UNIVERSIDAD NACIONAL AGRARIA

LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

"MODELACIÓN HIDRÁULICA DE LAS PANTALLAS DE INFILTRACIÓN PARA EL RÍO LURÍN"

TRABAJO DE SUFICIENCIA PROFESIONAL PARA OPTAR EL TÍTULO DE INGENIERO AGRÍCOLA

NILO JEFFERSON SULCA SALAZAR

 $LIMA - PER\acute{U}$

2023

Modelación hidráulica de las pantallas de infiltración para el río Lurín

INFORM	IE DE ORIGINALIDAD		
1 INDIC	5% 14% FUENTES DE INTERNET	5% PUBLICACIONES	6% TRABAJOS DEL ESTUDIANTE
FUENTE	S PRIMARIAS		
1	repositorio.lamolina.edu. Fuente de Internet	.pe	4%
2	hdl.handle.net Fuente de Internet		2%
3	repositorio.unsch.edu.pe	}	1 %
4	repositorio.ucv.edu.pe Fuente de Internet		1 %
5	repositorio.unc.edu.pe		1 %
6	doku.pub Fuente de Internet		<1%
7	repositorio.urp.edu.pe		<1%
8	CESEL S A. "EIA-SD del Pr Transmisión en 220 kV S. Nueva Jicamarca-IGA000 2013-MEM/AAE, 2020 Publicación	oyecto Línea E. Carabayllo 3081", R.D. N	de < 1 % - S.E. ° 352-

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

"MODELACIÓN HIDRÁULICA DE LAS PANTALLAS DE INFILTRACIÓN PARA EL RÍO LURÍN"

TRABAJO DE SUFICIENCIA PROFESIONAL PARA OPTAR EL TITULO DE:

INGENIERO AGRÍCOLA

Presentado por:

BACH. NILO JEFFERSON SULCA SALAZAR

Sustentado y aprobado por el siguiente jurado:

Ph.D. EDUARDO ABRAHAM CHÁVARRI VELARDE Presidente Dr. GONZALO RAMCÉS FANO MIRANDA Asesor

Mg. Sc. RICARDO APACLLA NALVARTE Miembro Mg. Sc. ERICK ABAD ROSALES ASTO Miembro

LIMA – PERÚ

2023

DEDICATORIA

Dedico este trabajo a mi mamá, Elsa, por ser la persona que siempre confió en mí, y me enseño todo lo que pudo cuando era niño, no olvidare las tardes que pasabas a mi lado enseñándome a multiplicar. Muchas gracias mamá.

A mi padre, Gerardo, por ser un ejemplo de superación y resiliencia, por sembrar en mis esas ganas de superación, y por enseñarme que las cosas se pueden lograr si se hacen con fe y coraje.

A mi hermana Edith, quien ha sido mi segunda madre, por estar siempre pendiente de mí y brindarme tu apoyo incondicional en las etapas más difíciles de mi vida. Eres un modelo a seguir como persona.

A mi hermano Franklin, por guiarme y aconsejarme desde mi infancia, y por enseñarme a encontrar la risa incluso en los momentos más difíciles. No olvidaré cuando una tormenta casi destruye el proyecto en el que estábamos trabajando durante meses. Gracias por todas las experiencias, hermano.

Este trabajo está dedicado con gratitud a todos ustedes familia.

AGRADECIMIENTOS

Agradezco a todas las personas que me brindaron su apoyo de diversas maneras durante la elaboración y sustentación de mi trabajo de suficiencia profesional. A la Universidad Nacional Agraria La Molina, donde no solo tuve la oportunidad de desarrollarme personal y profesionalmente, sino también de experimentar momentos inolvidables y conocer a personas increíbles que se convirtieron en mis amigos.

