	% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	hdl.han	dle.net		6%
2	reposito	p <mark>rio.undac.edu.</mark> p)e	5%
3	reposito	prio.upao.edu.pe	2	2%
4	reposito Internet Sour	prio.ana.gob.pe		1%

Exclude quotes	On	Exclude matches	< 1%
Exclude bibliography	On		

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

"MODELACIÓN HIDRÁULICA UNIDIMENSIONAL CON MUROS TRANSVERSALES EN EL TRAMO KM 25+000 AL 40+700 DEL RÍO RÍMAC"

TRABAJO DE SUFICIENCIA PROFESIONAL PARA OPTAR EL TITULO DE:

INGENIERA AGRÍCOLA

Presentado por:

BACH. BRENDA STHEFANIE LUCERO QUITO SUSANIBAR

Sustentado y aprobado por el siguiente jurado:

Dr. EUSEBIO MERCEDES INGOL BLANCO Presidente

Dra. LIA RAMOS FERNÁNDEZ Asesor

Mg. Sc. KENYI GLICERIO CAVALCANTI CÁRDENAS Mg. Sc. LIZ MARGOT PALOMINO ZEGARRA Miembro

Miembro

LIMA – PERÚ

2023

DEDICATORIA

A mis seres queridos, quienes me han apoyado para conseguir este logro. A mi madre y abuela quienes son el motivo de esta meta cumplida.

AGRADECIMIENTO

A la Dra. Lía Ramos Fernández, por guiarme en el desarrollo de este trabajo de suficiencia profesional.

A mi papá por apoyarme siempre a alcanzar mis metas con su apoyo incondicional. A mis grandes amistades por motivarme a no rendirme.

ÍNDICE GENERAL

I. I	NTRODUCCIÓN	1
1.1	Problemática	1
1.2	Objetivos	2
II.	REVISIÓN DE LITERATURA	3
2.1	Hidrología	3
2	1.1 Cuenca hidrográfica	3
2	.1.2 Determinación de caudal	3
2	1.3 Niño costero	3
2	.1.4 Ley de Darcy	4
2.2	Hidráulica	6
2	2.1 Hidráulica Fluvial	6
2	.2.2 Modelamiento Hidráulico	. 13
III.	DESARROLLO DEL TRABAJO	. 16
3.1	Generalidades	. 16
3.2	Características de la zona de estudio	. 16
3	.2.1 Área de estudio	. 16
3	.2.2 Clima	. 18
3	.2.3 Relieve	. 18
3	2.4 Suelo	. 19
3	2.5 Cobertura de uso de la tierra	. 19
3	2.7 Hidrología	. 20
3	2.8 Pruebas de infiltración	. 23
3	2.9 Inventario de estructuras	. 24
3.3	Procedimiento	. 28
3	3.1 Consideraciones preliminares	. 28
3	.3.2 Parametrización del Modelo Hidráulico	. 30
3	.3.3 Diseño de muro transversales	. 49
3	.3.4 Efecto hidráulico de la instalación de los muros transversales	. 60
3	.3.5 Estimación del caudal de infiltración	. 63
IV.	RESULTADOS Y DISCUSIÓN	. 65
4.1	Calibración del modelo	. 65
4.2	Dimensiones y ubicación de los muros transversales	. 66
4.3	Evaluación del efecto hidráulico de la colocación de muro	. 69
V.	CONCLUSIONES	.71
VI.	RECOMENDACIONES	. 72
VII.	REFERENCIAS BIBLIOGRÁFICAS	.73
VIII.	ANEXOS	. 74

ÍNDICE DE TABLAS

Tabla 1. Valores de k1	7
Tabla 2. Valores de Fb y Fs	7
Tabla 3. Valores de n, K y m	8
Tabla 4. Valores de coeficiente β	. 10
1	
Tabla 5. Valores de X y $\overline{(1+X)}$, $1(1+X)$, para suelos cohesivos y no cohesivos	. 10
Tabla 6. Coeficiente de contracción u	. 11
Tabla 7. Clasificación de valores de rugosidad por tipología	. 12
Tabla 8. Caudales máximos extraordinarios en el puente Huampaní	. 22
Tabla 9. Caudales medios multianuales (m ³ s ⁻¹) - Estación Chosica	. 23
Tabla 10. Características de las pruebas de infiltración	. 24
Tabla 11. Tomas de canales de riego	. 25
Tabla 12. Bocatomas	. 25
Tabla 13. Descargas de canales de riego	. 26
Tabla 14. Ubicación de tramos angostos	. 28
Tabla 15. Profundidad y Ancho por tramos	. 29
Tabla 16. Valores del ancho estable promedio (TR=100 años)	. 30
Tabla 17. Coeficientes de rugosidad en el cauce del río Rímac	. 35
Tabla 18. Marca de agua en puente Huachipa y Morón	. 44
Tabla 19. Resumen de resultados – Época de avenida	. 46
Tabla 20. Resumen de resultados – Época de estiaje	. 48
Tabla 21. Análisis del ancho del cauce	. 50
Tabla 22. Longitud y ubicación de muros propuestos	. 51
Tabla 23. Datos hidráulicos para un TR=500 años, en secciones de análisis	. 54
Tabla 24. Profundidad de los muros transversales	. 54
Tabla 25. Altura total de los muros transversales	. 56
Tabla 26. Resultados del modelo hidráulico con muros transversales con altura de 0,80m	. 59
Tabla 27. Resultados del modelo hidráulico con muros transversales con altura de 1,00m	. 59
Tabla 28. Caudal de infiltración en el tramo de estudio	. 64
Tabla 29. Coeficiente de rugosidad validado por tramo	. 65
Tabla 30. Coeficiente de rugosidad validado por tramo	. 65
Tabla 31. Variación porcentual de resultado del modelo hidráulico con muros transversales	con
altura de 0.80m y 1,00m	. 66
Tabla 32. Resumen de resultados de estructuras existentes y pendientes promedios - Estiaje	e 68
Tabla 33. Resumen de resultados de estructuras existentes y pendientes promedios - Aver	nida
	. 68
Tabla 34. Variación porcentual de resultado del modelo hidráulico en situación actual	con
muros transversales con altura de 0,80m – Periodo de avenida ordinario	. 69
Tabla 35. Variación porcentual de resultado del modelo hidráulico en situación actual	con
muros transversales con altura de 0,80m – Periodo de estiaje	. 69
Tabla 36. Caudales promedio mensuales (m ³ .s ⁻¹) - estación Chosica	. 74
Tabla 37. Caudal promedio diario (m ³ .s ⁻¹) - estación Chosica - noviembre 2020	. 75
Tabla 38. Caudal promedio diario (m ³ .s ⁻¹) - estación Chosica 2017	.76

ÍNDICE DE FIGURAS

Figura 1. Zonas afectadas por El Niño costero 2017	4
Figura 2. Experimento de Darcy	5
Figura 3. Representación gráfica socavación en la sección transversal de Cauce	9
Figura 4. Representación de los términos del balance de energía	13
Figura 5. Interpretación de la pendiente motriz de cada sección.	15
Figura 6. Fuerzas actuantes sobre el volumen de control definido entre dos secciones c	cuales
quiera 1 y 2	15
Figura 7. Ubicación de la zona de estudio	17
Figura 8. Mapa de pendiente de la zona de estudio	18
Figura 9. Mapa de tipo de suelo	19
Figura 10. Mapa de cobertura vegetal	19
Figura 11. Levantamiento topográfico convencional y fotogramétrico	20
Figura 12. Ortofoto obtenida con DRONE	21
Figura 13. Topografía en planta de la zona de estudio	21
Figura 14. Ubicación de estaciones meteorológicas e hidrométricas	21
Figura 15. Precipitación promedio multianual por estaciones	22
Figura 16. Hidrograma – Estación Chosica	23
Figura 17. Mapa de ubicación de las obras mayores existentes	27
Figura 18. Secciones del cauce generadas en Civil 3D	31
Figura 19. Geometría del cauce representado en el HEC-RAS en situación actual	32
Figura 20. Ingreso de geometría de puente con pilares	32
Figura 21. Ingreso de geometría de puente tipo viga	33
Figura 22. Ingreso de geometría de la bocatoma Huachipa	33
Figura 23. Condición de contorno del modelo hidráulico	34
Figura 24. Caudales de ingreso al modelo hidráulico	34
Figura 25. Tramo 0+000 a 0+200 km – Epoca de estiaje (2020)	38
Figura 26. Tramo 0+000 a 0+200 km – Epoca de estiaje con mancha de agua genereda	38
Figura 27. Tramo 0+400 a 0+500 km – Epoca de estiaje (2020)	38
Figura 28. Tramo 0+400 a 0+500 km – Epoca de estiaje con mancha de agua genereda	39
Figura 29. Puente Morón ubicado en el km 1+734	39
Figura 30. Toma de altura de marca de agua en el puente Morón a) y b)	40
Figura 31. Puente Huachipa ubicado en el km 15+470	40
Figura 32. Toma de altura de marca de agua en el puente Huachipa	41
Figura 33. Geometría del puente Morón ubicado en el km $-1+734$, cota de agua en el año	2017.
	42
Figura 34. Sección hidráulica del puente Morón en HEC-RAS para el año 2017	42
Figura 35. Geometria del puente Huachipa ubicado en el km $-$ 15+4/0, cota de agua en e	el ano
2017	43
Figura 50. Sección indraunca del puente Huachipa en HEC-KAS para el ano 2017	43
Figura 57. vista 5D del modelo en situación actual – Epoca de avenida	45 15
Figura 30. Vista 2D del modelo en situación actual — Época de astigio	43 17
Figura 57. visia 5D del modelo en situación actual – Epoca de estiaje	47
Figure 41 Perfil del río entre los puentes	/ + ۱۷
Figure 42 Sección típice de muro	40
1 1501a 72. 50001011 upica de muio	55

Figura 43 Sección transversal de la distribución de entre muros transversales	. 56
Figura 44. Vista 3D del modelo con muros transversales con altura 0,80 m	. 57
Figura 45. Vista perfil del modelo con muros transversales con altura 0,80 m	. 57
Figura 46. Vista 3D del modelo con muros transversales con altura 1,00 m	. 58
Figura 47. Vista perfil del modelo con muros transversales con altura 1,00 m	. 58
Figura 48. Sección transversal con muros transversales con altura 0,80 m	. 60
Figura 49. Sección transversal con muros transversales con altura 1,00 m	. 60
Figura 50. Sección transversal con muros transversales con altura 0,80 m - distribución	ı de
velocidades	. 61
Figura 51. Sección transversal con muros transversales con altura 1,00 m - distribución	ı de
velocidades	. 61
Figura 52. Sección transversal – Situación Actual	. 61
Figura 53. Sección transversal con muros transversales con altura 0,80 m - Avenida ordina	aria
	. 62
Figura 54. Esquema de variación de perfil geométrico	. 62
Figura 55. Esquema de Perfil hidráulico del modelamiento hidráulico con muros transversa	ales
	. 62
Figura 56. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 0+570	. 77
Figura 57. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 0+790	. 78
Figura 58. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 1+580	. 79
Figura 59. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 1+685	. 80
Figura 60. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 1+880	. 81
Figura 61. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 2+880	. 82
Figura 62. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 3+885	. 83
Figura 63. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 4+680	. 84
Figura 64. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 5+290	. 85
Figura 65. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 5+900	. 86
Figura 66. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 7+580	. 87
Figura 67. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 7+880	. 88
Figura 68. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 8+280	. 89
Figura 69. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 9+580	. 90
Figura 70. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 10+785	. 91
Figura 71. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 11+480	. 92
Figura 72. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 11+980	. 93
Figura 73. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 12+885	. 94
Figura 74. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 13+985	. 95
Figura 75. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 14+680	. 96
Figura 76. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 14+980	. 97
Figura 77. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 15+690	. 98

ÍNDICE DE ANEXOS

ANEXO 1:]	INFORMACIÓN CLIM	ÁTICA E HIDROLÓ	GICA	74
ANEXO 2:	CÁLCULO DE PARÁN	IETROS HIDRÁULI	COS	77

RESUMEN

En el presente trabajo de suficiencia profesional se expone el "estudio de diseño y modelamiento hidráulico para muros transversales" contemplado en el proyecto de recuperación progresiva de la reserva subterránea realizado en el río Rímac. Este proyecto tuvo como objetivo reducir la brecha existe sobre el servicio de agua potable que brinda la PTAP Huachipa, ya que actualmente solo se está produciendo 1,32 m3.s-1 y no el caudal de diseño de 5 m3.s-1; esto se mitigará mediante la recarga inducida artificial, donde se aprovecha el volumen de agua superficial en periodos de avenida con el efecto de la instalación de muros transversales y pozos tubulares. El diseño y modelamiento hidráulico de los muros transversales se realizó en el tramo km 25+000 al 40+700 del cauce del río Rímac. El modelo hidráulico se efectuó con el software HEC-RAS 1D en flujo permanente, para dos escenarios: uno en situación actual y otro para modelo con muros transversales. Para el diseño de los muros transversales se consideró un periodo de retorno de 100 y 500 años. Una vez definido las dimensiones y ubicaciones de estos muros se ingresaron al modelo hidráulico, y luego se evaluó el efecto generado por su colocación transversal en el cauce para un periodo de avenida y estiaje, con el fin de analizar si la variación del área mojada, tirante de agua, velocidad y número de Froude, representarían un beneficio para el incremente de la infiltración en el tramo de estudio. Finalmente, se corroboró que existe un incremento de 32 por ciento del área mojada con la implementación de los muros transversales, generando mayor área de contacto entre el flujo de agua y el suelo, es decir aumentando la variable principal para la infiltración. Obteniendo un incremento del 26 por ciento y 32 por ciento en los caudales de infiltración durante las temporadas de avenidas y estiaje, respectivamente.

Palabras clave: cuenca del río Rímac; muros transversales; HEC RAS; pendiente; periodo de avenida; periodo de estiaje.

ABSTRACT

In the present work of professional sufficiency, the "Design study and hydraulic modeling for transversal walls" will be presented. This is contemplated in the project for the progressive recovery of the underground reserve carried out in the Rímac river. This project aimed to reduce the gap that exists on the service of drinking water provided by the PTAP of Huachipa, since currently only 1,32 m3.s-1 is being produced and not the designed flow of 5 m3.s-1. This gap will be mitigated by artificially induced recharge, where the volume of surface water is used in flood periods with the effect of installing transversal walls and tube wells. The design and hydraulic modeling of the cross walls was carried out in the 25+000 to 40+700 km stretch of the Rímac river bed. The hydraulic model was carried out with the HEC-RAS 1D software in permanent flow, for two scenarios: one in the current situation and another for the model with transversal walls. For the design of the transversal walls, a return period of 100 and 500 years was considered. Once the dimensions and locations of these walls were defined, they were entered into the hydraulic model. Then, the effect generated by their transversal placement in the channel was evaluated for a period of flood and low water to analyze if the variation of the wetted area, depth of water, speed and number of Froude would represent a benefit for the infiltration increase in the section of study. Finally, it was confirmed that there is a 32 percent increase in the wetted area with the implementation of the transverse walls, generating a greater contact area between the water flow and the soil, that is, increasing the main variable for infiltration. Obtaining an increase of 26 percent and 32 percent in infiltration flows during the flood and dry season, respectively.

Keywords: Rimac river basin; cross walls; HEC RAS; earring; avenue period; dry season.

I. INTRODUCCIÓN

1.1 Problemática

Debido al crecimiento poblacional progresivo de la ciudad de Lima, se ha visto afectado el almacenamiento del acuífero del río Rímac por el incremento de la explotación de la fuente de agua subterránea, y como medida de mitigación se contempla proyectos de recuperación progresiva de la reserva subterránea, siendo uno de ellos la recarga inducida artificial mediante el aprovechamiento del volumen de agua superficial en periodos de avenida que se proyecta en el tramo km 25+000 al 40+700 del río Rímac, a fin de reducir la brecha que existe sobre el servicio de agua potable que brinda la PTAP Huachipa, ya que ésta planta solo está cubriendo el 26 por ciento de su demanda actual. Para generar la recarga inducida artificial se proyecta instalar muros transversales y pozos tubulares; los primeros buscan aumentar el área de contacto entre agua y el suelo, reducir la pendiente del cauce y disminuir la velocidad del flujo de agua; y los segundos buscan aumentar la gradiente hidráulica, para lograr finalmente una mayor infiltración.

Por consiguiente, en el presente proyecto de trabajo de suficiencia profesional tuvo como finalidad presentar la evaluación del comportamiento hidráulico del cauce del río Rímac en el tramo km 25+000 al 40+700 con el *software* HEC-RAS 1D. Se hizo uso de este *software* ya que es gratuito y de mayor uso internacionalmente, generalmente realiza cuatro (4) tipos de análisis en ríos modelación de flujo en régimen permanente, flujo en régimen no permanente, del transporte de sedimentos y calidad de agua, también permite la interacción del río con estructuras hidráulicas e ingresos caudales en diferentes sectores. En este caso, se empleó un régimen de modelo hidráulico permanente considerando flujos de ingresos y salidas de caudales en diferentes puntos del tramo del cauce, con el objetivo de diseñar los muros transversales a lo largo del tamo de la zona de estudio, a fin de reducir la velocidad del flujo y la pendiente, logrando aumentar el área mojada y la gradiente hidráulica.

En conclusión, se realizará el diseño y modelamiento hidráulico en el tramo km 25+000 al 40+700 del cauce del río Rímac, en base a un modelo con situación actual y otro con los muros transversales proyectados, para estos modelos se considerará un caudal ordinario en avenidas y estiaje, donde se analizarán los resultados de los valores de las variables de tirante, velocidad y *Froude*, con los que se podrá determinar si con la variación de la sección hidráulica se logra

obtener las condiciones necesarias requeridas para lograr la recarga inducida artificial en el tramo de estudio.

1.2 Objetivos

El objetivo general

Realizar el diseño hidráulico de muros transversales y modelamiento unidimensional usando HEC-RAS en el tramo km 25+000 al 40+700 del río Rímac.

Los objetivos específicos

- Parametrizar las condiciones iniciales del modelo hidráulico unidimensional HEC-RAS mediante la calibración del coeficiente de rugosidad de *Manning*, para la simulación de la situación actual del cauce.
- Dimensionar y ubicar los muros transversales a lo largo del tramo de estudio.
- Determinar el efecto hidráulico generado por la colocación de muros transversales mediante la comparación de la velocidad, tirante del flujo y el número de *Froude* obtenidos del modelo unidimensional HEC-RAS en condiciones naturales y con muros transversales.

II. REVISIÓN DE LITERATURA

2.1 Hidrología

2.1.1 Cuenca hidrográfica

La cuenca hidrográfica es el terreno que ocupa las aguas caídas por la precipitación formando cursos de agua bien definidos y generando un curso de agua principal. La delimitación de una cuenca se realiza siguiendo las líneas del *divortium aquarum* (parteaguas), esta línea se considera como una línea imaginaria que representa el límite entre las cuencas adyacentes, distribuyendo los cursos de agua generados por la precipitación.

Para la evaluación de una cuenca hidrográfica se debe conocer las siguientes características físicas: superficie, topografía, altitudes, geología, suelos y cobertura.

Sobre la superficie de la cuenca delimitada, se genera un ciclo hidrológico el cual representa el proceso por el cual pasa el agua, tal como precipitación, infiltración, escorrentía, percolación profunda, almacenamiento en el suelo, evaporación y transpiración, y esto puede semejarse a un sistema en sí.

2.1.2 Determinación de caudal

Como parte del proyecto de recuperación progresiva de la reserva subterránea en el tramo km 25+000 al 40+700 del río Rímac, se realizó un estudio hidrológico de la cuenca del río Rímac y de la cuenca del proyecto, donde se determinó los caudales de ingreso mensuales en el tramo de estudio para un periodo de avenida y estiaje, en base a los datos de 19 estaciones meteorológicas y 3 estaciones hidrométricas, obtenidos del portal de <u>SENAMHI</u> (Servicio Nacional de Meteorología e Hidrología del Perú) y la ANA (Autoridad Nacional del Agua). Así mismo, se determinó los caudales para diferentes periodos de retorno, siendo de interés los hidrogramas de caudales pico para un periodo de retorno de 100 y 500 años.