ÍNDICE GENERAL

RESUME	N ix
ABSTRA	CTx
I. INTR	ODUCCIÓN1
1.1. P	roblemática 1
1.2. O	bjetivos2
II. REVI	SIÓN DE LITERATURA
2.1. N	Iorfología fluvial
2.1.1.	Clasificación morfológica de los ríos
2.1.2.	Pendiente fluvial 4
2.2. C	anales abiertos
2.2.1.	Flujo permanente
2.2.2.	Flujo no permanente
2.3. A	ncho estable del cauce
2.4. P	eriodo de retorno
2.5. N	úmero de froude
2.6. T	ipos de flujo11
2.6.1.	Flujo subcrítico
2.6.2.	Flujo crítico
2.6.3.	Flujo supercrítico
2.7. V	ertedero
2.7.1.	Vertedero de pared gruesa
2.8. C	oeficiente de rugosidad Manning
2.9. P	antalla de infiltración17
2.10. S	oftware Iber 2D
2.10.1	. Hidrodinámica
2.10.2	. Condiciones de contorno
2.10.3	. Malla de cálculo
2.10.4	. Etapas del modelo
III. DESA	RROLLO DEL TRABAJO
3.1. U	bicación del área de estudio
3.1.1.	Ubicación Política

3.1.2.	Ubicación Hidrográfica	26
3.1.3.	Ubicación Geográfica	27
3.2. Ma	ateriales	28
3.2.1.	Estudio de Topografía - Tramo puente vehicular Inca Moya a PI	ΓAR
Cieneg	uilla	28
3.2.2.	Estudio de Hidrología - Tramo puente vehicular Inca Moya a PI	ΓAR
Cieneg	uilla	29
3.2.3.	Softwares	31
3.3. Ev	aluación del cauce (tramo de estudio)	32
3.3.1.	Morfología del río en el tramo de estudio	32
3.3.2.	Estructuras existentes	33
3.4. Pre	edimensionamiento hidráulico	37
3.4.1.	Criterios de diseño	37
3.4.2.	Determinación del periodo de retorno	38
3.4.3.	Cálculo de ancho estable del cauce	40
3.4.4.	Estabilidad del fondo del cauce	41
3.4.5.	Pantalla de infiltración	42
3.4.5	5.1. Altura de pantalla sobre el cauce	43
3.4.5	5.2. Determinación de distancia entre pantallas	43
3.4.5	5.3. Volúmenes retenidos entre pantallas	45
3.4.5	5.4. Ubicación de la primera pantalla	46
3.4.6.	Encauzamiento del río	49
3.5. Mo	odelamiento hidráulico	50
3.5.1.	Generación del DEM con pendiente estabilizada	50
3.5.2.	Geometría del modelo geométrico	52
3.5.3.	Coeficiente de rugosidad	53
3.5.4.	Importación de geometría	54
3.5.5.	Condiciones de contorno	55
3.5.6.	Asignación de rugosidad del suelo	57
3.5.7.	Generación de Malla de computo	57
3.5.8.	Importación de DEM al modelo	59
3.5.9.	Simulación del Modelo y Post-proceso	59
3.5.10.	Calibración del modelo hidráulico	61
IV. RESUI	LTADOS Y DISCUSIÓN	64

4	Predimensionamiento hidráulico	64
4	Modelamiento hidráulico	65
	2.1. Resultados para caudal medio de marzo	65
	2.2. Resultados para caudal TR100	69
v.	ONCLUSIONES	73
VI.	ECOMENDACIONES	75
VII	EFERENCIAS BIBLIOGRÁFICAS	77