2.1.3 Niño costero

En la zona de estudio se ha registrado eventos hidrológicos históricos intensos, entre grandes magnitudes de caudales y/o eventos de sequía. En el 2017, se registraron inundaciones que

afectaron al distrito de Chaclacayo y Lurigancho – Chosica, ocasionado por El Niño costero, donde se generó pérdida de vidas humanas y grandes daños materiales.

En la Figura 1, se presenta las zonas afectadas por el fenómeno de El Niño costero 2017 donde se puede observar que el distrito de Chaclacayo y Lurigancho – Chosica están clasificados como zonas más afectas por el Niño Costero del 2017.

Figura 1. Zonas afectadas por El Niño costero 2017 Fuente: Comercio (2017)

La magnitud de este fenómeno generó huaicos que afectaron a la Carretera Central, siendo la zona más afectada Carapongo. Así mismo, en la sierra central se incrementó los caudales con lodo, piedras, árboles y palizadas, interrumpiendo la captación de agua de la planta de tratamiento de agua potable La Atarjea. Debido a ello, SEDAPAL puso en marcha el plan de contingencia, donde se racionalizó el agua a los 27 distritos de Lima, como parte de protección a la infraestructura de la planta de tratamiento.

En marzo de 2017, el río Rímac se desbordó produciendo gran daño a la prolongación de la Carretera Ramiro Prialé, campos agrícolas, zonas de recreación campestre, fábricas de mototaxistas, viviendas, etc.

2.1.4 Ley de Darcy

La ley física que describe el movimiento del agua a través de suelos fue propuesta por Darcy en 1856. Darcy observó que la velocidad del agua que fluye en un medio poroso es directamente proporcional al gradiente hidráulico inducido por el flujo. En otras palabras, esta relación establece que la velocidad de movimiento del agua a través de un suelo poroso es influenciada de manera lineal por la diferencia de altura del agua en el suelo, lo que conocemos como el gradiente hidráulico.

Experimento de Darcy

El montaje experimental consta de una columna vertical rellena de un medio poroso (en este caso, arena) con una sección transversal S y una longitud L. A través de esta columna, se permite el flujo de agua y se mide el volumen de agua (Q) que atraviesa la columna por unidad de tiempo. Además, se registran las alturas piezométricas y, las cuales se miden mediante un manómetro colocado en los extremos de la columna.

El resultado de Darcy se expresa en la forma:

$$Q = kS\frac{\Delta h}{L}$$

Donde:

Q= Volumen de agua que atraviesa la columna por unidad de tiempo. (m3/s)

k= Conductividad hidráulica. (m/s)

S= Sección transversal donde que atraviesa el fluido. (m2)

 Δh = Diferencia potencial. (m)

L= Longitud del medio poroso. (m)

Figura 2. Experimento de Darcy Fuente: (Román, 2008)

2.2 Hidráulica

2.2.1 Hidráulica Fluvial

Esta disciplina estudia la relación que existe entre las corrientes naturales y las estructuras existentes dentro de ríos y lagos.

"La Hidráulica Fluvial no puede comprenderse ni aplicarse aisladamente de una serie de disciplinas de ingeniería que le son complementarias. Así, la Hidráulica Fluvial se ubica dentro de la Hidráulica General y de la Hidráulica de Canales en particular. La Meteorología y la Hidrología resultan indispensables para el estudio de una de las fases del fenómeno fluvial. La Geología, la Geomorfología y disciplinas afines constituyen fundamento importante para la mejor comprensión del comportamiento fluvial." (Rocha, 1999).

Es decir, se basa en la comprensión del sistema fluvial y las características geomorfológicas, conociendo así el comportamiento hidráulico de los ríos. Para ello, se tiene las siguientes variables: el caudal líquido, caudal sólido, ancho del canal o cauce, tirante de agua, velocidad de flujo, radio hidráulico, pendiente, régimen, geometría hidráulica, etc.

a. Ancho estable

Se tiene como uno de los parámetros el ancho estable del cauce, donde se puede aplicar los métodos de *Petits, Simons y Henderson; Blench y Altunin; y Manning Strickler:*

Método de Petits: Está fórmula está en función del caudal de diseño.

$$B = 4,44 * Q^{0,5}$$

Donde:

B = Ancho estable
$$(m)$$

$$Q = Caudal (m^3.s^{-1})$$

Método de *Simons* y *Henderson*: Esta basado en la teoría de régimen estable, además, en función del caudal de diseño y de las condiciones de fondo y orilla del río.

$$B = K_1 * Q^{1/2}$$

Material	K1
Fondo y Orillas de Arena	5,7
Fondo Arena y Orillas de Materiales Cohesivo	4,2
Fondo y Orillas de Material Cohesivo	3,6
Fondo y Orillas del Cauce de Grava	2,9
Fondo Arena y Orillas de Material No Cohesivo	2,8
Fuente: ANA (2019)	

Tabla 1. Valores de k1

Donde:

B = Ancho estable (m) Q = Caudal (m³.s⁻¹) K_1 = Coeficiente (ver Tabla 1)

Método de *Blench y Altunin:* Esta basado en la teoría de régimen estable y en función del caudal de diseño, factor de fondo (Fb) y en el factor de orilla (Fs). Así mismo, estos factores consideran la concentración del material transportado en suspensión, el diámetro de las partículas de fondo y la resistencia de las orillas a ser erosionada.

$$B = 1,81 * (Q * Fb/Fs)^{1/2}$$

Tabla 2. Valores de Fb y Fs

Factor de fondo	Fb	Factor de orilla	Fs		
 Mat. Finos (DM<0,5 mm)	0,80	Mat. Sueltos	0,1		
Mat. Gruesos (DM>0,5 mm)	1,20	Mat. Ligeramente Cohesivo	0,2		
Mat. Cohesivo 0,3					
 Example: ANA (2010)					

Fuente: ANA (2019)

Donde:

B=Ancho estable (m)Q=Caudal $(m^3.s^{-1})$ Fb=Factor de fondo (ver Tabla 2)Fs=Factor de fondo (ver Tabla 2)

Método de *Manning Strickler:* Este método incluye como parámetros de cálculos a los coeficientes de rugosidad (n), tipo material (k) y de cauce (m).

$$B = \left(\frac{Q^{\frac{1}{2}}}{S^{\frac{1}{5}}}\right) \left(nK^{\frac{5}{3}}\right)^{3/(3+5m)}$$

Rugosidad del cauce del río	(n)	Coeficiente - Tipo de material	(K)	Coeficiente cauce	(m)
Sólido sin irregularidades	0,03	Valor practico	10	Cauces aluviales	0,5
Con acarreo irregular	0,03	Material aluvial	12	Cauces arenosos	0,7
Con vegetación	0,03	Material fácilmente erosionable	16	Cauces de montaña	1,0
Con derrubio e irregular	0,03	Mat. Muy resistente	3		
Con fuerte transporte de acarreo	0,04				
Con piedras de 0,25 a 0,30m.	0,04				
Con derrubio y acarreo móvil	0,05				
		Fuente: ANA (2019)			

Tabla 3. Valores de n, K y m

Donde:

b. Socavación

La socavación general, es producida por el incremento de la velocidad y el esfuerzo cortante del flujo en el cauce, exista o no alguna estructura antropogénica, generando una disminución del nivel de la base del cauce. Un ejemplo de ello se puede apreciar cuando existe un estrechamiento en el cauce produciendo una contracción del flujo de agua. Los métodos que se consideran para la determinación de la socavación general es el método de *Lischtvan – Levediev* y método *Blench*.

Método de Lischtvan - Levediev

Este método toma en cuenta la forma del cauce, si el cauce es bien definido o no; la textura del material del fondo, si es un material cohesivo o no cohesivo. Para el cálculo de la profundad de la socavación de suelos homogéneos se considerará las siguientes formulas.

Figura 3. Representación gráfica socavación en la sección transversal de Cauce Nota: (1) - Perfil antes de la erosión (2) - Perfil después de la erosión

Suelos cohesivos:

$$Hs = \left(\frac{\alpha \, Ho^{5/3}}{0.60 \, \beta \, \gamma_d^{1.18}}\right)^{\frac{1}{1+X}}$$

Suelos no cohesivos:

$$Hs = \left(\frac{\alpha \ Ho^{5/3}}{0.68 \ \beta \ d_m^{0.28}}\right)^{\frac{1}{1+X}}$$

Donde:

- $\alpha = Qd.(H_m^{5/3} B_e m)^{-1}$
- $H_s =$ Profundidad de socavación (m).
- Q_d = Caudal de diseño (m³.seg⁻¹).
- Be = Ancho efectivo de la superficie del líquido en la sección transversal
- Ho= Tirante antes de la erosión.
- Vm =Velocidad media en la sección
- μ = coeficiente de contracción (Ver Tabla 6)
- d_m = Diámetro medio (mm)
- x = Exponente variable que depende del diámetro del material y se encuentra en la Tabla 5.
- Tr = Periodo de retorno del gasto de diseño
- β = Coeficiente que depende de la frecuencia con que se repite la avenida que se estudia. Ver

Tabla 4.

- A = Area de la sección hidráulica.
- H_m = Profundidad media de la sección = Área / B
- μ = Coeficiente de contracción (Ver Tabla 6)
- γ_d = Peso volumétrico del material seco que se encuentra a una profundidad Hs, medida desde la superficie del agua (Ton.m⁻³).
- ds = Profundidad de socavación respecto al fondo del cauce.

Periodo de retorno	Periodo de retorno	Coeficiente
(%)	(años)	β
100	1	0,77
50	2	0,82
20	5	0,86
10	10	0,90
5	20	0,94
2	50	0,97
1	100	1,00
0,33	300	1,03
0,20	500	1,05
0,10	1 000	1.07

Fuente: Badillo E. y Rodríguez A. (1992)

Tabla 5. Valores de X y $\frac{1}{(1+X)}$, $\frac{1}{(1+X)}$, para suelos cohesivos y no cohesivos

Sue	elos cohesi	Suelos no cohesivos			
Peso volumétrico Tn/m3	Х	$\frac{1}{(1+X)}$	Dm (mm)	X	$\frac{1}{(1+X)}$
0,8	0,52	0,66	0,05	0,43	0,7
0,83	0,51	0,66	0,15	0,42	0,7
0,86	0,5	0,67	0,5	0,41	0,71
0,88	0,49	0,67	1	0,4	0,71
0,9	0,48	0,67	1,5	0,39	0,72
0,93	0,47	0,68	2,5	0,38	0,72
0,96	0,46	0,68	4	0,37	0,73
0,98	0,45	0,69	6	0,36	0,74
1	0,44	0,69	8	0,35	0,74
1,04	0,43	0,7	10	0,34	0,75
1,08	0,42	0,7	15	0,33	0,75
1,12	0,41	0,71	20	0,32	0,76
1,16	0,4	0,71	25	0,31	0,76
1,2	0,39	0,72	40	0,3	0,77
1,24	0,38	0,72	60	0,29	0,78
1,28	0,37	0,73	90	0,28	0,78
1,34	0,36	0,74	140	0,27	0,79
1,4	0,35	0,74	190	0,26	0,79
1,46	0,34	0,75	250	0,25	0,8
1,52	0,33	0,75	310	0,24	0,81
1,58	0,32	0,76	370	0,23	0,81
1,64	0,31	0,76	450	0,22	0,83
1,71	0,3	0,77	570	0,21	0,83
1,8	0,29	0,78	750	0,2	0,83
1,89	0,28	0,78	1000	0,19	0,84

•		Su	ielos co	hesivos	5		Suelos no cohesivos						
	Pe volun Tn	eso nétrico /m3	X		$\frac{1}{(1+2)}$	<u>K)</u>	Dm (mm)	Σ	K	$\frac{1}{(1+X)}$)		
-	2,	00	0,2	7	0,79)							
		Fu	ente: F	uente: I	Badillo	E. y Ro	odrígue	z A. (1	992)				
			Tabl	a 6. Co	oeficien	te de c	ontrac	ción µ					
Velocidad						Longi	tud libr	e (m)					
Media en sección, en m.s ⁻¹	10	13	16	18	21	25	30	42	52	83	106	124	200
Menor de 1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	0,96	0,97	0,98	0,98	0,99	0,99	0,99	1,00	1,00	1,00	1,00	1,00	1,00
1,50	0,94	0,96	0,97,	0,97	0,97	0,98	0,99	0,99	0,99	0,99	1,00	1,00	1,00
2,00	0,93	0,94	0,95	0,96	0,97	0,97	0,98	0,98	0,99	0,99	0,99	0,99	1,00
2,50	0,90	0,93	0,94	0,95	0,96	0,96	0,97	0,98	0,98	0,99	0,99	0,99	1,00
3,00	0,89	0,91	0,93	0,94	0,95	0,96	0,96	0,97	0,98	0,98	0,99	0,99	0,99
3,50	0,87	0,90	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,98	0,99	0,99	0,99
4,00 o mayor	0,85	0,89	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	0,99	0,99

Fuente: Badillo E. y Rodríguez A. (1992)

Método Blench

Blench en 1939 y 1941, presentó sus fórmulas básicas y de diseño, siendo la siguiente fórmula para el caso de gravas (d50>2mm):

$$h_s = 1,23 \left(\frac{q^2}{d_{50}^{1/4}}\right)^{1/3}$$

Donde: d50 está expresado en mm.

c. Coeficiente de rugosidad

Otro de los parámetros es la rugosidad, conocido como el coeficiente "n" de *Manning*, para su determinación se utiliza el método de *Cowan Schneider* (1956).

Método de Cowan Schneider

Este método considera una dependencia de la rugosidad con la vegetación, irregularidad del canal, alineamiento del canal, sedimentación y socavación, obstrucciones, tamaño y forma del canal, nivel y caudal, cambio estacional, material en suspensión y carga de fondo, para lo cual se utiliza la siguiente ecuación.

n = (n0 + n1 + n2 + n3 + n4) m5

Donde:

- $n_{0:}$ es un valor básico de n para un canal recto, uniforme y liso en los materiales naturales involucrados.
- n_{1:} es un valor que debe agregarse al n0 para corregir el efecto de las rugosidades superficiales.
- n_{2:} es un valor para considerar las variaciones en forma y tamaño de la sección transversal del canal.
- n_{3:} es un valor para considerar las obstrucciones.
- n_{4:} es un valor para considerar la vegetación y las condiciones de flujo.
- m₅: es un factor de corrección de los efectos por meandros en el canal.

		_	
C	Condiciones del cauce		Valores
	Tierra		0,020
Material	Corte de roca		0,025
involucrado	Grava fina	no	0,024
	Grava gruesa		0,028
	Suave		0,000
Grado de	Menor	. 1	0,005
irregularidad	Moderado	nı	0,010
	Alto		0,020
Variaciones	Gradual Ocasionalmente alternante n2		0,000
de la sección			0,005
transversal	Frecuentemente alternante		0,010 - 0,015
Efecto	Insignificante		0,000
relativo	Menor		0,010 - 0,015
de las	Apreciable	ns	0,020 - 0,030
obstrucciones	Severo		0,040 - 0,060
	Baja		0,005 - 0,010
Manada	Media	. 4	0,010 - 0,025
Vegetación	Alta	n4	0,025 - 0,050
	Muy alta		0,050 - 0,100
Grado de los	Menor		1,000
efectos por	Apreciable	m5	1,150
meandros	Severo		1,300

Tabla 7. Clasificación de valores de rugosidad por tipología

Fuente: Ven te Chow (1994)

Así mismo, se determina el coeficiente de rugosidad de *Manning* para la zona de las riberas mediante la caracterización en campo, diferenciando los tipos de cobertura existentes y los materiales predominantes.

2.2.2 Modelamiento Hidráulico

Un modelo hidráulico es la representación matemática de la interacción del volumen de agua, velocidades, la topografía y las infraestructuras hidráulicas situadas dentro de su cauce. Ello lo convierte en un componente esencial para responder y dar soluciones a los diversos casos relaciones al recurso hídrico.

Software HEC-RAS

Es utilizado ampliamente en modelamientos hidráulicos unidimensionales y bidimensionales, flujos de régimen permanente y no permanente, flujo subcrítico, crítico, supercrítico y mixto para el estudio de tránsitos de avenidas, transportes de sedimentos y calidad de aguas (Segura y Casasola, 2011). Los parámetros principales que considera la modelación hidráulica con HEC – RAS son: geometría de las secciones transversales, datos hidrométricos, pendientes y coeficientes de rugosidad.

Este software se fundamenta en la ecuación del balance de energía (trinomio de Bernoulli).

 $Z_1 + y_1 + \alpha_1 \frac{v_1^2}{2g} = Z_2 + y_2 + \alpha_2 \frac{v_2^2}{2g} + \Delta H$

Figura 4. Representación de los términos del balance de energía Fuente: Bladé *et al.* (2009)

Donde:

z1 y z2: son la cota de la sección del cauce

y1 y y2: son los tirantes de la sección del cauce

v1 y v2: son las velocidades medias en la sección del cauce

 α 1 y α 2: son los coeficientes de Coriolis de la sección del cauce

g: la aceleración de la gravedad

 Δ H: la perdida de energía

Este *software* estima las pérdidas de carga mediante la fórmula de *Manning*, pero para el caso de estructuras considera la ecuación de conservación de la cantidad de movimiento. Ver Figura 5 y Figura 6.

$$P_{2x} - P_{1x} + W_x - F_f = \rho. Q. (\beta_2. \nu_2 - \beta_1. \nu_1)$$

Donde:

 P_{1x} y P_{2x} : son componentes de la dirección del movimiento de la resultante

 W_x : es el peso del volumen de control

 F_f : es la fricción del flujo

Q: es el caudal

 ρ : es la densidad del agua

 ν_1 y ν_2 : son las velocidades medias

 β_1 y β_2 : el coeficiente de Boussinesq

Figura 5. Interpretación de la pendiente motriz de cada sección. Fuente: Fuente: Bladé *et al.* (2009)

Figura 6. Fuerzas actuantes sobre el volumen de control definido entre dos secciones cuales quiera 1 y 2 Fuente: Bladé *et al.* (2009)

Para tener una buena estimación de las variables es importante definir la condición de contorno, esto implica conocer como mínimo el tipo de régimen que se formará, la cual puede ser:

- Régimen rápido o supercrítico, para lo cual se debe conocer el calado en el extremo aguas arriba
- Régimen lento o subcrítico, para lo cual debe conocerse el calado en el extremo aguas abajo
- Régimen lento en algunos tramos y en otros rápidos, se debe conocer el calado en los dos extremos aguas arriba y aguas abajo.

III. DESARROLLO DEL TRABAJO

3.1 Generalidades

El presente trabajo se desarrolló en el año 2021 al 2022 en los distritos Lurigancho Chosica, Ate y Chaclacayo, provincia de Lima y departamento de Lima, como parte del proyecto de recuperación progresiva de la reserva subterránea realizado en el río Rímac. Este proyecto se da como medida de mitigación a la brecha existente en el servicio de agua potable que brinda la PTAP Huachipa, ya que actualmente solo se está produciendo 1,32 m3.s-1 y no el caudal de diseño de 5 m3.s-1, mediante la recarga inducida artificial; la cual ya se ha implementado en un tramo de 6km aguas debajo de la zona de estudio como un proyecto piloto, entre La Atarjea y el puente Huachipa. Este es una técnica hidrogeológica que consiste en aprovechar el volumen de agua superficial en periodos de avenida con el efecto de la instalación de muros transversales y pozos tubulares.

Para el análisis y diseño de los muros transversales se realizó el modelamiento hidráulico en el tramo km 25+000 al 40+700 del cauce del río Rímac, con el software HEC-RAS 1D en flujo permanente, para dos escenarios: uno en situación actual y otro para modelo con muros transversales.

Como se puede apreciar, el tema a desarrollar es muy poco estudiado y aplicado, debido a la complejidad del sistema a intervenir, la Consultora que desarrollo este estudio me dio como beneficio un crecimiento profesional en diversas especialidades, tal como hidráulica, hidrología, hidrogeología, saneamiento y agua potable, telecomunicaciones, etc. Como profesional, forme parte de algunos puntos desarrollados en estas especialidades, pero en especial en el área de hidráulica e hidrología, aportando con mis habilidades adquiridas en mi alma máter y adquiriendo nuevas habilidades.

3.2 Características de la zona de estudio

3.2.1 Área de estudio

El área de estudio está en el kilómetro 25+000 al 40+700 del río Rímac, ubicada políticamente en el departamento de Lima, provincia de Lima, y en el límite de los distritos Lurigancho Chosica, Ate y Chaclacayo; ocupando un tramo de 16 kilómetros aproximadamente en la zona baja de la cuenca del río Rímac.

Figura 7. Ubicación de la zona de estudio

La cuenca del río Rímac, políticamente está ubicada en su mayor área en el departamento de Lima y una parte en el departamento de Junín, abarcando la provincia de Lima, Huarochirí y Yauli.

Geográficamente la cuenca del río Rímac está ubicada a 11°36'52'' y 12°05'47'' de latitud Sur y entre 76°11'05'' y 77°04'36'' de longitud Oeste.

En cuanto a su distribución hidrográfica es en la vertiente del Pacífico, nace en la Cordillera Central de los Andes y desembocar en el Océano Pacífico, con una extensión de 3503,95 km2 y una longitud de 127,02 km, contando con una zona húmeda del 65,7 por ciento (2303,1 km2) que corresponde a la parte alta.

La cuenca del río Rímac está conformada por dos subcuencas de gran importancia, la del río Santa Eulalia y la del río San Mateo, que tienen una pendiente promedio de 4,94 y 6,33 por ciento respectivamente, la confluencia de estos ríos se da cerca de la localidad de Lurigancho – Chosica, con una pendiente de 1,8 por ciento.

El régimen de los flujos de agua del río Rímac son semejantes a los ríos de las Costa del Perú, flujos irregulares, torrentosas y marcadas diferencias entre sus parámetros extremos.

El uso de los recursos hídricos en la cuenca del río Rímac es regulada por la entidad Administrativa Local de Agua Chillón – Rímac - Lurín, que depende de la Autoridad Nacional del Agua - ANA, adscrita al Ministerio de Desarrollo Agrario y Riego.

3.2.2 Clima

En la cuenca del río Rímac se tiene un período de lluvias de mayor magnitud a partir del mes de diciembre hasta marzo; y el período seco, en los meses de mayo a setiembre, teniendo como meses transitorios a abril, octubre a noviembre. Según el Observatorio del Agua Chillón, Rímac y Lurín (2019), se tiene una la precipitación promedio multianual entre los años 1981 – 2017 de 385,4 mm.

La temperatura varía acorde a la altitud de la zona, en la cuenca del río Rímac se tiene en la parte baja temperaturas cálidas, temperaturas máximas entre 24°C a 28°C y temperaturas mínimas entre 12°C a 16°C, y en las zonas altas se tiene temperaturas más frías, temperaturas máximas entre 8°C a 16°C y temperaturas mínimas -8°C a -4°C.

3.2.3 Relieve

La cuenca del río Rímac cuenta con un relieve entre zonas planas a casi planas hasta zonas fuertemente escarpadas, esto por contar con diversas zonas altitudinales. Por ello se realizó la categorización de las pendientes existentes en la zona de estudio, ya que esta es muy variable.

Figura 8. Mapa de pendiente de la zona de estudio

3.2.4 Suelo

La capacidad de uso del suelo de la cuenca del río Rímac se clasificó en base de la data proporcionada por el Ministerio del Ambiente, obteniendo como tipos de suelo los siguientes: Leptosol lítico, Leptosol dístrico, Regosol dístrico, Fluvisol éutrico y Arenosol háplico.

Figura 9. Mapa de tipo de suelo

3.2.5 Cobertura de uso de la tierra

La cuenca del río Rímac, está constituida por dos áreas principalmente por Pajonal andino y Matorral arbustivo, con un área de 861,67 km² y 617 km² respectivamente. Por otro lado, se tienen áreas que han sido intervenidas de manera intensiva, las cuales provocan deterioro por los procesos erosivos, contaminación del agua y otros.

Figura 10. Mapa de cobertura vegetal

3.2.6 Topografía

Como parte de los estudios básicos realizados en el del proyecto de recuperación progresiva de la reserva subterránea en el tramo km 25+000 al 40+700 del río Rímac, se realizó el levantamiento topográfico convencional y fotogramétrico (ver Figura 10), obteniendo en el cauce una pendiente promedio de 1,8 por ciento.

El levantamiento convencional se realizó en el cauce y en la identificación de interferencias en la zona urbana con estación total y GPS diferencial, así mismo se hizo un control horizontal con la colocación de 13 BM y control vertical con la instalación de 08 puntos geodésicos enlazados a una estación de rastreo permanente.

En cuanto, al levantamiento fotogramétrico se realizó con un dron Phantom 4Prok, con el cual se obtuvo los planos planimétricos, modelo de elevación digital y ortofotos, estos dos últimos con una precisión de 10cm. Por otro lado, también se obtuvieron videos de todo el tramo de estudio, teniendo como referencia los puntos de control de los BM's.

Figura 11. Levantamiento topográfico convencional y fotogramétrico
a) y b) Fotografías de levantamiento topográfico convencional en el cauce
c) y d) Fotografías de levantamiento fotogramétrico en la zona aledaña del cauce

Figura 12. Ortofoto obtenida con DRONE

Figura 13. Topografía en planta de la zona de estudio

3.2.7 Hidrología

La cuenca del río Rímac cuenta con 19 estaciones meteorológicas ubicadas en la misma cuenca o las cuencas vecinas y 3 estaciones hidrométricas ubicadas en el río Santa Eulalia, río Blanco y en su convergencia, tal como se muestra en la Figura 14.

Figura 14. Ubicación de estaciones meteorológicas e hidrométricas

Así mismo, se presenta el hidrograma de la precipitación promedio multianual por estación meteorológica en la Figura 15.

Figura 15. Precipitación promedio multianual por estaciones

En el estudio hidrológico del proyecto de recuperación progresiva de la reserva subterránea en el tramo km 25+000 al 40+700 del río Rímac, se determinó en el puente Huampaní los caudales de máximas avenidas o de avenidas extraordinarias asociados a los períodos de retorno de 2, 5, 20, 50, 100, 200 y 500 años, los cuales se muestran en la siguiente tabla:

Tiempo de R	etorno	$Q(m^3/s)$	V(MM)
	2	25	0,52
A 140	5	71,5	1,66
Alla	20	186,3	4,5
Probabilidad	25	208,1	5,03
	50	282,2	6,84
Daia	100	382,7	9,24
Daja Drohohilidad	200	481,7	12,37
Probabilidad	500	574.7	13.98

Tabla 8. Caudales máximos extraordinarios en el puente Huampaní

Fuente: Estudio hidrológico del proyecto de recuperación progresiva de la

reserva subterránea en el tramo km 25+000 al 40+700 del río Rímac

Para el dimensionamiento de los muros transversales se consideró el caudal extraordinario para un periodo de retorno de 100 y 500 años, con los cuales se determinó su longitud y altura, respectivamente.

Debido a que se requiere analizar el efecto de la instalación de los muros transversales en los

meses de avenidas, se utilizó los datos hidrométricos mensuales registrados en la estación Chosica, contando con el siguiente hidrograma de caudales mensuales para un periodo de 2000-2017.

Figura 16. Hidrograma –	Estación Chosica
-------------------------	------------------

Tabla 9. Caudales medios multianuales (m³ s⁻¹) - Estación Chosica

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Promedio	39,53	52,02	65,71	45,91	25,24	20,41	19,73	19,65	20,56	21,09	23,24	27,13
Máxima	68,83	71,2	96,92	67,53	39,6	27,37	26,67	25,18	24,35	25,98	36,7	37,58
Mínima	22,01	36,83	32,62	22,89	13,45	12,57	10,16	11,78	15,22	15,3	14,92	13,98

Así mismo, se identificó estructuras de descarga la C.H. Huampaní y de captación la bocatoma Huachipa, generando caudales de ingreso de 21,8 m $3.s^{-1}$ y salida de 5 m $3.s^{-1}$ en el tramo de estudio.

3.2.8 Pruebas de infiltración

En el proyecto de recarga inducida se realizó pruebas de infiltración mediante el método de "Porchet", en 10 puntos del tramo de estudio.

De las pruebas realizadas se obtuvieron diferentes valores de conductividad hidráulica en el cauce, en la Tabla 10 se muestran las características obtenidas:

Prueba de Infiltración	Prueba de Coordenadas		Clasificación SUCS	NF (m)	Humedad	\mathbf{K}	Tipo de suelo	Permeabilidad
Código	Е	Ν	(m)	(11)		(11/8)		
R-1 (CC-10)	300 004	8 673 609	0-3,00: GW	1,20	Mojado	8,74 E-05	Arena limpia y mezclas de grava	Rápida
R-2 (CC-1) (*)	306 737	8 675 568	0-0,20: relleno Antrópico apisonado 0,20-1.60: GW 1,60-1.80: SP 1.80-2.00: GW	No observable	Seco	3,90E-06	Arenas muy finas	Rápida
R-3 (CC2)	305 629	8 675 340	0-1,20: GW	1,10	Húmedo	2,78E-05	Arena limpia y mezclas de grava	Rápida
R-4 (CC-8)	294 083	8 671 329	0-0,90: GW	0,85	Muy húmedo	3,27E-05	Arena limpia y mezclas de grava	Rápida
R-5 (CC-9)	293 942	8 671 269	0-0,56: SW 0,56-0.80: GW	0.56	Mojado	3,52E-05	Arena limpia y mezclas de grava	Rápida
R-6 (CC-6)	296 992	8 672 036	0-0,60: GW	0,34	Mojado	1,86E-05	Arena limpia y mezclas de grava	Rápida
R-7 (CC-7)	296 951	8 671 977	0-0,50: GW	0,38	Mojado	2,12E-05	Arena limpia y mezclas de grava	Rápida
R-8 (CC-3)	304- 270	8 675 025	0-1.20: GW	0,30	Mojado	8,2 E-06	Arena muy fina a arena limpia y mezcla de gravas	Rápida
R-9 (CC-4)	302 791	8 674 697	0-0,20: GW 0,2-0,50: SW	1,10	Seco	2,69E-05	Arena muy fina a arena limpia y mezcla de gravas	Rápida
R-10 (CC-5)	299 310	8 672 639	0-0,10: OL 0,10- 0,60: GW	0.50	mojado	1,77E-05	Arena limpia y mezclas de grava	Rápida
K Promedio						3,06E-05	Arena limpia y mezclas de grava	Rápida

Fuente: Informe de Pruebas de Infiltración del proyecto de recuperación progresiva de la reserva subterránea en el tramo km 25+000 al 40+700 del río Rímac

3.2.9 Inventario de estructuras

Para el presente proyecto se consideró un eje de cauce en el tramo de estudio con inicio aguas arriba y fin aguas abajo, teniendo una progresiva desde el 0+000 al 16+000. Del reconocimiento de campo de la zona de estudio, se ubicó las siguientes estructuras mayores y menores, de las cuales solo se tuvo en cuenta para el modelo hidráulico las estructuras mayores, ya que estas tienen mayor implicancia en el sistema. A continuación, se describe la ubicación de estas estructuras:

Estructuras mayores

- En la progresiva 0+482 se encuentra ubicado el puente Huampaní, el cual tiene una longitud aproximada de 65,5 m y un ancho de 3,8 m.
- En la progresiva 0+670 se ubica la central hidroeléctrica Huampaní, la cual descarga en dicha progresiva el caudal derivado aguas arriba.
- En la progresiva 1+734 se encuentra ubicado el puente Morón, el cual tiene una
longitud aproximada de 108.5 m y un ancho de 4,1 m.

- En la progresiva 5+735 se ubica el puente vehicular Ñaña, el cual tiene una longitud aproximada de 76,4 m y un ancho de 20,6 m.
- En la progresiva 11+417 se ubica el puente peatonal Carapongo, el cual tiene una longitud aproximada de 90m, y un ancho de 2 m.
- En la progresiva 13+200 se encuentra ubicado la bocatoma Huachipa.
- En la progresiva 14+520 se ubica el puente peatonal Santa Clara, el cual tiene una longitud aproximada de 68103,5 m, y un ancho de 5,6 m.
- En la progresiva 14+756 se ubica el puente Ferrocarril Huachipa, el cual tiene una longitud aproximada de 6895 m, y tiene un ancho de 5,9 m.
- En la progresiva 15+470 se ubica el puente Huachipa, el cual tiene una longitud aproximada de 68, y un ancho de 20,1 m.

La Figura 17, se muestra la localización de las estructuras mayores en el tramo de estudio.

Estructuras menores

Dentro de las estructuras menores, se encuentran las tomas de los canales de riego, bocatomas y descargas de canales de riego, en la Tabla 11, Tabla 12 y Tabla 13 se enlista dichas estructuras:

Nombra	Drogracius	Coordenadas			
Nollible	Floglesiva	Este	Norte		
Toma de canal Ate	14 + 700	293826,82	8671261,70		
Toma de canal Nieveria	12+442	295969,74	8671841,17		
Toma de canal Carapongo con caseta y compuerta	8+384	299530,81	8673099,18		
Toma de canal Carapongo con tubo de HD Ø 1,60 m	7+675	299997,93	8673624,69		
Toma de canal Bajo Ñaña	3+050	304387,35	8675088,68		

Tabla 11	. Tomas	de canales	de riego
----------	---------	------------	----------

Tabla 12. Bocatomas

Nombro	Dreamaire	Coor	denadas
Nombre	Progresiva –	Este	Norte
Bocatoma Nexa Cajamarquilla	15+314	293203,01	8671219,45
Bocatoma de canal La Estrella	3+450	304040,00	8674843,78
Bocatoma de canal Castrillejos	4+600	302908,75	8674590,06

	Tabla 15. Descargas de canales de riego								
Decorrect	Mangan dal ma	Coord	lenadas						
Descargas	Margen del rio	Este	Norte						
La Estrella	Izquierda	296692,00	8671897,00						
Nieveria	Derecha	295849,00	8671772,00						
Huachipa	Derecha	293416,00	8671256,00						
Ate	Izquierda	294032,00	8671264,00						

Tabla 13. Descargas de canales de riego

Figura 17. Mapa de ubicación de las obras mayores existentes

3.3 Procedimiento

3.3.1 Consideraciones preliminares

a. Hidrométrica

En consideración del objetivo del presente estudio, sobre la evaluación del efecto hidráulico generado en el tramo de estudio por la colocación de los muros transversales, en el modelo hidráulico se utilizó los datos representativos para el periodo de avenida (enero a abril) y estiaje (mayo a diciembre) en base a la data del promedio multianual durante el periodo 2000-2017 (Ver Tabla 9), siendo 50,80 m³.s⁻¹ y 22,13 m³.s⁻¹ respectivamente.

Así mismo, para el diseño de los muros transversales se consideró el caudal máximo para un periodo de retorno de 100 años, siendo 382,70 m³.s⁻¹, obtenido en el estudio de hidrología del proyecto de recuperación progresiva de la reserva subterránea en el tramo km 25+000 al 40+700 del río Rímac.

b. Cauce

Morfología

El tramo evaluado consta de aproximadamente 16 km (500 m aguas arriba del puente Huampani, y 500 m aguas abajo del puente Huachipa) con una pendiente longitudinal promedio de 1,8 por ciento. Dentro de este tramo se identificó zonas en la margen derecha que actualmente tiene un ancho reducido, generado por sedimentos y/o materiales antrópicos, en estas zonas se propuso realizar ensanchamientos teniendo como límite la faja marginal o predios privados.

			8
Ítam	Progr	esiva	- Longitud (m)
nem	Inicio	Final	
1	7+415	7+700	285
2	9+900	10+280	380
3	0+980	1+100	120
4	1+950	2+025	75
5	14+260	14+600	340

Fabla	14.	Ubicación	de	tramos	angostos
-------	-----	-----------	----	--------	----------

Por otro lado, al inicio del tramo de estudio se tiene un cauce con un ancho hasta 10m en una longitud aproximadamente de 700m, por ello en esta zona no se colocarán muros transversales,

ya que no estos elevarían la tirante agua y podrían provocar desbordamientos afectando a las zonas aledañas, así mismo en esta zona ya se tiene un área mojada y tirante casi uniforme.

El lecho del río presenta profundidades y ancho variables, donde los materiales que predominan son conglomerados, los cuales conforman la ribera del río. En menor proporción se pudo identificar tramos que cuentan con material antrópico (desmonte, etc.) y otros de vegetación.

Ítem	Progr	resiva	Fotografías	Ancho (m)	Profundidad (m)	Descripción	
	Inicio	Final					
1	0+000	0+800		48,5	6,5	No presenta vegetación ni material antrópico	
2	0+800	10+800		80,0	6,7	Presenta vegetación y material antrópico	
3	10+800	15+400		120	4,3	Presenta vegetación, pero no material antrópico	
4	15+400	15+970		49,0	10,0	Presenta poca vegetación, y no hay material antrópico	

Tabla 15. Profundidad y Ancho por tramos

Ancho estable del cauce

Para el cálculo del ancho estable se dividió el tramo de estudio en 3 tramos acorde a su sección hidráulica, ya que al inicio del tramo es estrecho, en el medio es amplio y en el tramo final se vuelve a angostar el cauce. Este cálculo se efectuó para la avenida extraordinaria de un periodo de retorno de 100 años, aplicando los métodos de *Petits, Simons y Henderson*; y *Blench y Altunin; y Manning Strickler:*

Mátodo	Ar	ncho estable por Tran	108
Metodo	0+000 - 0+725	0+725 - 13+200	13+200 - 15+970
Petits	84,44	86,86	86,29
Simons y Henderson	55,15	56,73	56,36
Blench y Altunin	119,25	122,66	121,85
Manning Strickler	71,06	73,10	71,79
Promedio (m)	82,48	84,84	84,07

Tabla 16. Valores del ancho estable promedio (TR=100 años)

En la Tabla 16, se presenta el ancho estable por cada tramo para cada método, se consideró calcular un promedio de estos valores para establecer el ancho estable del cauce, obteniendo valores 82 a 85m, con el cual se aseguró la existencia de un flujo estable y no turbulento con caudales correspondientes a periodos de retorno de 100 años.

Estado actual de la faja marginal

En base a la delimitación de la faja marginal del río Rímac dada por la resolución RD 077-2020-ANA-AAA-CAÑETE FORTALEZA, se verificó en campo el estado actual de estas zonas encontrándose que están ocupadas en la mayoría de los tramos, por rellenos sanitarios informales y depósitos de desmonte acumulados en las últimas décadas, esto es lo que ha generado una reducción del ancho del cauce, es decir que se tiene un área de espejo de agua reducida casi en 24 por ciento (260 ha actuales de 342 ha máximo teóricas).

3.3.2 Parametrización del Modelo Hidráulico

a. Parámetros de ingreso

Para la definición del área del modelo se consideró un tramo de 500 m aguas arriba del puente Huampaní y 500 m aguas abajo del puente Huachipa, en estas zonas no existen obras hidráulicas que afecten el modelo y sus características hidráulicas son similares; como la pendiente, el ancho del cauce, etc.

Las secciones topográficas fueron generadas mediante el software Civil 3D (Ver Figura 18). Se estableció un intervalo de 10 metros para las secciones en el lecho del cauce. No obstante, en los tramos que presenten curvas pronunciadas o presencia de estructuras como puentes y bocatomas, se redujo la distancia a cada 1 metro. Este enfoque se adoptó con el objetivo de preservar información topográfica detallada la que se importó al modelo en HEC-RAS 1D (Ver Figura 19).