ÍNDICE DE FIGURAS

Figura N° 1: Clasificación Morfológica de los ríos4
Figura N° 2:Riesgo de por lo menos una excedencia del evento de diseño 10
Figura N° 3: Vertedero de pared gruesa13
Figura N° 4: Ejemplo de malla no estructurada23
Figura N° 5: Ubicación política de la zona de estudio25
Figura N° 6: Subcuencas del río Lurín a partir del punto de captación
Figura N° 7: Tramo de estudio – Puente peatonal Inca Moya a la PTAR Cieneguilla 27
Figura N° 8: Modelo de Elevación Digital del tramo de estudio
Figura N° 9: Ortomosaico tramo de estudio 29
Figura N° 10: Fotografía tomada en temporada de avenidas - progresiva 0+05534
Figura N° 11: Fotografía tomada en temporada de avenidas - progresiva 0+28035
Figura N° 12: Fotografía tomada en temporada de estiaje- Progresiva 0+300 35
Figura N° 13: Fotografía tomada en temporada de estiaje– Progresiva 0+735 36
Figura N° 14: Fotografía tomada en temporada de estiaje- Progresiva 1+540 36
Figura N° 15: Fotografía tomada en temporada de estiaje- Progresiva 1+800 37
Figura N° 16: Comparación del perfil longitudinal del cauce natural y estabilizado 42
Figura N° 17: Comparación de sección del cauce natural y explanado
Figura N° 18: Escenario ideal 44
Figura N° 19: Escenario a evitar
Figura N° 20: Volúmenes retenido entre pantallas de 1m de altura para diferentes
espaciamientos
Figura N° 21: Distancia entre primera pantalla de infiltración y Pte. Vehicular Inca Moya
Figura N° 22: Ubicación de primera pantalla – Vista de planta
Figura N° 23: Sección típica del río explanado 50
Figura N° 24: DEM situación actual y DEM con pendiente estabilizada
Figura N° 25: Dibujo Isométrico de gaviones y pantallas de infiltración
Figura N° 26: Superficie NRBS generada en Iber 2d55
Figura N° 27: Hidrograma de entrada para TR100 56
Figura N° 28: Condición de contorno de entrada y salida56
Figura N° 29: Asignación rugosidad para cada tipo de cobertura

Figura N° 30: Malla computacional del modelo hidráulico	. 58
Figura N° 31: Malla computacional y DEM explanado	. 59
Figura N° 32: Parámetros del modelo	. 61
Figura N° 33: Aforo de caudal Prog.1+000 - Método de vadeo	. 62
Figura N° 34: Resultados de modelamiento para caudal promedio de marzo - Velocidad	. 67
Figura N° 35: Resultados de modelamiento para caudal promedio de marzo - Tirante	. 68
Figura N° 36: Resultados de modelamiento para TR $100 - T$ irante	.71
Figura N° 37: Resultados de modelamiento para TR100 - Velocidad	. 72

ÍNDICE DE TABLAS

Tabla N° 1: Coeficientes para diferentes condiciones de fondo de río (K1)	7
Tabla N° 2: Coeficientes de material (K) y cauce (m) – Manning Strickler	7
Tabla N° 3: Valores de periodo de retorno (T)	10
Tabla N° 4: Valores máximos recomendados de riesgo admisible de obras de drenaje .	11
Tabla N° 5: Valores de los parámetros de rugosidad según Cowan	14
Tabla N° 6: Valores de coeficiente de rugosidad para canales de diferentes clases	15
Tabla N° 7: Fricción de pared	20
Tabla N° 8: Condiciones de contorno implementadas en los contornos abiertos	22
Tabla N° 9: Ubicación en coordenadas UTM - WGS84 del tramo de estudio	27
Tabla N° 10: Estaciones pluviométricas analizadas en el estudio hidrológico	29
Tabla N° 11: Caudales medios mensuales – Puente vehicular Inca Moya	30
Tabla N° 12: Caudales Máximos – Puente vehicular Inca Moya	31
Tabla N° 13: Pendiente del río Lurín -Tramo de estudio	32
Tabla N° 14: Anchos del río Lurín – Tramo de estudio	33
Tabla N° 15: Estructuras existentes en el cauce – Tramo Puente Inca Moya a F	' TAR
Cieneguilla	34
Tabla N° 16: Resumen del cálculo del ancho estable	41
Tabla N° 17: Carga aguas arriba de la pantalla medido con respecto al fondo	43
Tabla N° 18: Diferencia de cotas entre pantallas	44
Tabla N° 19: Volúmenes retenidos por distintos arreglos de pantallas	45
Tabla N° 20: Variación porcentual con respecto al escenario sin pantallas	45
Tabla N° 21: Ubicación de pantallas de infiltración	49
Tabla N° 22: Ubicación de estructuras de encauzamiento	50
Tabla N° 23: Valores considerados para el cálculo del coeficiente de Manning	54
Tabla N° 24: Coeficiente de rugosidad considerados en el modelo hidráulico	54
Tabla N° 25:Tamaño de malla de componentes del modelo	58
Tabla N° 26:Parámetros de tiempo del modelo	60
Tabla N° 27:Parámetros generales del modelo	60
Tabla N° 28: Caudal aforado en la progresiva 1+000	62
Tabla N° 29: Registro histórico de precipitaciones – Estación Antioquia	80
Tabla N° 30: Registro histórico de precipitaciones – Estación Campo de Marte	81