Figura 18. Secciones del cauce generadas en Civil 3D

Figura 19. Geometría del cauce representado en el HEC-RAS en situación actual

Las estructuras hidráulicas existentes en el tramo de estudio también forman parte de la geometría del cauce que se consideraron, siendo 7 puentes (puentes Huampaní, Morón, Ñaña, Carapongo, Santa Clara, Ferrocarril y Huachipa), la geometría de estas estructuras se obtuvo del levantamiento topográfico de las estructuras existentes realizado en el proyecto, ver Figura 20 y Figura 21. Así mismo, se consideró las infraestructuras de la bocatoma Huachipa (ver Figura 22) y la descarga de la Central Hidroeléctrica Huampaní.

Figura 20. Ingreso de geometría de puente con pilares

Figura 22. Ingreso de geometría de la bocatoma Huachipa

Se consideró un flujo permanente para el tramo de estudio, debido a que se desea evaluar la disminución de la pendiente y el aumento del área mojada; así mismo, existe ingreso de caudal en el punto de descarga (C.H. Huampaní) y salida de caudal en el punto de captación (Bocatoma Huachipa), estos caudales se ingresaron en el tramo correspondiente.

Para el caso del presente modelo, se considerará un calado normal aguas abajo y aguas arriba, ya que se tiene un flujo variable (lento y rápido), según los registros históricos.

Steady Flow Boun	idary Conditions							
Set boundary for all profiles C Set boundary for one profile at a time								
		Available Extern	al Boundary Condtion	Types				
Known W.S.	Critical De	pth	Normal Depth	Ratin	ng Curve	Delete		
	Sel	ected Boundary	Condition Locations an	id Types				
River	Reach	Profile	Upstream		Downst	tream		
rimac	Alignment_MODEL	all	Normal Depth S = 0.0)2	Normal Depth S = 0.02			
Steady Flow Read	Steady Flow Reach-Storage Area Optimization OK Cancel Help							
Enter to accept dat	ta changes.						_	

Figura 23. Condición de contorno del modelo hidráulico

Configuración de flujo permanente

El caudal de ingreso que se consideró para estiaje es 22,13 m³.s⁻¹ y para avenidas 50,80 m³.s⁻¹, para el modelo se tomó en cuenta que la C. H. Huampaní toma unos 21.8 m³.s⁻¹ antes del ingreso al tramo a modelar y los retorna a los 250m aproximadamente aguas abajo del puente Huampaní; así mismo los 5 m³.s⁻¹ que es captado por la bocatoma Huachipa, en la progresiva 13+200.

च्	Steady Flow Data	a - caudales						×
File	e Options Hel	р						
Des	cription :					÷	. Appl	y Data
Ente	Enter/Edit Number of Profiles (32000 max): 2 Reach Boundary Conditions							
		Loca	tions of Flo	ow Data Chan	ges			
Rive	er: rimac	-					Add Multiple	e
Rea	ch: Alignment_MO	DELO Riv	ver Sta.: 1	6000.49	• /	Add A Flow Ch	hange Loca	tion
	Flow Ch	ange Location			Profile Nam	nes and Flow I	Rates	
	River	Reach	RS	AVENIDA	ESTIAJE			
1	rimac	Alignment_MODEL	16000.49	29	0.33			
2	rimac	Alignment_MODEL	15275	50.8	22.1			
3	rimac	Alignment_MODEL	2758.25	45.8	17.1			

Figura 24. Caudales de ingreso al modelo hidráulico

Coeficientes de rugosidad de Manning

Se calculó el coeficiente de rugosidad de *Manning* del cauce del río con el método del *Cowan*, para realizar una representación dinámica del flujo se optó por tomar 8 tramos representativos de los 16 km.

N°	Tra	amo	Fotografía del tramo	Ubicación	nO	nl	n2	n3	n4	m5	Coeficiente de rugosidad (n) - Cowan
				Centro	0.028	0.000	0.000	0.005	0.006	1.000	0.039
				Margen							0.039
1	0+000	2+000		Derecho							
				Margen							0.039
				izquieruo							
				Centro	0.028	0.000	0.000	0.005	0.007	1.000	0.040
			The state of the second								
2	2+000	4+000		Margen							0.042
				Derecho							
				Margen							0.040
				Izquierdo							
				Centro	0.028	0.000	0.000	0.005	0.005	1.000	0.038
				Margen							
3	4+000	6+000		Derecho							0.038
				Margen							0.020
				Izquierdo							0.038
				Centro	0.028	0.000	0.000	0.005	0.006	1.000	0.039
			The second								
4	6+000	8+000		Margen Derecho							0.040
				Dereno							
				Margen							0.040
				izquieruo							

Tabla 17. Coeficientes de rugosidad en el cauce del río Rímac

N°	Tra	amo	Fotografía del tramo	Ubicación	nO	nl	n2	n3	n4	m5	Coeficiente de rugosidad (n) - Cowan
				Centro	0.028	0.000	0.000	0.005	0.008	1.000	0.041
				Margen							
5	8+000	10+000		Derecho							0.043
				Margen							0.044
			19 2 . 18 1	Izquierdo							0.044
			ATA NE	Centro	0.028	0.000	0.000	0.005	0.008	1.000	0.041
				Margen							0.042
6	10+000	12+000		Derecho							0.042
				Margen							0.041
				Izquierdo							
			A PARA S	Centro	0.028	0.000	0.000	0.005	0.007	1.000	0.040
				Margen							0.042
7	12+000	14+000		Derecho							0.042
				Margen							0.044
				Izquierdo							
				Centro	0.028	0.000	0.000	0.005	0.008	1.000	0.041
			ST SIGAN DE	Margen							0.041
8	14+000	15+970		Derecho							0.011
				Margen							0.043
				Izquierdo							

De acuerdo con los resultados, el coeficiente de rugosidad en el centro del cauce varía entre 0,038 y 0,041; y, en la ribera entre 0,038 y 0,044. Por otro lado, para las zonas con áreas urbanas se consideró tomar un valor de rugosidad de 0,015, y para obras de concreto existentes y proyectadas igual a 0,2.

b. Calibración

Para la calibración del modelo hidráulico se empleó la huella de agua dejada por un evento real registrado históricamente, siendo uno de ellos la avenida extraordinaria registra en el año 2017, la cual se representó mediante marcas de agua en las estructuras existentes (puentes o bocatomas) y se comparó con el nivel de agua obtenido del modelamiento hidráulico para el mismo caudal, si los tirantes de agua no son similares se hace una variación del número de *Manning* a lo largo del tramo de estudio hasta lograr una marca de agua similar con un margen de error mínimo. Por otro lado, se consideró también la calibración a partir de la mancha de agua considerando las ortofotos tomadas el noviembre del 2020, como parte de los estudios básicos.

<u>Mancha de agua – Época de estiaje</u>

Se comparó los resultados del calado de agua del modelo hidráulico con las ortofotos obtenidas en el levantamiento fotogramétrico en época de estiaje, en el mes de noviembre del año 2020 con un caudal registrado en la estación Chosica de 25.43 m³.s⁻¹ (observatorio del agua, ANA), para lo que se consideró que aguas debajo de esta estación la central hidroeléctrica toma un caudal de 21.8 m³.s⁻¹, por lo que como caudal de ingreso al modelo se colocó 3,63 m³.s⁻¹.

La evaluación se realizó en el tramo de ingreso al modelo, debido a que tiene una sección uniforme; en primer lugar, se analizó el tramo ubicado en la progresiva 0+000 al 0+200 km. Ver Figura 25 y Figura 26.

Figura 25. Tramo 0+000 a 0+200 km – Epoca de estiaje (2020)

Figura 26. Tramo 0+000 a 0+200 km – Epoca de estiaje con mancha de agua genereda

Y un segundo tramo de análisis está ubicado en las progresivas 0+400 a la 0+500 km, ver Figura 27 y Figura 28.

Figura 27. Tramo 0+400 a 0+500 km – Epoca de estiaje (2020)

Figura 28. Tramo 0+400 a 0+500 km – Epoca de estiaje con mancha de agua genereda

Huella de agua – Fenómeno 2017

La segunda metodología que se utilizó es la calibración mediante la marca de agua dejada por un evento extraordinario en el puente Morón ubicado en la progresiva 1+734, y en el puente Huachipa, en la progresiva 15+470. Según el aviso hidrológico N°0873 en la estación Chosica se registró un caudal instantáneo de 133,47 m3.s⁻¹ a las 00 hrs, por lo que como caudal de ingreso a modelo se colocará 111,67 m3.s⁻¹.

Figura 29. Puente Morón ubicado en el km 1+734

Figura 30. Toma de altura de marca de agua en el puente Morón a) y b)

Figura 31. Puente Huachipa ubicado en el km 15+470

Figura 32. Toma de altura de marca de agua en el puente Huachipa

Acorde a la visita de campo, se identificó la altura hasta donde llego la mancha de agua en el evento extraordinario del año 2017, tanto para el puente Morón y Huachipa. (ver Figura 30 y Figura 31).

Figura 33. Geometría del puente Morón ubicado en el km-1+734, cota de agua en el año 2017.

Figura 34. Sección hidráulica del puente Morón en HEC-RAS para el año 2017

Figura 35. Geometría del puente Huachipa ubicado en el km-15+470, cota de agua en el año 2017.

Figura 36. Sección hidráulica del puente Huachipa en HEC-RAS para el año 2017

Los niveles de agua obtenidas en campo se plasmaron en los planos topográficos de detalles del puente Morón y Huachipa, y se compararon con las secciones hidráulicas obtenidas del modelo de HEC-RAS para el caudal instantáneo dado en ese evento. Se observó que los valores obtenidos tenían un rango de variación aceptable respecto a la huella de agua y la cota de agua del modelamiento.

En la Tabla 18, se puede observar la comparación de los valores finales de la marca de agua obtenidas en campo y las del modelamiento en HEC RAS.

Tabla 18. Marca de agua en puente Huachipa y Morón								
Puente	Progresiva	Medido en Campo	HEC RAS	Variación				
Morón	1+734	614,04	613,94	0,10				
Huachipa	15 + 470	374,58	374,46	0,12				

_____ - -

c. Modelamiento en situación actual

En el modelamiento en situación actual se simuló considerando las siguientes estructuras hidráulicas existentes en el cauce: puentes Huampaní, Morón, Naña, Carapongo, Santa Clara, Ferrocarril y Huachipa; central hidroeléctrica Huampaní; y bocatoma Huachipa.

<u>Avenida</u>

Para la época de avenida se consideró el caudal máximo frecuente entre los meses enero a abril, considerando un caudal de ingreso de 29 m3.s-1, en la progresiva 15+275, donde se encuentra la descarga de la C. H. Huampaní con caudal de descarga de 21,8 m3. s-1, se colocó un caudal de 50,8 m3.s-1 y en la progresiva 2+758,25, donde está la captación de la bocatoma Huachipa con caudal de captación de 5 m3.s-1, se consideró un caudal de 45,8 m3.s-1. Ver Figura 37 y Figura 38.

Figura 37. Vista 3D del modelo en situación actual – Época de avenida

Figura 38. Vista perfil del modelo en situación actual – Época de avenida

Se realizó una tabla resumen de los resultados obtenidos para la época de avenida en situación actual, tomando los datos de la sección correspondiente cada 1 km; por otro lado, se estimó el

tirante máximo, es decir la diferencia de la cota de agua menos la cota mínima del terreno. Ver Tabla 19.

	Progresiva	Progresiva	QTotal	Nivel min.	Nivel	Valoaidad	Tironto	Área	Número
	del HEC-	del	$(m_2, -1)$	Cauce	del Agua	$(m e^{-1})$	(m)	Mojada	de
	RAS	proyecto	(115.8-)	(msnm)	(msnm)	(111.5)	(111)	(m ²)	Froude
Inicio	16+000	-0+030	29,0	643,08	644,05	1,63	0,97	17,79	1,00
	15 + 275	0+695	50,8	631,81	632,63	2,00	0,82	26,56	1,35
	15+000	0+970	50,8	627,23	628,06	2,10	0,83	24,24	1,18
	14+000	1+970	50,8	607,82	608,87	2,11	1,05	24,04	0,53
	13+000	2+970	50,8	589,34	590,66	2,05	1,32	24,79	0,95
	12+000	3+970	50,8	571,84	572,83	1,77	0,99	28,65	0,88
	11 + 000	4+970	50,8	556,31	557,37	1,97	1,06	25,75	0,73
	10+000	5+970	50,8	536,23	537,71	2,37	1,48	21,47	0,85
	9+000	6+970	50,8	518,94	519,77	3,00	0,83	16,93	1,05
	8+000	7+970	50,8	501,48	502,51	1,11	1,03	45,61	0,94
	7+000	8+970	50,8	485,13	487,07	1,77	1,94	28,73	0,99
	6+000	9+970	50,8	467,61	468,81	2,33	1,20	21,83	0,70
	5+000	10+970	50,8	451,66	452,48	2,74	0,82	18,57	1,00
	4+000	11+970	50,8	435,49	436,66	2,43	1,17	20,93	0,69
	3+000	12+970	50,8	419,56	420,31	1,31	0,75	38,78	0,71
	2+758	13+212	45,8	412,91	413,55	0,74	0,64	16,47	0,74
	2+000	13+970	45,8	398,13	399,03	1,71	0,90	26,84	0,76
	1 + 000	14+970	45,8	383,68	385,02	2,14	1,34	21,36	0,60
Fin	0+000	15+970	45,8	364,72	365,73	2,85	1,01	16,07	0,44

Tabla 19. Resumen de resultados – Época de avenida

Se tiene una variación de velocidades entre 0,74 m.s-1 a 3,00 m.s-1, tirantes de 0,64 m a 1,94 m y área mojada entre 16,07 m2 a 45,61 m2, se puede apreciar que esta variación se da conforme se angosta o ensancha el ancho del cauce.

<u>Estiaje</u>

Para la época de estiaje se consideró como caudal de ingreso de 0,33 m3.s-1, en la progresiva 15+275, donde se encuentra la descarga de la C. H. Huampaní con caudal de descarga de 21,8 m3. s-1, se colocó un caudal de 22,1 m3.s-1 y en la progresiva 2+758,25, donde está la captación de la bocatoma Huachipa con caudal de captación de 5 m3.s-1, se consideró un caudal de 17,1 m3.s-1. Ver Figura 39 y Figura 40.

Figura 39. Vista 3D del modelo en situación actual – Época de estiaje

Figura 40. Vista perfil del modelo en situación actual – Época de estiaje

Se realizó una tabla resumen de los resultados obtenidos para la época de estiaje en situación actual, tomando los datos de la sección correspondiente cada 1 km; por otro lado, se estimó el tirante máximo, es decir la diferencia de la cota de agua menos la cota mínima del terreno. Ver Tabla 20.

	Progresiva del HEC-	Progresiva del	QTotal	Nivel min. Cauce	Nivel del Agua	Velocidad Tirant		Área Mojada	Número de
	RAS	proyecto	$(m3.s^{-1})$	(msnm)	(msnm)	$(m.s^{-1})$	(m)	(m ²)	Froude
Inicio	16+000	-0+030	0,33	643,08	643,18	0,26	0,10	1,29	0,22
	15 + 275	0+695	22,1	631,81	632,36	1,72	0,55	14,69	0,71
	15+000	0+970	22,1	627,23	627,72	1,96	0,49	11,25	0,99
	14 + 000	1+970	22,1	607,82	608,48	2,51	0,66	8,80	1,16
	13+000	2+970	22,1	589,34	590,33	1,58	0,99	13,95	0,79
	12+000	3+970	22,1	571,84	572,58	1,49	0,74	14,83	0,78
	11 + 000	4+970	22,1	556,31	557,14	1,65	0,83	13,41	0,99
	10+000	5+970	22,1	536,23	537,25	1,95	1,02	11,33	0,79
	9+000	6+970	22,1	518,94	519,51	2,13	0,57	10,35	1,20
	8+000	7+970	22,1	501,48	502,20	0,81	0,72	27,32	0,32
	7+000	8+970	22,1	485,13	486,00	1,53	0,87	14,49	0,57
	6+000	9+970	22,1	467,61	468,46	1,81	0,85	12,21	0,87
	5+000	10 + 970	22,1	451,66	452,19	1,65	0,53	13,40	0,81
	4+000	11 + 970	22,1	435,49	436,24	1,76	0,75	12,57	0,73
	3+000	12 + 970	22,1	419,56	420,10	0,94	0,54	23,42	0,53
	2+758	13 + 212	17,1	412,49	412,94	1,05	0,45	16,27	0,72
	2+000	13 + 970	17,1	398,13	398,76	1,26	0,63	13,59	0,69
	1 + 000	14 + 970	17,1	383,68	384,53	1,67	0,85	10,25	0,69
Fin	0+000	15 + 970	17,1	364,72	365,28	2,11	0,56	8,12	0,97

Tabla 20. Resumen de resultados – Época de estiaje

Se tiene una variación de velocidades entre 0,26 m.s-1 a 2,51 m.s-1, tirantes de 0,10 m a 1,02 m y área mojada entre 1,29 m2 a 27.32 m2, se puede apreciar que esta variación se da conforme se angosta o ensancha el ancho del cauce.

Según los resultados del modelamiento en situación actual se determinó que la pendiente promedio en el río es 0,018 m.m⁻¹, tal como se muestra en la Figura 41.

Figura 41. Perfil del río entre los puentes

3.3.3 Diseño de muro transversales

Para el diseño de los muros transversales se utilizó los resultados obtenidos en el modelamiento con situación actual y la información de la evaluación del cauce, para definir la longitud y ubicación de los muros transversales.

a. Diseño preliminar de los muros transversales

Los muros transversales tienen la finalidad de obstruir el flujo superficial de manera transversal generando pequeños escalones, reduciendo la velocidad del flujo turbulento y produciendo una distribución más uniforme del flujo a lo ancho de la sección hidráulica del cauce. Con ello se logra que la carga hidráulica se uniformice incrementando el área de contacto entre el flujo y el suelo.

Separación entre muros transversales

Se consideró para la ubicación de los muros transversales la conservación de la pendiente natural del río, es decir con el criterio de pendiente compensada, por lo que su ubicación estaría relacionado a la altura que se establezca a estos muros. Por otro lado, se debe tener en cuenta que como parte de las condiciones del servicio se solicitó considerar un distanciamiento de 100m, lo cual se verificó mediante el modelamiento hidráulico, contemplando la pendiente promedio de 0,018 m.m⁻¹ que se muestra en la Figura 41, donde se confirmó que no afecta a las condiciones hidráulicas del perfil del cauce existentes. Esta separación se dará siempre y cuando no existe una estructura hidráulica existente en el cauce, como estructuras de concreto, bocatoma, puentes, otros.

Longitud de los muros

De acuerdo, al promedio de los valores obtenidos de ancho estable para un periodo de retorno de 100 años por el método de *Petits, Simons* y *Henderson, Blench* y *Altunin* y *Manning Strickler*, se definió que el ancho estable óptimo se encuentra entre los valores 82 a 85m (ver Tabla 16). Luego, se analizó el ancho actual del río y el ancho definido por la faja marginal, tal como se muestra en la Tabla 21.

Progresiva	Ancho faja marginal (m)	Ancho actual río (m)	Faja disponible	Referencia
0+000	116,35	25,49	76,35	Puente Huampaní
0+300	196,3	33,35	156,3	
0+500	209,9	73,91	169,9	
1 + 000	196,23	78,38	156,23	
1 + 400	164,9	22,18	124,9	
3+300	245,38	49,46	205,38	
4+000	265,05	73,77	225,05	
5+000	170,65	25,13	130,65	
5 + 500	198,05	41,5	158,05	
6+000	231,2	59,1	191,2	
7+500	270,57	88,53	230,57	
8+000	175,54	60,66	135,54	
8+500	255,77	93,46	215,77	
9+000	309,09	58,91	269,09	
9+500	260,48	43,00	220,48	
9+600	246,37	18,07	206,37	
10+000	204,29	46,34	164,29	
10 + 200	176,2	28,24	136,2	
10 + 900	181,84	68,25	141,84	
11 + 100	189,9	49,3	149,9	
11 + 300	190,69	93,91	150,69	
11 + 600	235,63	45,48	195,63	
12+000	256,91	80,47	216,91	
12 + 700	275,69	62,61	235,69	
13+000	247,01	31,62	207,01	
13 + 300	208,17	57,36	168,17	
13 + 800	206,25	19,61	166,25	
14+000	227,09	95,75	187,09	
14 + 300	180,76	40,63	140,76	
14 + 700	172,51	48,91	132,51	
15+000	221,27	43,37	181,27	Puente Huachipa

Tabla 21. Análisis del ancho del cauce

Como se puede observar en la Tabla 21, el ancho actual es mucho más angosto al otorgado por el ancho de la faja marginal, para establecer la longitud de los muros se consideró que el ancho actual se incrementaría tomando en cuenta los límites de propiedad privada existentes dentro del área de la faja marginal, para evitar conflictos sociales y económicos que se generaría, obteniendo la recuperación del ancho máximo posible y el recorrido antiguo del río, que existía antes de que dieran las invasiones y ocupaciones en las riberas del río generándole un estrechamiento.

En la Tabla 22, se muestra la longitud definida para cada muro transversal propuesto:

Muro	Progresiva	Ancho de	Longitud		Muro	Progresiva	Ancho de	Longitud
		cauce	de muros	· <u> </u>		8	cauce	de muros
P-1	0+770	32,3	34,3		P-56	6+270	72,5	74,5
P-2	0+870	65,9	67,9		P-57	6+370	73,5	75,5
P-3	0+970	79,3	81,3		P-58	6+470	63,8	65,8
P-4	1+070	92,6	94,6		P-59	6+570	73,4	75,4
P-5	1+170	93,4	95,4		P-60	6+670	72,4	74,4
P-6	1+270	85,0	87,0		P-61	6+770	64.0	66.0
P-7	1 + 370	77,3	79,3		P-62	6+870	63.1	65.1
P-8	1 + 470	69,45	71,45		P-63	6+970	63.0	65.0
P-9	1+570	48,9	50,9		P-64	7+070	94.4	96.4
P-10	1+670	52,85	54,85		P-65	7+070 7+170	83.0	85.0
P-11	1+770	54,7	56,7		P 66	7+170	78.0	80.0
P-12	1+870	57,3	59,3		D 67	7+270	70,0 60.0	71.0
P-13	1+970	77,5	79,5		D 60	7+370	09,0 70,2	71,0
P-14	2+070	69.6	71.6		P-08	7+470	70,5	72,5
P-15	2+170	83.2	85.2		P-69	7+570	76,0	78,0
P-16	2+270	85.2	87.2		P-/0	/+6/0	/5,6	//,6
P-17	2+370	83.8	85.8		P-71	7+770	77,0	79,0
P-18	2+470	77.7	79.7		P-72	7+870	87,4	89,4
P-19	2+570	80.0	82.0		P-73	7+970	90,0	92,0
P-20	2+670	78.0	80.0		P-74	8+070	81,7	83,7
P-21	2+070 2+770	763	78.3		P-75	8 + 170	88,7	90,7
P 22	2+770 2+870	66.5	68.5		P-76	8+270	49,1	51,1
P 23	2+070 2+070	80.0	82.0		P-77	8+370	58.6	60,6
P 24	2+970 3+070	70.4	81.4		P-78	8+470	60.2	62.2
P 25	3+070	83.0	85.0		P-79	8+570	67.7	69.7
F-23 D 26	3+170 2+270	85,0 71.8	83,0 72.8		P-80	8+670	79.5	81.5
F-20 D 27	3+270	71,8	75,6		P-81	8+770	87.1	89.1
P-27	3+370 2+470	//,0 68 2	79,0		P 87	8+870	96.3	08.3
P-28	3+470	68,2 62.0	70,2		D 92	8+070	90,5	98,5 97 9
P-29	3+570	63,9	65,9		Г-0J D 04	0+970	05,0	07,0
P-30	3+670	63,2	65,2		P-84	9+070	90,0	98,0
P-31	3+770	55,8	57,8		P-85	9+170	90,9	92,9
P-32	3+870	55,0	57,0		P-86	9+270	102,3	104,3
P-33	3+970	58,3	60,3		P-87	9+370	107,8	109,8
P-34	4+070	60,5	62,5		P-88	9+470	105,8	107,8
P-35	4 + 170	70,9	72,9		P-89	9+570	79,9	81,9
P-36	4 + 270	85,7	87,7		P-90	9+670	74,4	76,4
P-37	4+370	81,8	83,8		P-91	9+770	71,0	73,0
P-38	4+470	72,8	74,8		P-92	9+870	52,9	54,9
P-39	4+570	68,0	70,0		P-93	9+970	45,8	47,8
P-40	4+670	77.6	79.6		P-94	10+070	47,7	49,7
P-41	4+770	81.8	83.8		P-95	10 + 170	50,2	52,2
P-42	4 + 870	76.0	78.0		P-96	10 + 270	53.6	55.6
P-43	4+970	747	76,7		P-97	10 + 370	53.9	55.9
P_44	5+070	58.0	60.0		P-98	10+470	47.9	49.9
P 45	5+170	527	547		P_99	10+570	50.6	52.6
P 46	5+170 5+270	52.7	54.2		P-100	10+570 10+670	43.8	45.8
F-40 D 47	5+270	J2,2 46 7	J4,2 19.7		P 101	10+770	+3,0 52 7	547
P-4/	5+570	40,7	40,7		D 102	10+770 10+870	52,7	63.3
r-48	5+470	23,4	27,4		D 102	10+070	557	577
P-49	5+570	29,0	31,0		r-103 D 104	10+970	55,7	57,7
P-50	5+670	33,9	35,9		P-104	11+0/0	54,2	50,2
P-51	5+770	39,0	41,0		P-105	11+1/0	61,1	03,1
P-52	5 + 870	30,7	32,7		P-106	11+270	62,8	64,8
P-53	5+970	38,0	40,0		P-107	11+370	61,7	63,7
P-54	6+070	48,0	50,0		P-108	11 + 470	56,7	58,7
P-55	6+170	71,3	73,3		P-109	11 + 570	65,1	67,1

Tabla 22. Longitud y ubicación de muros propuestos

Muro	Prograsiva	Ancho de	Longitud
Muio	riogiesiva	cauce	de muros
P-110	11+670	73,9	75,9
P-111	11 + 770	72,5	74,5
P-112	11 + 870	50,4	52,4
P-113	11 + 970	39,2	41,2
P-114	12+070	69,3	71,3
P-115	12 + 170	63,2	65,2
P-116	12 + 270	76,7	78,7
P-117	12 + 370	76,4	78,4
P-118	12 + 470	78,9	80,9
P-119	12 + 570	91,6	93,6
P-120	12+670	108,7	110,7
P-121	12 + 770	106,6	108,6
P-122	12 + 870	138,4	103,0
P-123	12 + 970	148,8	130,0
P-124	13+070	159,7	128,2
P-125	13 + 370	80,2	82,2
P-126	13 + 470	75,2	77,2
P-127	13 + 570	66,9	68,9
P-128	13 + 670	55,2	57,2
P-129	13 + 770	64,6	66,6
P-130	13 + 870	59,0	61,0
P-131	13 + 970	47,5	49,5
P-132	14+070	57,5	59,5
P-133	14 + 170	52,4	54,4
P-134	14 + 270	69,0	71,0
P-135	14 + 370	86,4	88,4
P-136	14 + 470	88,2	90,2
P-137	14 + 570	80,2	82,2
P-138	14 + 670	62,3	64,3
P-139	14 + 870	55,8	57,8
P-140	14 + 970	55,3	57,3
P-141	15+070	51,8	53,8
P-142	15 + 170	44,9	46,9
P-143	15 + 370	55,4	57,4
P-144	15 + 570	34,3	36,3
P-145	15+670	26,2	28,2
P-146	15 + 770	26,8	28,8
P-147	15 + 870	28,0	30,0
P-148	15 + 970	24,8	26,8

Altura de los muros

Altura del muro sobre el cauce

Los muros funcionan como retenedores, acumulándose atrás de ellas hacia aguas arriba el agua, como si de pequeños embalses momentáneos se tratasen.

A fin de realizar la menor cantidad de movimiento y, considerando la pendiente natural del cauce, se proyectó un nivelado del terreno a lo largo de la toda la zona de intervención con una pendiente promedio de 1,80 porciento.

La sobreelevación está condicionada por la distancia entre muros, acorde al proyecto piloto que ya se encuentra en funcionamiento, ubicado entre el puente Huachipa y PTAP La Atarjea, se definió una sobreelevación menor a 1 m, debido a que se considerará una pendiente compensada para evitar que se genere remansos y desbordes descontrolados en eventos extraordinarios, se estableció una distancia de separación de 100m. Así mismo, se observó que la pendiente del flujo de agua que se forma en cada tramo es el factor determinante en la definición de esta altura de sobreelevación.

Esta sobreelevación se analizó para un valor de 0,80 m y 1,00 m, esto se desarrolló en el ítem b. Simulación de la presente sección 3.3.3, estableciendo que la altura del muro sobre el cauce más optima es la de 0,80 m.

Profundidad del muro bajo el cauce

La profundidad del muro bajo el cauce se encuentra condicionada por la socavación general del río. Para llevar a cabo el cálculo de la socavación, se dividió el río en 22 sectores, cada uno con características hidráulicas similares. En estos segmentos, se aplicó el método de Lischtvan-Levediev, considerando como input los resultados obtenidos en el modelamiento de situación actual para un caudal de TR500 años, los cuales se muestran en la Tabla 23.

C t	Progr	resiva	Sección de	Ancho	Tirante	Área
Sector	Inicio	Final	análisis	(m)	(m)	(m ²)
1	0+000	0+700	0+570	33.4	3.88	99.01
2	0+700	0 + 800	0+790	41.54	2.46	85.97
3	0+800	1 + 600	1+580	54.14	1.78	94.91
4	1+600	1 + 850	1+685	69.27	1.73	116.67
5	1+850	2+750	1 + 880	67.54	1.72	108.3
6	2+750	3+400	2+880	68.09	1.35	92.8
7	3+400	4+350	3+885	57.08	1.73	97.98
8	4+350	5+050	4+680	79.35	1.23	101.24
9	5+050	5+400	5+290	52.94	1.74	95.28
10	5 + 400	6+150	5+900	37.65	2.58	91.45
11	6+150	7 + 700	7+580	76.72	1.21	98.93
12	7 + 700	8+200	7 + 880	92.72	1.16	110.88
13	8+200	8+700	8+280	51.86	1.85	98.5
14	8+700	9+600	9+580	79.78	1.18	102.86
15	9+600	11 + 400	10+785	60	1.76	105.81
16	11 + 400	11 + 850	11 + 480	57.5	1.49	96.24
17	11 + 850	12 + 600	11 + 980	53.77	2.15	98.58
18	12 + 600	13 + 200	12 + 885	141.94	0.94	122.09
19	13 + 200	14 + 400	13+985	50.25	1.85	93.06
20	14 + 400	14 + 800	14 + 680	68.39	1.96	137.24
21	14 + 800	15 + 350	14 + 980	55.5	1.63	97.31
22	15+350	15+970	15+690	31.56	2.93	82.59

Tabla 23. Datos hidráulicos para un TR=500 años, en secciones de análisis

Para cada sector de análisis se estableció una sección representativa de las condiciones hidráulicas de cada sector, tal como se muestra en la Tabla 23.

En el anexo 02 se muestra el cálculo detallado de la socavación para cada sección de análisis. Al resultado de la socavación se le ha añadido un margen de seguridad de 0.5m, para finalmente obtener los valores de profundidad de cimentación los cuales se muestran en la Tabla 24.

Tramo	Socavación (m)	Socavación + 0.5 (m)	Profundidad de Cimentación Total (m)
1	4,0	4,5	4,5
2	4,0	4,5	4,5
3	2,5	3,0	3,0
4	2,0	2,5	2,5
5	2,0	2,5	2,5
6	2,0	2,5	2,5
7	1,5	2,0	2,0
8	1,0	1,5	2,0
9	2,0	2,5	2,5
10	2,5	3,0	3,0
11	1,5	2,0	2,0

Tabla 24. Profundidad de los muros transversales

Tramo	Socavación (m)	Socavación + 0.5 (m)	Profundidad de Cimentación Total (m)
12	2,0	2,5	2,5
13	2,0	2,5	2,5
14	1,5	2,0	2,0
15	2,0	2,5	2,5
16	2,0	2,5	2,5
17	2,5	3,0	3,0
18	1,0	1,5	2,0
19	2,0	2,5	2,5
20	1,0	1,5	2,0
21	1,5	2,0	2,0
22	3,0	3,5	4,5

Finalmente, con la definición de las dimensiones de los muros transversales se propone una sección típica, la cual se muestran en la Figura 42.

Figura 42. Sección típica de muro

Nº Muro	Prog	resiva	Profundidad de	$\mathbf{H}_{2}(\mathbf{m})$	Ud (m)	Ц (m)	
IN IVIUIO	Inicio	Final	Cimentación (m)	He (III)	Hu (III)	п(т)	
P-1	0+000	0+800	4,5	3,5	1,8	5,3	
P-2 al P-9	0+800	1+600	3,0	2,0	1,8	3,8	
P-10 al P-27	1+600	3+400	2,5	1,5	1,8	3,3	
P-28 al P-43	3+400	5+050	2,0	1,0	1,8	2,8	
P-44 al P-47	5+050	5+400	2,5	1,5	1,8	3,3	
P-48 al P-54	5+400	6+150	3,0	2,0	1,8	3,8	
P-55 al P-70	6+150	7+700	2,0	1,0	1,8	2,8	
P-71 al P-80	7+700	8+700	2,5	1,5	1,8	3,3	
P-81 al P-89	8+700	9+600	2,0	1,0	1,8	2,8	
P-90 al P-111	9+600	11 + 850	2,5	1,5	1,8	3,3	
P-112 al P-119	11+850	12+600	3,0	2,0	1,8	3,8	
P-120 al P-124	12+600	13 + 200	2,0	1,0	1,8	2,8	
P-125 al P-135	13+200	14 + 400	2,5	1,5	1,8	3,3	
P-136 al P-142	14 + 400	15+350	2,0	1,0	1,8	2,8	
P-143 al P-148	15+350	15+970	3,5	3,5	1,8	5,3	

Fabla 25. Altura	ı total d	e los muros	transversales
------------------	-----------	-------------	---------------

Figura 43 Sección transversal de la distribución de entre muros transversales

b. Simulación con muros transversales con 0,80m y 1,00m de altura

En primer lugar, se realizó un modelo hidráulico para el análisis de la altura a considerar en el muro transversal, para una altura de 0,80 a 1,00m, tomando en cuenta las ubicaciones definidas y el modelamiento en situación actual para un periodo de avenida ordinaria (50,80 m³.s⁻¹).

Figura 44. Vista 3D del modelo con muros transversales con altura 0,80 m

Figura 45. Vista perfil del modelo con muros transversales con altura 0,80 m

Figura 46. Vista 3D del modelo con muros transversales con altura 1,00 m

Figura 47. Vista perfil del modelo con muros transversales con altura 1,00 m

A continuación, se presenta los resultados obtenidos para cada modelo, considerando las variables de velocidad, área mojada y número de *Froude*. Observando que los valores de las variables hidráulicas son similares, por lo que escoger entre una y otro hidráulicamente no sería significativo. Ver Tabla 26 y Tabla 27.

-	Progresiva	Velocidad (m.s ⁻¹)	Área Mojada (m2)	Número de <i>Froude</i>
0+000	1+000	1,81	22,13	0,68
1 + 000	2+000	1,63	42,31	0,74
2+000	3+000	1,66	37,28	0,72
3+000	4+000	1,82	32,51	0,74
4 + 000	5+000	1,76	34,56	0,80
5+000	6+000	1,98	29,23	0,76
6+000	7+000	1,90	32,37	0,78
7+000	8+000	1,73	36,24	0,77
8+000	9+000	1,65	37,40	0,69
9+000	10+000	1,73	38,25	0,73
10+000	11 + 000	1,85	32,58	0,68
11 + 000	12+000	1,75	33,39	0,73
12+000	13+000	1,65	39,39	0,70
13+000	14+000	2,12	29,29	0,91
14+000	15+000	1,53	33,58	0,63
15+000	16+000	1,93	28,19	0,74

Tabla 26. Resultados del modelo hidráulico con muros transversales con altura de 0,80m

Tabla 27. Resultados del modelo hidráulico con muros transversales con altura de 1,00m

Progresiva		Velocidad (m.s ⁻¹)	Área Mojada (m2)	Número de Froude
0+000	1 + 000	1,66	25,06	0,61
1 + 000	2+000	1,45	50,02	0,63
2+000	3+000	1,65	40,81	0,71
3+000	4+000	1,77	35,92	0,71
4+000	5+000	1,61	40,80	0,71
5+000	6+000	1,79	33,27	0,67
6+000	7+000	1,84	36,15	0,75
7+000	8+000	1,59	42,04	0,70
8+000	9+000	1,58	41,95	0,66
9+000	10+000	1,51	55,26	0,63
10+000	11 + 000	1,75	36,35	0,63
11 + 000	12+000	1,70	35,96	0,70
12+000	13+000	1,55	44,90	0,66
13+000	14+000	2,11	30,87	0,91
14+000	15+000	1,49	36,02	0,60
15+000	16+000	1,80	31,32	0,68

3.3.4 Efecto hidráulico de la instalación de los muros transversales

En primera instancia, se realizó la evaluación de la variación entre las simulaciones con muros de 0,80m y 1,00m, en la cual se obtuvo que la variación en porcentaje de los parámetros de velocidad, área mojada y *Froude* es mínima, y al hacerse la evaluación de la inversión a considerar, se concluyó que es mucho más viable construir muros transversales de 0,80 que de 1,00m, ya que este último generaría mayor inversión por muro y consiguiendo un beneficio hidráulico similar.

Figura 48. Sección transversal con muros transversales con altura 0,80 m

Figura 49. Sección transversal con muros transversales con altura 1,00 m

Figura 50. Sección transversal con muros transversales con altura 0,80 m – distribución de velocidades

Figura 51. Sección transversal con muros transversales con altura 1,00 m – distribución de velocidades

Por lo tanto, se procedió a realizar el análisis del efecto de la colocación de los muros transversales, determinando los porcentajes de variación en los parámetros de velocidad, área mojada y *Froude*.

Figura 53. Sección transversal con muros transversales con altura 0,80 m – Avenida ordinaria

Debido a la instalación de los muros transversales, el cauce entrará en equilibrio y su perfil topográfico del cauce se modificaría y adoptaría una cota de fondo aproximadamente al ras de la estructura en la sección correspondiente, tal como se puede ver la Figura 54 y Figura 55.

Figura 54. Esquema de variación de perfil geométrico

Para el análisis en condiciones hidráulicas se obtendría un cambio del perfil hidráulico, produciendo que el flujo turbulento del cauce disminuya.