Tabla N°	31:	Registro	histórico o	le precipitaciones-	– Estación	Chalilla	. 82
Tabla N°	32:	Registro	histórico d	le precipitaciones-	– Estación	Chaute	. 83
Tabla N°	33:	Registro	histórico d	le precipitaciones-	– Estación	Chosica	. 84
Tabla N°	34:	Registro	histórico d	le precipitaciones-	– Estación	Huarochiri	. 85
Tabla N°	35:	Registro	histórico d	le precipitaciones-	– Estación	Langa	. 87
Tabla N°	36:	Registro	histórico d	le precipitaciones-	– Estación	Matucana	. 89
Tabla N°	37:	Registro	histórico d	de precipitaciones-	– Estación	Ñaña	. 91
Tabla N°	38:	Registro	histórico d	de precipitaciones-	– Estación	Pantanos de Villa	. 92
Tabla N°	39:	Registro	histórico d	de precipitaciones-	– Estación	San José de Parac	. 94
Tabla N°	40:	Registro	histórico d	de precipitaciones-	– Estación	San Lazaro de Escomarca.	. 95
Tabla N°	41:	Registro	histórico d	de precipitaciones-	– Estación	Santa Eulalia	. 97
Tabla N°	42:	Registro	histórico d	le precipitaciones-	– Estación	Santiago de Tuna	. 99
Tabla N°	43:	Registro	histórico d	le precipitaciones-	– Estación	Von Humbold	101
Tabla N°	44:	Registro	histórico d	le precipitaciones-	– Estación	Modelo	103

ÍNDICE DE ANEXOS

ANEXO	1:	Información	de	precipitaciones	de	las	estaciones	consideradas	en	el	estudio
hidrológi	co.		••••			•••••					

RESUMEN

En el presente trabajo de suficiencia profesional, se desarrolló la modelación hidráulica para evaluar el predimensionamiento hidráulico de pantallas de infiltración en el tramo comprendido entre el puente vehicular Inca Moya y la PTAR Cieneguilla, ubicado en el río Lurín en el distrito de Cieneguilla, Provincia de Lima y Región Lima, Perú. La esencia del predimensionamiento hidráulico de estas pantallas radica en la creación de pequeños embalses que reduzcan las velocidades del agua y a su vez eleven sus niveles para favorecer la infiltración. Esto implicó la determinación de diversas características, como la altura sobre el cauce, la longitud, y el espaciamiento entre las pantallas, culminando con la selección del arreglo más óptimo, teniendo en cuenta el volumen retenido y el número de pantallas. Asimismo, con el objetivo de mantener parámetros hidráulicos estables se procedió a uniformizar la pendiente y la sección del lecho mediante una explanación, además se realizó el encauzamiento del río de los cuales se determinó el tipo, ubicación y altura de las estructuras de encauzamiento. El modelo hidráulico bidimensional se realizó con el software Iber-2d, en el cual se evaluó la interacción de las estructuras y el río para los escenarios de caudal medio de marzo (15.77 m3/s) y de TR100 (123.72 m3/s). Finalmente, en base a los resultados, se logró determinar el comportamiento del flujo, el cual se caracterizó por la presencia de pequeños embalses entre pantallas; además, se identificaron velocidades bajas y tirantes altos aguas arriba de las pantallas. Asimismo, no se registró desbordamiento del río en todo el tramo de intervención. Por otro lado, debido a las altas velocidades que se producen aguas abajo de las pantallas, se recomendó la colocación de protección, como el tipo enrocado.