Figura 55. Esquema de Perfil hidráulico del modelamiento hidráulico con muros transversales

3.3.5 Estimación del caudal de infiltración

Para estimar el caudal de infiltración se utilizó la metodología del estudio denominado "*Estimación de pérdidas de agua en tramos de ríos del sistema Laja-Diguillín en la zona central de Chile*". En el estudio se realizó un modelo de balance hídrico mensual, con ecuaciones específicas para los procesos de infiltración y evaporación en los tramos de río, con el fin de evaluar las pérdidas por infiltración. La modelización de las pérdidas se realizó aplicando la Ley de Darcy a un cauce que recarga un acuífero, según la propuesta de Anderson y Woessner (1991). Se asumió que las pérdidas por infiltración a través del lecho del cauce dependen de la conductividad hidráulica de este y de la carga hidráulica sobre el lecho, la cual puede aproximarse o considerarse equivalente a la altura normal de escurrimiento. (José Luis Arumí-Ribera, 2012)

De acuerdo con la metodología descrita para el presente análisis se utilizó la formula establecida por Darcy, la cual se adaptó para su aplicación en los cálculos.

$$Q = K.S.\frac{\Delta h}{\Delta L}\dots\dots(1)$$

Q= Caudal (m3.s-1) K= Conductividad hidráulica (m.s-1) S= Sección (m2) Δh = Diferencia potencial (m) ΔL = Espesor del estrato (m)

De esta fórmula y considerando que el radio hidráulico de una sección del rio es igual a la diferencia potencial, podemos obtener lo siguiente:

$$R_h = \frac{A_h}{P_m} \dots \dots (2)$$
$$S = T \times P_m \dots \dots (3)$$

Rh= Radio hidráulica (m) T= Longitud de tramo del río(m) Pm= Perímetro mojado (m) Ah= Área hidráulica (m)

Remplazando 2 y 3 en 1, finalmente se tiene la siguiente formula:

$$Q = K(P_m \times T) \times \frac{(\frac{A_h}{P_m})}{\Delta L}$$
$$Q = K \times T \times \frac{A_h}{\Delta L}$$

Donde:

Q= Caudal de infiltración (m3.s-1) K= Conductividad hidráulica(m.s-1) T= Tramo(m) Ah= Área hidráulica (m) ΔL = Espesor del estrato (m)

Esta fórmula se puede interpretar como el caudal de agua que llega a infiltrarse, en un tramo determinado del río.

Consideraciones para el cálculo:

- El espesor del estrado se considerará con un valor de 1m.
- El área hidráulica se extrae de las secciones obtenidas de los modelamientos hidráulicos para los escenarios de situación actual y con pantallas de 0.8m.
- La conductividad hidráulica del río se obtuvo de las pruebas de infiltración realizadas en 10 puntos del tramo de estudio (Ver Tabla 10), dando como resultado una permeabilidad promedio de 0.0000306 m.s⁻¹.

En la Tabla 28 se pueden ver los resultados del cálculo de infiltración para los diferentes escenarios.

Variable	Situación actual Avenidas Estiaje		Con muros de 0.8m Avenidas Estiaje	
Caudal de infiltración (m3/s)	13.28	7.23	16.76	10.59

Tabla 28. Caudal de	infiltración en el	tramo de estudio
---------------------	--------------------	------------------

De los resultados obtenidos se puede apreciar que gracias a los muros hay un aumento del 26 por ciento de caudal infiltrado en la temporada de avenidas, y de un 32 por ciento en la temporada de estiaje respecto a la situación actual.

IV. RESULTADOS Y DISCUSIÓN

4.1 Calibración del modelo

Se realizó la calibración mediante dos métodos: el primero con mancha de agua para un caudal de 25,43 m3. s⁻¹, dado en noviembre del 2020, esta mancha de agua se comparó con la mancha observada en la ortofoto obtenida en esa época, obteniendo límites de mancha de agua similares.

El segundo método fue mediante la huella de agua dejada por el evento extraordinario del año 2017 en los puentes Morón y Huachipa, ubicados al inicio y final del tramo a modelar respectivamente. La marca de agua observadas en las fotografías de estos puentes y el calado obtenido con el modelo en HEC RAS, se compararon y se validó los valores definidos para número de *Manning* mediante el método de *Cowan*, ya que se logró una variación menor a 0,15m.

Tra	Tramo Coeficiente de rugosidad (n)			dad (n)
Inicio	Fin	Margen Izquierdo	Centro Margen	
0+000	2+000	0,039	0,039	0,039
2+000	4+000	0,042	0,04	0,04
4+000	6+000	0,038	0,038	0,038
6+000	8+000	0,04	0,039	0,04
8+000	10+000	0,043	0,041	0,044
10+000	12+000	0,042	0,041	0,041
12+000	14+000	0,042	0,04	0,044
14+000	15+970	0,041	0,041	0,043

Tabla 29. Coeficiente de rugosidad validado por tramo

Tabla 30.	Coeficiente	de	rugosidad	validado	por	tramo
1 4014 000	counterente	uv	1 ugosiuuu	, and a d	POL	u unio

Puente	Progresiva	Medido en Campo	HEC RAS	Variación
Morón	1+734	614,04	613,94	0,10
Huachipa	15+470	374,58	374,46	0,12

4.2 Dimensiones y ubicación de los muros transversales

Se determinó que por efecto de la implementación de los muros de 1,00 m respecto a las de 0,8 m, para un caudal de avenidas la variación media de velocidad es de -6 por ciento, la del área mojada es de 12 por ciento y por último el número *Froude* varía -8 por ciento, siendo variaciones mínimas. (ver Tabla 31).

Progre	esiva	Velocidad (m.s ⁻¹)	Área Mojada (m2)	Número de Froude
0+000	1 + 000	-9%	12%	-12%
1+000	2+000	-12%	15%	-18%
2+000	3+000	-1%	9%	-2%
3+000	4+000	-2%	9%	-3%
4+000	5+000	-10%	15%	-13%
5+000	6+000	-10%	12%	-13%
6+000	7+000	-3%	10%	-5%
7+000	8+000	-8%	14%	-11%
8+000	9+000	-4%	11%	-4%
9+000	10+000	-14%	31%	-17%
10+000	11 + 000	-6%	10%	-8%
11 + 000	12+000	-3%	7%	-4%
12+000	13+000	-6%	12%	-6%
13+000	14+000	-1%	5%	0%
14+000	15+000	-3%	7%	-4%
15+000	16+000	-7%	10%	-9%

 Tabla 31. Variación porcentual de resultado del modelo hidráulico con muros transversales con altura de 0.80m y 1,00m

- Además, teniendo en cuenta el costo del material a emplear y los costos de ejecución del muro de 1,00 metro de altura sobre el cauce frente a la de 0,80 metros y las mejoras que se van a obtener se descarta la opción de los muros transversales de 1,00 m de altura, quedando como altura de diseño 0,8 m.
- Se obtuvo muros con altura total entre 2,8m a 5,3.m, considerando la altura de 0,80m que esta sobreelevado sobre el terreno y la profundidad de cimentación, la profundidad de cimentación se encuentra entre 1m a 3,5 m; así mismo se establece que una separación de 100 m, acorde a las consideraciones tomadas, por otro lado, se aclara que los muros transversales no se han considerado cerca de estructuras mayores existentes.
- Se determinó que se implementarían 148 muros transversales, con una longitud que varía entre 26,8 m y 130 m, considerando un empotramiento de 3,5 m en el talud del cauce.

Con el modelo en situación actual se obtuvo las pendientes en el río con una variación de 0,016 m/m a 0,021 m/m a lo largo del río, entre los puentes Huampaní, Morón, Ñaña, Carapongo, Santa Clara, Ferrocarril y Huachipa. En cuanto, al tirante y velocidad obtenidos la época de avenida y estiaje, se tiene un incremento de aproximadamente de 0,50m entre la época de estiaje y avenidas. Ver las Tabla 32 y Tabla 33.

Descripción	Estación del Río (m)	Nivel min. Cauce (msnm)	Nivel del Agua (msnm)	Tirante (m)	Velocio	lad (m/s)	Fre	oude	Pendiente promedio (m/m)
Inicio	0+000	-	-	-	-	-	-	-	0
Puente Huampaní	0+482	636,606	636,87	0,26	0,80	0,62	0,48	0,38	0,0172
Puente Morón	1+740	612,872	613,24	0,37	1,49	1,13	0,94	0,61	0,0186
Puente Ñaña	5+735	541,695	542,23	0,53	1,65	1,08	0,89	0,49	0,0178
Puente Carapongo	11+475	445,71	446,00	0,29	1,30	1,20	0,81	0,72	0,0169
Bocatoma Huachipa	13+200	417,5	418,69	1,19	1,24	0,41	0,2	0,17	0,0162
Puente Santa Clara	14+520	390,935	391,28	0,35	1,10	0,71	0,65	0,39	0,0194
Puente Ferrocarril	14+756	387,66	387,98	0,32	1,41	1,29	0,86	0,74	0,0152
Puente Huachipa	15+470	373,122	373,42	0,30	1,70	1,57	1,02	0,92	0,0199
Fin	15+970	-	-	-	-	-	-	-	0,0141

Tabla 32. Resumen de resultados de estructuras existentes y pendientes promedios - Estiaje

Tabla 33. Resumen de resultados de estructuras existentes y pendientes promedios - Avenida

Descripción	Estación del Río (m)	Nivel min. Cauce (msnm)	Nivel del Agua (msnm)	Tirante (m)	Velocio	lad (m/s)	Fre	oude	Pendiente promedio (m/m)
Inicio	0+000	-	-	-	-	-	-	-	0
Puente Huampaní	0+482	636,606	637,37	0,77	2,31	1,73	0,96	0,64	0,0172
Puente Morón	1+740	612,872	613,48	0,61	2,13	1,55	0,99	0,65	0,0186
Puente Ñaña	5+735	541,695	542,53	0,84	2,30	1,38	0,95	0,49	0,0178
Puente Carapongo	11+475	445,71	446,18	0,47	1,88	1,72	0,95	0,81	0,0169
Bocatoma Huachipa	13+200	417,5	419,38	1,88	1,53	0,59	0,8	0,26	0,0162
Puente Santa Clara	14+520	390,935	391,50	0,57	1,36	1,05	0,62	0,45	0,0194
Puente Ferrocarril	14+756	387,66	388,13	0,47	2,16	1,94	0,99	0,90	0,0152
Puente Huachipa	15+470	373,122	373,65	0,53	2,37	2,20	1,09	0,97	0,0199
Fin	15+970	-	-	-	-	-	-	-	0.0141

4.3 Evaluación del efecto hidráulico de la colocación de muro

Para los caudales de avenida, la variación media de los valores promedio la velocidad de flujo en el tramo en estudio se reduce en un 36 por ciento mientras que la sección mojada aumenta en un 32 por ciento. El número de *Froude* también se reduce en promedio en 16 por ciento.

Progre	esiva	Velocidad (m.s ⁻¹)	Área Mojada (m2)	Número de Froude
0+000	1+000	-19%	35%	-23%
1 + 000	2+000	-25%	72%	-25%
2+000	3+000	-19%	47%	-20%
3+000	4 + 000	-16%	34%	-17%
4 + 000	5+000	-10%	6%	-11%
5+000	6+000	-23%	42%	-28%
6+000	7+000	-15%	38%	-17%
7+000	8+000	-15%	36%	-18%
8+000	9+000	-13%	36%	-16%
9+000	10 + 000	-15%	49%	-17%
10+000	11 + 000	-20%	46%	-22%
11 + 000	12+000	-11%	24%	-12%
12+000	13+000	-14%	41%	-18%
13+000	14+000	18%	24%	19%
14+000	15+000	-19%	35%	-19%
15+000	16+000	-12%	7%	-18%

Tabla 34. Variación porcentual de resultado del modelo hidráulico en situación actual con muros transversales con altura de 0,80m – Periodo de avenida ordinario.

Y para el caudal de estiaje, la variación media de la velocidad por el efecto de los muros transversales se reduce en un 14 por ciento mientras que la sección mojada aumenta en un 32 por ciento. El número de *Froude* también se reduce en promedio en un 16 por ciento.

 Tabla 35. Variación porcentual de resultado del modelo hidráulico en situación actual con muros transversales con altura de 0,80m – Periodo de estiaje.

Progres	Progresiva		Área Mojada (m2)	Número de Froude
0+000	1 + 000	-76,72%	158,96%	-18,31%
1 + 000	2+000	-40,95%	48,69%	-25,47%
2+000	3+000	-34,98%	24,78%	-18,66%
3+000	4 + 000	-31,01%	44,71%	-9,87%
4+000	5+000	-27,29%	12,84%	-16,13%
5+000	6+000	-41,40%	56,68%	-26,10%

Progr	Progresiva		Área Mojada (m2)	Número de Froude
6+000	7+000	-34,38%	60,50%	-18,35%
7+000	8+000	-34,88%	36,22%	-25,58%
8+000	9+000	-33,35%	38,94%	-13,76%
9+000	10+000	-36,87%	24,67%	-20,38%
10+000	11 + 000	-42,87%	50,71%	-17,02%
11 + 000	12+000	-26,86%	46,09%	-15,82%
12+000	13+000	-33,41%	1,39%	10,88%
13+000	14+000	-3,90%	10,65%	-18,60%
14+000	15+000	-38,87%	14,75%	-6,99%
15+000	16+000	-36,02%	47,23%	10,36%

Del cálculo de estimación del caudal de infiltración (Ver Tabla 28), se observa que para la situación actual los caudales son de 13.28 m³.s⁻¹ y 7.23 m³.s⁻¹ durante las temporadas de avenidas y estiaje, respectivamente. En contraste, para la condición donde se implementa el muro transversal de 0.8 metros de altura sobre el cauce, se obtuvieron valores de 16.76 m³.s⁻¹ y 10.59 m³.s⁻¹ para las mismas temporadas. Este análisis revela un aumento significativo en la infiltración debido a las condiciones hidráulicas generadas por la presencia de los muros transversales. Se registra un incremento del 26 por ciento y 32 por ciento en los caudales de infiltración durante las temporadas de avenidas y estiaje, respectivamente, en comparación con la situación actual. Estos resultados indican el impacto positivo de la implementación de los muros en el aumento de la capacidad de infiltración del sistema.

Por otro lado, se debe aclarar que el volumen de recarga es diferente al volumen de infiltración, ya que el primero es el volumen que llega al acuífero y el segundo es el volumen que pasa de la superficie hacia las primeras capas del suelo, es decir este último está en constante movimiento entre la zona de la superficie y el terreno, solo un porcentaje de este llega al acuífero debido a diferentes factores.

V. CONCLUSIONES

- Se estableció el número de *Manning* en base al promedio de las metodologías de Cowan y Ven Te Chow, de 0,038 y 0,041 para cauce central, y 0,038 y 0,044 para riberas, obteniendo un comportamiento hidráulico similar a lo observado en campo.
- Se realizó un análisis de los valores promedios obtenidos con el modelamiento con situación actual, determinando que se tiene una pendiente promedio de 0,018 m.m⁻¹ y una variación aproximada entre la época de estiaje y avenidas para los parámetros de tirante y velocidad de 0,50, siendo representativo con los datos recolectados en campo.
- Se definió las dimensiones de los muros acorde al análisis del ancho estable del cauce y considerando una alteración mínima en el perfil del cauce, con la finalidad de recuperar el ancho natural del cauce y evitar desbordamiento por la implementación de los muros transversales.
- Se evaluó la altura de sobreelevación de los muros mediante dos modelos hidráulicos con las mismas condiciones hidráulicas iniciales y la implementación de los muros proyectados, los resultados obtenidos reflejaron que los beneficios hidráulicos eran similares por que se tomó en consideración la parte de costo beneficio al proyecto, estableciendo que la altura de diseño es 0,80m.
- La separación entre muros transversales esta interrelacionada con la altura que sobreelevada de muro, por lo que mediante el modelo hidráulico se corroboró que la distancia de 100 m entre muros es adecuada para una conservación de la pendiente.
- Los resultados de las variables hidráulicas de velocidad, tirante y área mojada para el modelo en situación actual y con muros transversales, evidencia que la colocación de muros transversales favorece a la reducción de la velocidad, aumentar el área mojada y la reducción del número de *Froude*.
- En el perfil hidráulico del modelamiento con muros transversales se observa la casi estabilización del comportamiento del flujo de agua para la época de avenida, beneficiando al incremento del contacto del agua con el terreno y así aumentando la carga hidráulica requerida para la recarga artificial inducida.

VI. RECOMENDACIONES

- Para un mejor manejo de la operación y mantenimiento del sistema hidráulico de la zona del proyecto, se recomienda realizar un modelo de transporte de sedimentos para caudales medios de avenidas y estiaje, considerando que se trata de un cauce con gran cantidad de transporte de sedimentos en especial en la época de avenidas, donde se pueda evaluar el comportamiento de los sólidos suspendidos y el fondo del cauce, que se vería alterado debido a la colocación de los muros transversales.
- Debido a su comportamiento hidráulico fluvial del río Rímac, se recomienda realizar un mantenimiento anual o semestral, mediante explanaciones y/o eliminación de material excedente, para conservar la seccción hidráulica ideal para el funcionamiento del sistema hidráulico establecido para este tramo de entre el puente Huampani y puente Chosica.
- Como medida ante posibles daños materiales y humanos, debido a los eventos extraordinarios similares al que ocurrió el año 2017, se recomienda colocar defensas de protección en las riberas del cauce en las zonas de estrechamiento, así mismo, realizar charlas de sensibilización para la población a fin de generar conciencia de la conservación del ancho natural del cauce.

VII. REFERENCIAS BIBLIOGRÁFICAS

Bladé, E.; Sánchez, M.; Sanchez Juny, H.P.; Niñerola D. & Gómez, M. (2009). Modelación numérica en ríos en régimen permanente y variable. (1era edición). Edicions UPC.

Ministerio del Medio Ambiente y Medio Rural y Marino - Gobierno de España. (2011). Guía metodológica para el desarrollo del sistema nacional de cartografía de zonas inundables. (1era edición).

Te Chow V. (1994). Hidráulica de canales abiertos. Editora Martha Edna Suárez R.

U.S. Army Corps of Engineers. (2016). HEC-RAS "River Analysis System" Hidraulic Reference Manual (Versión 5.0)

U.S. Army Corps of Engineers. (2023). HEC-RAS "River Analysis System" Introduction To HEC-RAS (Versión 6.4)

Dirección de Conservación y Planteamiento de Recursos Hídricos – Autoridad Nacional del Agua. (2009). Diagnostico Situacional de Recarga de Acuíferos.

Apaclla, R. (2014). Hidráulica Fluvial. Fondo Editorial – UNALM

Dirección de Conservación y Planteamiento de Recursos Hídricos – Autoridad Nacional del Agua. (2010). Estudio Hidrológico y ubicación de la Red de Estaciones Hidrométricas en la Cuenca del Río Rímac.

Observatorio del Agua Chillón Rímac Lurín. (2019). Construir, mejorar y ampliar el modelamiento WEAP para las cuencas Chillón, Rímac, Lurín Chilca y alto Mantaro.

Ministerio de agricultura y riego - ANA. Capítulo VI: hidráulica fluvial

VIII. ANEXOS

ANEXO 1: INFORMACIÓN CLIMÁTICA E HIDROLÓGICA

Tabla 36. Caudales promedio mensuales (m ³ .s ⁻¹) - estación Chosica

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Promedio
2000	56,10	69,77	77,16	55,54	32,21	18,83	15,08	13,79	16,23	17,65	16,79	24,28	34,45
2001	68,83	62,37	83,12	56,52	30,40	22,22	21,68	19,47	19,96	21,50	25,60	23,26	37,91
2002	24,27	38,77	52,91	42,53	16,80	13,02	15,00	17,06	23,49	25,98	30,18	33,10	27,76
2003	45,00	54,37	81,84	54,64	29,20	26,16	24,72	24,32	23,60	24,46	26,76	28,25	36,94
2004	22,01	41,00	32,62	28,21	18,30	17,01	16,67	16,41	18,86	17,36	21,10	35,73	23,77
2005	41,04	36,83	42,57	35,38	21,90	21,55	21,33	21,34	19,70	19,85	19,70	20,29	26,79
2006	28,44	45,17	60,41	50,98	23,27	18,34	18,16	18,25	16,47	15,91	16,37	23,99	27,98
2007	43,87	48,95	65,90	52,84	22,30	14,72	10,16	13,62	15,22	15,30	14,92	13,98	27,65
2008	31,40	43,83	42,73	22,89	13,45	12,57	12,45	11,78	16,67	18,21	18,21	21,25	22,12
2009	37,08	67,25	68,94	41,24	15,44	13,31	12,38	13,88	16,01	16,60	24,71	34,74	30,13
2010	53,68	49,73	64,21	42,51	26,44	24,16	23,81	23,24	24,35	22,84	23,10	30,61	34,06
2011	40,01	53,46	55,59	58,62	32,61	27,37	24,80	24,86	23,80	23,76	26,23	32,03	35,26
2012	34,01	70,38	68,71	67,53	35,46	26,57	26,67	24,93	23,27	25,43	36,70	37,58	39,77
2013	44,43	71,20	92,40	41,85	22,64	24,34	23,92	22,96	23,29	23,93	25,18	30,27	37,20
2014	35,06	41,84	84,62	33,29	24,62	19,69	21,11	20,92	21,68	22,08	25,27	26,82	31,42
2015	37,84	40,14	65,97	43,99	28,65	22,84	23,52	22,06	22,00	23,26	20,67	28,97	31,66
2016	22,17	38,13	46,15	32,16	21,11	20,40	22,34	19,71	21,49	20,70	21,54	18,68	25,38
2017	46,29	63,17	96,92	65,73	39,60	24,36	21,26	25,18	23,93	24,72	25,28	24,54	40,08
N° Datos	18	18	18	18	18	18	18	18	18	18	18	18	18
Promedio	39,53	52,02	65,71	45,91	25,24	20,41	19,73	19,65	20,56	21,09	23,24	27,13	31,69
Máxima	68,83	71,2	96,92	67,53	39,6	27,37	26,67	25,18	24,35	25,98	36,7	37,58	45,66
Mínima	22,01	36,83	32,62	22,89	13,45	12,57	10,16	11,78	15,22	15,3	14,92	13,98	18.48

Fuente: ANA

Día	Q (m ³ .s ⁻¹)
1	21,2000
2	20,2800
3	21,5000
4	21,1900
5	23,9100
6	23,7300
7	22,4400
8	22,9400
9	20,9500
10	20,9600
11	21,2200
12	20,2700
13	22,8800
14	22,8700
15	23,0900
16	23,9500
17	22,1800
18	21,2200
19	20,8700
20	21,1700
21	23,1400
22	23,5600
23	24,3100
24	21,8700
25	22,1100
26	22,1700
27	21,2800
28	23,6400
29	24,0600
30	25,4300
Promedio	22,35
Máxima	25,43
Mínima	20,27

Tabla 37. Caudal promedio diario $(m^3.s^{-1})$ - estación Chosica - noviembre 2020

Fuente: ANA

Día	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	21,60	54,65	93,85	77,01	45,37	28,58	20,77	23,96	27,50	21,15	33,40	25,11
2	27,99	46,79	92,26	67,13	46,95	24,99	20,83	22,26	27,04	29,74	32,64	25,80
3	32,45	49,77	87,90	67,43	46,95	27,63	20,66	23,85	28,18	23,91	32,23	20,34
4	24,69	53,64	87,31	82,62	45,79	28,05	19,52	24,88	25,60	21,69	32,02	16,33
5	22,24	51,20	87,23	91,50	46,74	29,21	19,52	25,79	25,67	21,77	31,33	15,64
6	20,66	47,06	92,59	90,75	46,00	27,72	20,89	26,58	26,36	17,70	31,95	16,26
7	21,72	54,72	91,50	88,40	49,38	26,41	19,52	27,02	25,67	16,51	28,22	15,64
8	29,04	62,72	117,81	81,95	53,39	27,10	19,52	27,45	24,99	19,52	27,87	16,12
9	29,56	75,58	124,01	75,33	47,16	27,72	22,26	27,15	28,64	20,74	27,53	16,12
10	24,69	63,67	122,41	66,67	45,79	28,58	20,66	27,50	26,36	22,75	26,97	16,12
11	23,97	88,77	119,48	65,98	41,67	28,69	19,52	27,84	27,15	22,56	28,56	16,12
12	26,15	78,44	110,43	64,50	40,83	26,64	20,89	27,84	24,87	21,57	28,22	16,67
13	33,20	80,27	104,70	63,33	42,94	22,71	20,09	27,04	27,27	20,50	28,56	16,81
14	41,60	71,91	110,64	63,09	34,18	21,00	19,52	26,58	25,79	19,80	28,15	16,81
15	56,87	72,46	119,31	63,05	36,29	21,91	19,52	26,36	26,58	18,70	26,28	16,81
16	62,01	59,13	123,00	62,26	40,09	21,12	24,65	24,31	24,76	21,46	26,35	16,53
17	61,04	56,62	133,47	62,01	38,29	22,37	21,12	22,26	23,74	21,50	27,87	16,81
18	63,59	52,82	126,69	62,43	35,97	23,17	20,43	21,91	23,74	24,52	27,18	16,95
19	55,93	50,04	113,32	62,56	34,60	24,31	21,23	20,77	26,02	29,62	25,11	15,91
20	61,74	54,99	88,90	61,98	33,54	25,45	20,55	23,62	26,70	32,72	26,35	15,22
21	55,86	54,25	77,01	61,61	35,34	23,51	20,25	24,19	25,90	31,87	25,45	16,05
22	50,23	47,54	72,27	55,12	36,18	19,64	22,03	25,15	23,96	31,75	25,11	16,12
23	55,11	48,76	66,71	49,76	36,71	20,21	20,66	24,99	25,67	31,75	23,73	15,08
24	58,11	49,71	79,61	54,31	37,34	22,60	23,17	24,16	23,62	33,68	25,80	15,77
25	69,48	54,99	92,34	51,89	37,87	22,26	24,53	23,28	24,76	32,85	27,18	15,36
26	88,23	76,94	89,93	49,96	33,86	20,77	23,96	23,17	25,10	34,23	24,83	15,43
27	81,67	116,21	84,30	51,18	31,33	19,52	23,05	24,65	20,77	33,50	25,52	15,43
28	74,47	108,59	78,43	46,83	32,59	20,43	22,26	24,31	16,79	33,23	25,80	15,84
29	60,14	78,03	51,79	25,52	20,89	22,26	26,47	21,74	23,73	25,66	15,22	
30	52,46	73,74	49,05	27,63	20,95	21,23	27,84	27,04	32,16	25,80	15,01	
31	53,83	75,67	32,59	23,85	27,38	32,37	15,08					
Promedio	46,46	64,83	94,22	61,86	38,79	24,46	21,32	24,92	25,50	25,43	27,01	16,90
Máxima	88,23	116,21	133,47	91,50	53,39	32,37	27,84	27,84	32,16	34,23	33,40	25,80
Mínima	20,66	46,79	32,59	23,85	20,89	19,52	15,08	20,77	16,79	16,51	15,01	15.08

Tabla 38. Caudal promedio diario (m³.s⁻¹) - estación Chosica 2017

Fuente: SENAMHI

ANEXO 2: CÁLCULO DE LA PROFUNDIDAD DE SOVACIÓN

Inporte cate2Inporte cate1Suelo cohesivoSuelo no cohesivoA Cálculo de la socavación general en el cauce:Hs = profundidad de socavación (m)Qd = caudal de diseñoBe = ancho efectivo de la superficie de aguaHo = tirante antes de la erosiónVm = velocidad media en la secciónm = coheficiente de contraccion. Ver tabla N° 1 g_d = peso especifico del suelo del cauce	1 2 5
A Cálculo de la socavación general en el cauce:Hs = profundidad de socavación (m)Qd = caudal de diseñoBe = ancho efectivo de la superficie de aguaHo = tirante antes de la erosiónVm = velocidad media en la secciónm = coheficiente de contraccion. Ver tabla N° 1 g_d = peso especifico del suelo del cauce	2 2
A Cálculo de la socavación general en el cauce:Hs = profundidad de socavación (m)Qd = caudal de diseñoStatuto de la superficie de aguaHo = tirante antes de la erosiónYm = velocidad media en la secciónm = coheficiente de contraccion. Ver tabla N° 1gd = peso especifico del suelo del cauce1.50 Tn/m3	2
Hs = profundidad de socavación (m) $Qd = caudal de diseño$ 553.70 m3/seg $Be = ancho efectivo de la superficie de agua$ 33.40 mHo = tirante antes de la erosión3.88 mVm = velocidad media en la sección7.25 m/segm = coheficiente de contraccion. Ver tabla N° 10.99 $g_d = peso especifico del suelo del cauce$ 1.50 Tn/m3	y 2
Hs = profundidad de socavación (m)Qd = caudal de diseñoQd = caudal de diseñoBe = ancho efectivo de la superficie de aguaHo = tirante antes de la erosiónWm = velocidad media en la sección $Nm =$ coheficiente de contraccion. Ver tabla N° 1 $g_d =$ peso especifico del suelo del cauce1.50 Tn/m3	3
$Qd = caudal de diseño$ 553.70 m3/seg $Be = ancho efectivo de la superficie de agua$ 33.40 m $Ho = tirante antes de la erosión3.88 mVm = velocidad media en la sección7.25 m/segm = coheficiente de contraccion. Ver tabla N° 10.99g_d = peso especifico del suelo del cauce1.50 Tn/m3$	5
Be = ancho efectivo de la superficie de agua33.40 mHo = tirante antes de la erosión3.88 mVm = velocidad media en la sección7.25 m/segm = coheficiente de contraccion. Ver tabla N° 10.99 g_d = peso especifico del suelo del cauce1.50 Tn/m3	
Ho = tirante antes de la erosión 3.88 m Vm = velocidad media en la sección 7.25 m/seg m = coheficiente de contraccion. Ver tabla N° 1 0.99 g_d = peso especifico del suelo del cauce 1.50 Tn/m3	
Vm = velocidad media en la sección7.25 m/segm = coheficiente de contraccion. Ver tabla N° 10.99 g_d = peso especifico del suelo del cauce1.50 Tn/m3	
$m =$ coheficiente de contraccion. Ver tabla N° 10.99 $g_d =$ peso especifico del suelo del cauce1.50 Tn/m3	
$g_d = peso especifico del suelo del cauce$ 1.50 Tn/m3	
dm = diámetro medio 20.37	
x = exponente variable. Ver tabla N° 2 0.355	
Tr = Periodo de retorno del gasto de diseño 500.00 años	
b = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla 1.05	
A = área de la sección hidráulica 99.01 m2	
Hm = profundidad media de la sección 2.964 m	
a = 2.751	
Entonces,	
Hs = 7.69 m	
ds = protundidad de socavación respecto al fondo del cauce	
Jan 201	
ds = 3.81 m	
Asymptotes $ds = 4.00 \text{ m}$	

Figura 56. Cálculo de socavación por el método de Lischtvan - Levediev – prog. 0+570

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socava	ación general en el ca	uce:			
Hs = profundidad de soc	avación (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho effectivo de la	a superficie de agua			41.54	m
Ho = tirante antes de la e	rosión			2.46	m
Vm = velocidad media er	n la sección			7.32	m/seg
m = coheficiente de contr	raccion. Ver tabla N° 1			0.99	
$g_d = peso especifico del s$	suelo del cauce			1.50	Tn/m3
dm = diámetro medio				20.37	
x = exponente variable.	Ver tabla Nº 2			0.355	
Tr = Periodo de retorno d	lel gasto de diseño			500.00	años
b = coeficiente que dep	ende de la frecuencia de	el caudal de	diseño. Ver t	abl: 1.05	
A = área de la sección	hidráulica			85.97	m2
Hm = profundidad media	de la sección			2.070	m
a =				4.179	
Entonces					
Linconces,					
	Hs =	5.98	m		
ds = profundidad de soc	avación respecto al fon	do del cauco	e		
	ds =	3.52	m		
		4.66			
Asumimos	de –	1 00	m		

Figura 57. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 0+790

Tipo de cauce 2	2			CAUCE	TIPO
-				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ge	eneral en el ca	uce:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfi	cie de agua			54.14	m
Ho = tirante antes de la erosión	U			1.78	m
Vm = velocidad media en la secc	ión			6.62	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
$g_{d} = peso especifico del suelo de$	cauce			1.50	Tn/m3
dm = diámetro medio				20.37	
x = exponente variable. Ver tab	la Nº 2			0.355	
Tr = Periodo de retorno del gasto	de diseño			500.00	años
b = coeficiente que depende de	la frecuencia d	el caudal de	diseño. Ver ta	ibk 1.05	
A = área de la sección hidráuli	ca			94.91	m2
Hm = profundidad media de la se	ección			1.753	m
a =				4.228	
Entonces,					
	Hs =	4.05	m		
	. 10				
ds = profundidad de socavación	respecto al fon	do del cauce			
	de –	2 27	m		
	uo –	<i>2.21</i>			
•	J.,	2 50			

Figura 58. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 1+580

Tipo de cauce	2			CAUCE	TIPO
TPO de cude				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	eneral en el cau	ce:			
Hs = profundidad de socavación	n (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la super	ficie de agua			69.27	m
Ho = tirante antes de la erosión				1.73	m
Vm = velocidad media en la sec	ción			6.67	m/seg
m = coheficiente de contraccion	. Ver tabla N° 1			0.99	
g_d = peso especifico del suelo de	el cauce			1.50	Tn/m3
dm = diámetro medio				20.37	
x = exponente variable. Ver tal	ola Nº 2			0.355	
Tr = Periodo de retorno del gast	o de diseño			500.00	años
b = coeficiente que depende de	e la frecuencia del	caudal de	diseño. Ver tabl	k 1.05	
A = área de la sección hidráu	lica			116.67	m2
Hm = profundidad media de la s	ección			1.684	m
a =				3.533	
Entonces,					
	Hs =	3.43	m		
ds = profundidad de socavación	n respecto al fondo	o del cauco	2		
	ds =	1.70	m		
Asumimos	ds =	2.00	m		

Figura 59. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 1+685

l

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	general en el c	cauce:			
Hs = profundidad de socavació	n (m)				
Od = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la super	ficie de agua			67.54	m
Ho = tirante antes de la erosión	nere de agaa			1.72	m
Vm = velocidad media en la sec	cción			6.64	m/seg
m = coheficiente de contraccior	1. Ver tabla N°	1		0.99	8
$g_4 = peso especifico del suelo d$	el cauce			1.50	Tn/m3
dm = diámetro medio				22.41	
x = exponente variable. Ver ta	bla Nº 2			0.355	
Tr = Periodo de retorno del gast	to de diseño			500.00	años
b = coeficiente que depende d	le la frecuencia	del caudal de	diseño. Ver tabl	k 1.05	
A = área de la sección hidráu	ılica			108.30	m2
Hm = profundidad media de la	sección			1.604	m
a =				3.932	
Entonces,					
	Hs =	3.61	m		
ds = profundidad de socavació	n respecto al fo	ondo del cauco	e		
	ds =	1.89	m		
	-	• • • •			
Asumimos	ds =	2.00	m		

Figura 60. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 1+880

The de source	2			CALICE	TIDO
Tipo de cauce	2			CAUCE	
				Suelo conestvo	1
				Suelo no cohesivo	2
A Calculo de la socavación	i general en el ca	uce:			
Hs = profundidad de socavaci	ión (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la supe	erficie de agua			68.09	m
Ho = tirante antes de la erosió	'n			1.35	m
Vm = velocidad media en la se	ección			6.39	m/seg
m = coheficiente de contraccio	on. Ver tabla N° 1			0.99	0
				1.50	
dm = diámetro medio				41.03	
x = exponente variable. Ver	tabla Nº 2			0.355	
Tr = Periodo de retorno del ga	sto de diseño			500.00	años
b = coeficiente que depende	de la frecuencia de	el caudal de	diseño. Ver tab	k 1.05	
A = área de la sección hidra	áulica			92.80	m2
Hm = profundidad media de la	a sección			1.363	m
a =				5.115	
Entonces,					
	Hs =	2.87	m		
ds = profundidad de socavac	ión respecto al fon	do del cauco	9		
	ds =	1.52	m		
	_				
Asumimos	ds =	2.00	m		

Figura 61. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 2+880

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	eneral en el cau	ice:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfi	cie de agua			81.31	m
Ho = tirante antes de la erosión				1.98	m
Vm = velocidad media en la seco	ión			4.80	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
				1.50	
dm = diámetro medio				41.03	
x = exponente variable. Ver tab	la Nº 2			0.355	
Tr = Periodo de retorno del gasto	de diseño			500.00	años
b = coeficiente que depende de	la frecuencia del	l caudal de	diseño. Ver tab	ok 1.05	
A = área de la sección hidrául	са			136.56	m2
Hm = profundidad media de la se	ección			1.679	m
a =				3.024	
Entonces,					
	Hs =	3.12	m		
ds = profundidad de socavación	respecto al fond	o del cauc	e		
	ds =	1.14	m		

Figura 62. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 3+885

Tipo de cauce2				CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ger	neral en el cauce	:			
Hs = protundidad de socavación (s	m)				21
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfici	ie de agua			52.94	m
Ho = tirante antes de la erosión				1.23	m
Vm = velocidad media en la secció	ón			6.11	m/seg
m = coheficiente de contraccion. V	/er tabla N° 1			0.99	
$g_d =$ peso especifico del suelo del s	cauce			1.50	Tn/m3
dm = diámetro medio				41.54	
x = exponente variable. Ver tabla	n N° 2			0.355	
Tr = Periodo de retorno del gasto d	de diseño			500.00	años
b = coeficiente que depende de la	a frecuencia del ca	udal de	diseño. Ver tabl	1.05	
A = área de la sección hidráulic	a			101.24	m2
Hm = profundidad media de la sec	cción			1.912	m
a =				3.740	
Entonces,					
	Hs =	2.03	m		
ds = profundidad de socavación r	especto al fondo o	lel cauc	_		
			-		
	ds =	0.80	m		
		1.00			
Asumimos	ds =	1.00	m		

Figura 63. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 4+680

	_			
Tipo de cauce 2			CAUCE	TIPO
			Suelo cohesivo	1
			Suelo no cohesivo	2
A Cálculo de la socavación genera	l en el cauce:			
Hs = profundidad de socavación (m)				
Qd = caudal de diseño			574.70	m3/seg
Be = ancho efectivo de la superficie de	agua		52.94	m
Ho = tirante antes de la erosión	-		1.74	m
Vm = velocidad media en la sección			6.61	m/seg
m = coheficiente de contraccion. Ver ta	abla N° 1		0.99	-
			1.50	
dm = diámetro medio			36.46	
$x = exponente variable. Ver tabla N^{\circ}$	2		0.355	
Tr = Periodo de retorno del gasto de di	iseño		500.00	años
b = coeficiente que depende de la fre	cuencia del caudal o	le diseño. Ver tabl	a 1.05	
A = área de la sección hidráulica			95.28	m2
Hm = profundidad media de la sección	L		1.800	m
a =			4.139	
Entonces,				
Hs	= 3.4	4 m		
ds = profundidad de socavación respe	ecto al fondo del cau	ice		
ds	= 1.7	0 m		
Asumimos ds	= 2.0	0 m		

Figura 64. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 5+290

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ;	general en el ca	uce:			
Hs = profundidad de socavació	n (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la super	ficie de agua			37.65	m
Ho = tirante antes de la erosión				2.58	m
Vm = velocidad media en la sec	cción			7.29	m/seg
m = coheficiente de contraccion	n. Ver tabla N° 1			0.99	
$g_d =$ peso especifico del suelo d	el cauce			1.50	Tn/m3
dm = diámetro medio				36.46	
x = exponente variable. Ver ta	bla Nº 2			0.355	
Tr = Periodo de retorno del gas	to de diseño			500.00	años
b = coeficiente que depende d	e la frecuencia de	el caudal de	diseño. Ver tab	k 1.05	
A = área de la sección hidrái	ılica			91.45	m2
Hm = profundidad media de la	sección			2.429	m
a =				3.531	
Entonces,					
	Hs =	4.96	m		
ds = profundidad de socavació	n respecto al fon	do del cauco	e		
	ds =	2.38	m		

Figura 65. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 5+900

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	eneral en el cau	uce:			
Hs = profundidad de socavaciór	n (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superf	icie de agua			76.72	m
Ho = tirante antes de la erosión				1.21	m
Vm = velocidad media en la sec	ción			6.18	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
				1.50	
dm = diámetro medio				35.65	
x = exponente variable. Ver tal	ola Nº 2			0.355	
Tr = Periodo de retorno del gast	o de diseño			500.00	años
b = coeficiente que depende de	e la frecuencia de	l caudal de	diseño. Ver tal	bk 1.05	
A = área de la sección hidráu	lica			98.93	m2
Hm = profundidad media de la s	ección			1.290	m
a =				4.978	
Entonces,					
	Hs =	2.53	m		
ds = profundidad de socavación	n respecto al fond	lo del cauco	9		
	ds =	1.32	m		