Palabras clave: Pantallas de infiltración, Iber 2d, modelación hidráulica bidimensional, predimensionamiento hidráulico, Lurín.

ABSTRACT

In this current professional proficiency project, hydraulic modeling was undertaken to assess the hydraulic pre-dimensioning of infiltration screens in the stretch between the Inca Moya vehicular bridge and the Cieneguilla Wastewater Treatment Plant (PTAR), located on the Lurín River in the district of Cieneguilla, Lima Province, and Lima Region, Peru. The essence of the hydraulic pre-dimensioning of these screens lies in the creation of small reservoirs to reduce water velocities and, in turn, raise their levels to facilitate infiltration. This involved determining various characteristics such as height above the channel, length, and spacing between the screens, culminating in the selection of the most optimal arrangement, considering the retained volume and the number of screens. Additionally, with the aim of maintaining stable hydraulic parameters, the slope and bed section were homogenized through excavation, and river channeling was carried out, determining the type, location, and height of the channeling structures. The two-dimensional hydraulic model was created using the Iber-2d software, in which the interaction between the structures and the river was evaluated for scenarios of the mean flow rate in March (15.77 m3/s) and TR100 (123.72 m3/s). Finally, based on the results, the flow behavior was successfully determined, characterized by the presence of small reservoirs between screens; furthermore, low velocities and high water levels were identified upstream of the screens. Additionally, there was no river overflow throughout the intervention stretch. On the other hand, due to the high velocities occurring downstream of the screens, the placement of protection measures, such as riprap, was recommended.

Keywords: Infiltration screens, Iber 2d, two-dimensional hydraulic modeling, hydraulic pre-dimensioning, Lurín.

I. INTRODUCCIÓN

1.1. Problemática

En Perú, la temporada de lluvias generalmente ocurre entre los meses de diciembre y marzo, y durante este período se registra un aumento significativo en las precipitaciones. Sin embargo, a pesar de que se aprovecha parte de estos volúmenes de agua de lluvia, hay otra parte que termina desembocando en el mar. Por otro lado, el valle de Lurín ha experimentado un significativo crecimiento poblacional, lo cual ha generado una creciente demanda de agua para consumo humano, esto conlleva a que la población realice la explotación de agua subterránea, en mucho de los casos de manera no sostenible (INGEMMET, 2021). Ante esta situación, es imperativo buscar alternativas que permitan aprovechar de forma sostenible estos volúmenes de agua de la temporada de lluvias que actualmente no son aprovechados.

Una solución que se ha desarrollado en las cuencas del Rímac y del Chillón es la recarga artificial inducida mediante pantallas de infiltración. Estas estructuras están diseñadas para aumentar la recarga del acuífero durante la temporada de avenidas. Se ha observado que este método ha tenido resultados positivos en un tramo de 6 km comprendido entre el puente Huachipa y la Atarjea SEDAPAL del Rímac, así como en el tramo ubicado a 6 km aguas abajo de la bocatoma de la PTAP del río Chillón.