Figura 66. Cálculo de socavación por el método de Lischtvan - Levediev - prog. 7+580

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	eneral en el cau	ice:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfi	icie de agua			92.72	m
Ho = tirante antes de la erosión				1.16	m
Vm = velocidad media en la seco	ción			5.93	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
g _d = peso especifico del suelo de	lcauce			1.50	Tn/m3
dm = diámetro medio				14.43	
x = exponente variable. Ver tab	ola Nº 2			0.355	
Tr = Periodo de retorno del gasto	o de diseño			500.00	años
b = coeficiente que depende de	la frecuencia de	l caudal de	diseño. Ver tab	k 1.05	
A = área de la sección hidrául	ica			110.88	m2
Hm = profundidad media de la se	ección			1.196	m
a =				4.671	
Entonces,					
	Hs =	2.77	m		
ds = profundidad de socavación	respecto al fond	lo del cauc	e		
	ds =	1.61	m		

Figura 67. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 7+880

Tipo de cauce 2				CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ge	neral en el cauc	e:			
Hs = profundidad de socavación ((m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfic	ie de agua			51.86	m
Ho = tirante antes de la erosión				1.85	m
Vm = velocidad media en la secci	ón			6.46	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
				1.50	
1m = diámetro medio				32.76	
x = exponente variable. Ver table	a Nº 2			0.355	
$\Gamma r = Periodo de retorno del gasto$	de diseño			500.00	años
o = coeficiente que depende de 1	la frecuencia del o	caudal de	diseño. Ver tabl	i 1.05	
A = área de la sección hidráulic	a			98.50	m2
Hm = profundidad media de la se	cción			1.899	m
a =				3.862	
Entonces,					
	Hs =	3.60	m		
ds = profundidad de socavación	respecto al fondo	del cauco	e		
	ds =	1.75	m		

Figura 68. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 8+280

Tipo de cauce 2	CAUCE	TIPO
	Suelo cohesivo	1
	Suelo no cohesivo	2
A Cálculo de la socavación general en el cauce:		
$H_{0} = \operatorname{profindidad} do cocourción (m)$		
	57 4 7 0	21
Qd = caudal de diseno	5/4./0	m3/seg
Be = ancho efectivo de la superficie de agua	79.78	m
Ho = tirante antes de la erosión	1.18	m
Vm = velocidad media en la sección	5.92	m/seg
m = coheficiente de contraccion. Ver tabla N° 1	0.99	
	1.50	
dm = diámetro medio	45.11	
x = exponente variable. Ver tabla N° 2	0.355	
Tr = Periodo de retorno del gasto de diseño	500.00	años
b = coeficiente que depende de la frecuencia del caudal de diseño. Ver table	1.05	
A = área de la sección hidráulica	102.86	m2
Hm = profundidad media de la sección	1.289	m
a =	4.788	

Entonces,

Hs	=	2.27	m

ds = profundidad de socavación respecto al fondo del cauce

ds = 1.09 m

Asumimos ds = 1.50 m

Figura 69. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 9+580

Tipo de cauce	2			CAUCE	TIPO
r · · · · · · · · ·				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	eneral en el cau	ice:			
Hs = profundidad de socavaciór	n (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la super	icie de agua			60.00	m
Ho = tirante antes de la erosión				1.76	m
Vm = velocidad media en la sec	ción			7.13	m/seg
m = coheficiente de contraccion	Ver tabla N° 1			0.99	
g_d = peso especifico del suelo de	el cauce			1.50	Tn/m3
dm = diámetro medio				34.84	
x = exponente variable. Ver tal	ola Nº 2			0.355	
Tr = Periodo de retorno del gaste	o de diseño			500.00	años
b = coeficiente que depende de	e la frecuencia del	l caudal de	diseño. Ver ta	abk 1.05	
A = área de la sección hidráu	lica			105.81	m2
Hm = profundidad media de la s	ección			1.763	m
a =				3.778	
Entonces,					
	Hs =	3.29	m		
ds — profundidad de socavación	respecto al fond	o del cauce			
	respecto ariona				
	ds =	1.53	m		
		• • •			
Asumimos	ds =	2.00	m		

Figura 70. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 10+785

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación g	eneral en el ca	uce:			
Hs = profundidad de socavación	ı (m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfi	icie de agua			57.50	m
Ho = tirante antes de la erosión	-			1.49	m
Vm = velocidad media en la seco	ción			6.72	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
$g_d = peso especifico del suelo de$	el cauce			1.50	Tn/m3
dm = diámetro medio				30.06	
x = exponente variable. Ver tab	ola Nº 2			0.355	
Tr = Periodo de retorno del gasto	o de diseño			500.00	años
b = coeficiente que depende de	e la frecuencia de	el caudal de	diseño. Ver tal	ok 1.05	
A = área de la sección hidrául	ica			96.24	m2
Hm = profundidad media de la se	ección			1.674	m
a =				4.300	
Entonces,					
	Hs =	3.04	m		
ds = profundidad de socavación	respecto al fon	do del cauce	e		
	ds =	1.55	m		

Figura 71. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 11+480

Tipo de cauce 2	2			CAUCE	TIPO
-				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ge	eneral en el ca	uce:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				574.70	m3/seg
Be = ancho efectivo de la superfi	cie de agua			53.77	m
Ho = tirante antes de la erosión	e			2.15	m
Vm = velocidad media en la secc	ión			6.73	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	C
$g_d = peso especifico del suelo del$	cauce			1.50	Tn/m3
dm = diámetro medio				30.06	
x = exponente variable. Ver tab	la Nº 2			0.355	
Tr = Periodo de retorno del gasto	de diseño			500.00	años
b = coeficiente que depende de	la frecuencia de	el caudal de	diseño. Ver ta	ibk 1.05	
A = área de la sección hidráuli	ca			98.58	m2
Hm = profundidad media de la se	ección			1.833	m
a =				3.951	
Entonces,					
	Hs =	4.49	m		
ds – profundidad de socavación	respecto al fon	do del cauce	2		
	respecto urion				
	ds =	2.34	m		
Asumimos	ds =	2.50	m		

Figura 72. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 11+980

A Cálculo de la socavación general en el cauce: Hs = profundidad de socavación (m) Qd = caudal de diseño 574.70 m3/s Be = ancho efectivo de la superficie de agua 141.94 m Ho = tirante antes de la erosión 0.94 m Ym = velocidad media en la sección 5.66 m/se m = coheficiente de contraccion. Ver tabla N° 1 0.99 gd = peso especifico del suelo del cauce 1.50 Tn/m3 dm = diámetro medio 43.21 x = exponente variable. Ver tabla N° 2 0.355 Tr = Periodo de retorno del gasto de diseño 500.00 años b = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla 1.05 A = área de la sección hidráulica 122.09 m2 Hm = profundidad media de la sección 0.860 m a = 5.284 Entonces, Hs = 1.86 m ds = profundidad de socavación respecto al fondo del cauce ds = ds = 0.92 m	TIPO	CAUCE	Г		7	2	Tipo de cauce
A Cálculo de la socavación general en el cauce: Hs = profundidad de socavación (m) Qd = caudal de diseño 574.70 m3/s Be = ancho efectivo de la superficie de agua 141.94 m Ho = tirante antes de la erosión 0.94 m Ym = velocidad media en la sección 5.66 m/sec m = coheficiente de contraccion. Ver tabla N° 1 0.99 gd = peso especifico del suelo del cauce 1.50 Tn/m2 dm = diámetro medio 43.21 x = exponente variable. Ver tabla N° 2 0.355 Tr = Periodo de retorno del gasto de diseño 500.00 años b = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla 1.05 A = área de la sección hidráulica 122.09 m2 Hm = profundidad media de la sección 0.860 m a = 5.284 Entonces, Hs = 1.86 m ds = 0.92 m	1	cohesivo	Su		_		r
A Cálculo de la socavación general en el cauce:Hs = profundidad de socavación (m)Qd = caudal de diseño574.70 m3/sBe = ancho efectivo de la superficie de agua141.94 mHo = tirante antes de la erosión0.94 mVm = velocidad media en la sección5.66 m/sem = coheficiente de contraccion. Ver tabla N° 10.99gd = peso especifico del suelo del cauce1.50 Tn/m3dm = diámetro medio43.21x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00 añosb = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla1.05A = área de la sección hidráulica122.09 m2Hm = profundidad media de la sección0.860 ma =5.284Entonces,Hs =1.86 mds = profundidad de socavación respecto al fondo del cauce $ds = 0.92 m$	2	no cohesivo	Su				
Hs = profundidad de socavación (m) 574.70 m3/s Qd = caudal de diseño 574.70 m3/s Be = ancho efectivo de la superficie de agua 141.94 m Ho = tirante antes de la erosión 0.94 m Vm = velocidad media en la sección 5.66 m/se m = coheficiente de contraccion. Ver tabla N° 1 0.99 g_d g_d = peso especifico del suelo del cauce 1.50 Tn/m2 dm = diámetro medio 43.21 cm x = exponente variable. Ver tabla N° 2 0.355 Tr Tr = Periodo de retorno del gasto de diseño 500.00 años b = coeficiente que depende de la frecuencia del caudal de diseño. Ver table 1.05 m2.09 m2 Hm = profundidad media de la sección 0.860 m a = area de la sección hidráulica 122.09 m2 Hm = profundidad media de la sección 0.860 m a = mathematica 5.284 Entonces,Hs = 1.86 m ds = profundidad de socavación respecto al fondo del cauceds = 0.92 m				:	en el cauce	socavación general e	A Cálculo de la so
$Qd = caudal de diseño574.70 m3/sBe = ancho efectivo de la superficie de agua141.94 mHo = tirante antes de la erosión0.94 mVm = velocidad media en la sección5.66 m/sem = coheficiente de contraccion. Ver tabla N° 10.99g_d = peso especifico del suelo del cauce1.50 Tn/m3dm = diámetro medio43.21x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00 añosb = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla1.05A = área de la sección hidráulica122.09 m2Hm = profundidad media de la sección0.860 ma =5.284Entonces,Hs =1.86 mds =0.92 m$						l de socavación (m)	Hs = profundidad de
Be = ancho efectivo de la superficie de agua141.94 mHo = tirante antes de la erosión0.94 mVm = velocidad media en la sección5.66 m/sem = coheficiente de contraccion. Ver tabla N° 10.99gd = peso especifico del suelo del cauce1.50 Tn/m3dm= diámetro medio43.21x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00 añosb = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla1.05A = área de la sección hidráulica122.09 m2Hm = profundidad media de la sección0.860 ma =5.284Entonces,Hs =ds = profundidad de socavación respecto al fondo del cauceds =0.92 m	/seg	574.70				liseño	Qd = caudal de disei
Ho = tirante antes de la erosión0.94 mVm = velocidad media en la sección5.66 m/sem = coheficiente de contraccion. Ver tabla N° 10.99 g_d = peso especifico del suelo del cauce1.50 Tn/m3dm = diámetro medio43.21x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00 añosb = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla1.05A = área de la sección hidráulica122.09 m2Hm = profundidad media de la sección0.860 ma =5.284Entonces,Hs =ds = profundidad de socavación respecto al fondo del cauceds =0.92 m	U	141.94			gua	ivo de la superficie de aș	Be = ancho efectivo
Vm = velocidad media en la sección5.66m/sem = coheficiente de contraccion. Ver tabla N° 10.99 g_d = peso especifico del suelo del cauce1.50dm = diámetro medio43.21x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00b = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla1.05A = área de la sección hidráulica122.09Hm = profundidad media de la sección0.860a =5.284Entonces,Hs =ds = profundidad de socavación respecto al fondo del cauceds =0.92m		0.94			e	s de la erosión	Ho = tirante antes de
m = coheficiente de contraccion. Ver tabla N° 10.99 g_d = peso especifico del suelo del cauce1.50 Tn/m2dm = diámetro medio43.21x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00 añosb = coeficiente que depende de la frecuencia del caudal de diseño. Ver tabla1.05A = área de la sección hidráulica122.09 m2Hm = profundidad media de la sección0.860 ma =5.284Entonces,Hs =ds = profundidad de socavación respecto al fondo del cauceds =0.92 m	eg	5.66				media en la sección	Vm = velocidad med
$ g_d = peso especifico del suelo del cauce $	C	0.99			ola N° 1	de contraccion. Ver tabl	m = coheficiente de c
dm = diámetro medio43.21 $x = exponente variable. Ver tabla N° 20.355Tr = Periodo de retorno del gasto de diseño500.00b = coeficiente que depende de la frecuencia del caudal de diseño. Ver table1.05A = área de la sección hidráulica122.09Hm = profundidad media de la sección0.860a =5.284Entonces,Hs =ds = profundidad de socavación respecto al fondo del cauceds =0.92m$	ß	1.50 T				ico del suelo del cauce	$g_{d} = peso especifico$
x = exponente variable. Ver tabla N° 20.355 $Tr = Periodo de retorno del gasto de diseño500.00b = coeficiente que depende de la frecuencia del caudal de diseño. Ver table1.05A = área de la sección hidráulica122.09Hm = profundidad media de la sección0.860a =5.284Entonces,Hs =Ms =1.86ds =0.92m = 0.92m$		43.21				edio	dm = diámetro media
Tr = Periodo de retorno del gasto de diseño500.00añosb = coeficiente que depende de la frecuencia del caudal de diseño. Ver table1.05122.09A = área de la sección hidráulica122.09m2Hm = profundidad media de la sección0.860ma =5.2845.284Entonces,Hs =1.86ds =0.92m		0.355				variable. Ver tabla Nº 2	x = exponente varia
b = coeficiente que depende de la frecuencia del caudal de diseño. Ver table 1.05 A = área de la sección hidráulica 122.09 m2 Hm = profundidad media de la sección 0.860 m a = 5.284 Entonces, Hs = 1.86 m ds = profundidad de socavación respecto al fondo del cauce ds = 0.92 m	os	500.00			eño	etorno del gasto de dise	Tr = Periodo de retor
A = área de la sección hidráulica122.09 m2Hm = profundidad media de la sección0.860 ma =5.284Entonces,Hs =Hs =1.86 mds =0.92 m		1.05	diseño. Ver tabk	udal de	iencia del ca	que depende de la frecu	b = coeficiente que
Hm = profundidad media de la sección 0.860 m a = 5.284 Entonces,Hs = 1.86 m ds = 0.92 m		122.09				sección hidráulica	A = área de la sec
a = 5.284 Entonces, Hs = 1.86 m ds = profundidad de socavación respecto al fondo del cauce ds = 0.92 m		0.860				d media de la sección	Hm = profundidad m
Entonces, Hs = 1.86 m ds = profundidad de socavación respecto al fondo del cauce ds = 0.92 m		5.284					a =
Entonces, Hs = 1.86 m $ds = profundidad de socavación respecto al fondo del cauce$ $ds = 0.92 m$							
Hs = 1.86 m ds = profundidad de socavación respecto al fondo del cauce ds = 0.92 m							Entonces,
ds = profundidad de socavación respecto al fondo del cauce $ds = 0.92 m$			m	1.86	_	He –	
ds = profundidad de socavación respecto al fondo del cauce ds = 0.92 m				1.00	-	115 –	
ds = 0.92 m				lel cauce	to al fondo d	l de socavación respecto	ds = profundidad de
us = 0.32 III				0.02	_	da –	
			111	0.92	-	us =	
Asumimos ds – 1 00 m			m	1 00		de -	Asumimos

Figura 73. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 12+885

Timo da couca				CAUCE	TIDO
				Suelo conestvo	1
A - Cálculo de la socavación de	oral on al cauco	•		Suelo no conesivo	Z
A. Calculo de la socavación gen					
Hs = profundidad de socavación (m)				
Qd = caudal de diseño	,			569.70	m3/seg
Be = ancho efectivo de la superfic	e de agua			50.25	m
Ho = tirante antes de la erosión	-			1.85	m
Vm = velocidad media en la secció	ón			6.44	m/seg
m = coheficiente de contraccion. V	ver tabla N° 1			0.99	-
$g_d = peso especifico del suelo del s$	cauce			1.50	Tn/m3
dm = diámetro medio				43.21	
x = exponente variable. Ver table	N° 2			0.355	
Tr = Periodo de retorno del gasto o	le diseño			500.00	años
b = coeficiente que depende de la	a frecuencia del c	audal de	diseño. Ver tabl	i 1.05	
A = área de la sección hidráulic	a			93.06	m2
Hm = profundidad media de la sec	ción			1.852	m
a =				4.121	
Entonces,					
	Hs =	3.57	m		
ds = profundidad de socavación r	especto al fondo	del cauce	2		
	ds =	1.72	m		
A	J.,	2.00			
ASUMIMOS	as =	2.00	m		

Figura 74. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 13+985

Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación go	eneral en el ca	uce:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				569.70	m3/seg
Be = ancho efectivo de la superfi	cie de agua			68.39	m
Ho = tirante antes de la erosión				1.96	m
Vm = velocidad media en la seco	ión			5.29	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
g_d = peso especifico del suelo de	cauce			1.50	Tn/m3
dm = diámetro medio				43.21	
x = exponente variable. Ver tab	la Nº 2			0.355	
Tr = Periodo de retorno del gasto	de diseño			500.00	años
b = coeficiente que depende de	la frecuencia de	el caudal de	diseño. Ver ta	bk 1.05	
A = área de la sección hidráuli	ca			137.24	m2
Hm = profundidad media de la se	ección			2.007	m
a =				2.649	
Entonces,					
	Hs =	2.77	m		
ds = profundidad de socavación	respecto al fond	do del cauce	2		
	ds =	0.81	m		
Asumimos	ds =	1.00	m		

Figura 75. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 14+680
Tipo de cauce	2			CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ge	eneral en el ca	uce:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				569.70	m3/seg
Be = ancho efectivo de la superfi	cie de agua			55.50	m
Ho = tirante antes de la erosión				1.63	m
Vm = velocidad media en la seco	ión			6.56	m/seg
m = coheficiente de contraccion.	Ver tabla N° 1			0.99	
$g_d =$ peso especifico del suelo de	1.50	1.50 Tn/m3			
dm = diámetro medio				43.21	
x = exponente variable. Ver tab	la Nº 2			0.355	
Tr = Periodo de retorno del gasto	500.00	años			
b = coeficiente que depende de	la frecuencia de	el caudal de	diseño. Ver tal	ok 1.05	
A = área de la sección hidráuli	97.31	m2			
Hm = profundidad media de la se	ección			1.753	m
a =				4.088	
Entonces,					
	Hs =	3.04	m		
ds = profundidad de socavación	respecto al fond	do del cauce	2		
	ds =	1.41	m		
Asumimos	ds =	1.50	m		

Figura 76. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 14+980

Tipo de cauce 2				CAUCE	TIPO
				Suelo cohesivo	1
				Suelo no cohesivo	2
A Cálculo de la socavación ge	neral en el cau	ice:			
Hs = profundidad de socavación	(m)				
Qd = caudal de diseño				569.70	m3/seg
Be = ancho efectivo de la superfi	cie de agua			31.56	m
Ho = tirante antes de la erosión				2.93	m
Vm = velocidad media en la secc	7.68	m/seg			
m = coheficiente de contraccion.	0.99				
$g_d = peso especifico del suelo del$	1.50	1.50 Tn/m3			
dm = diámetro medio				43.21	
x = exponente variable. Ver tab	a Nº 2			0.355	
Tr = Periodo de retorno del gasto	500.00	años			
b = coeficiente que depende de	la frecuencia de	l caudal de	diseño. Ver tab	k 1.05	
A = área de la sección hidráuli	ca			82.59	m2
Hm = profundidad media de la se	cción			2.617	m
a =				3.688	
Entonces,					
	Hs =	5.79	m		
ds = profundidad de socavación	respecto al fond	o del cauc	e		
	ds =	2.86	m		

Figura 77. Cálculo de socavación por el método de Lischtvan – Levediev – prog. 15+690