En el presente trabajo de suficiencia profesional se determinará la distancia y la altura sobre el cauce de las pantallas de infiltración, además del encauzamiento y la explanación en un tramo específico del río Lurín. El tramo seleccionado se extiende desde el puente Inca Moya hasta la PTAR Cieneguilla. Para verificar el comportamiento hidráulico de las pantallas de infiltración, se realizará un modelo hidráulico bidimensional para ello se utilizará el software Iber-2D. En el modelo se simulará el caudal medio máximo anual y el caudal extraordinario correspondiente a un periodo de retorno de 100 años. Durante esta simulación, se evaluará el río teniendo en cuenta el impacto de las pantallas de infiltración.

1.2. Objetivos

Objetivo general

Realizar el modelamiento hidráulico con Iber-2d para la evaluación de pantallas de infiltración en el tramo comprendido entre el puente vehicular Inca Moya y la PTAR Cieneguilla del río Lurín.

Objetivos específicos

- Definir la distancia y altura sobre el cauce de las pantallas de infiltración.
- Definir el tipo, ubicación y altura de estructuras de encauzamiento.
- Evaluar el comportamiento hidráulico del río bajo los efectos de pantallas de infiltración.

II. REVISIÓN DE LITERATURA

2.1. Morfología fluvial

La morfología fluvial o fluviomorfología se denomina al estudio de las variadas formas que caracterizan a los ríos. Asimismo, esta implica el estudio de los cambios que llega a experimentar un río, tanto en su sección transversal como en su perfil longitudinal. (Rocha, 1998)

2.1.1. Clasificación morfológica de los ríos

En términos de su morfología, los ríos se pueden clasificar en tres categorías principales: rectos, entrelazados y meándricos.

a) Ríos rectos

No es común encontrar ríos que mantengan una forma completamente rectilínea en su estado natural. En algunas ocasiones, se implementan sistemas de control de flujo lineales, que consisten en la construcción de diques paralelos. Sin embargo, incluso en estas situaciones, cuando los caudales son más bajos de lo previsto en el diseño, el río tiende a adquirir su propia curvatura. Cuando el caudal coincide con el diseño previsto, el río ocupa todo el ancho de la sección transversal y se comporta como si estuviera siguiendo una trayectoria recta. En ciertos casos de canalización, la principal preocupación no reside en el caudal máximo, sino en un flujo de agua de menor intensidad. En estas circunstancias, el río forma curvas y, en ocasiones, una de estas curvas puede dirigirse casi directamente hacia los diques de canalización, lo que representa un riesgo significativo. (Rocha, 1998)

b) Ríos entrelazados

En ocasiones, se les denomina ríos trenzados. Por lo general, se refieren a ríos de gran amplitud y pronunciada pendiente, lo que provoca la formación de canales estrechos (con poca profundidad) y el río fluye dividiéndose en varios canales o brazos que rodean pequeñas islas. LANE propuso que hay dos razones principales que explican la presencia de un río entrelazado: 1) la acumulación excesiva de sedimentos que el río no puede transportar en su totalidad, resultando en el depósito de una parte de ellos y la formación de islas, y 2) una pendiente empinada que da origen a canales angostos. Ya sea uno de estos factores o la combinación de ambos, son responsables de la aparición de ríos entrelazados. (Rocha, 1998)

c) Ríos meándricos

Consisten en una serie de curvas que los componen. La particularidad de estas curvas, que exhiben una gran dinámica, no se origina principalmente por las características del terreno, sino más bien por el comportamiento intrínseco del flujo del río. (Rocha, 1998)

Figura N° 1: Clasificación Morfológica de los ríos FUENTE: (Rocha, 1998)

2.1.2. Pendiente fluvial

La pendiente del lecho del río varía a lo largo de su trayectoria desde su origen hasta el punto donde desemboca. Por lo general, las pendientes más empinadas se encuentran en las partes más altas. En las partes bajas de los cauces fluviales, la inclinación disminuye

significativamente. En correspondencia en pendientes pronunciadas, las velocidades del flujo son más altas y el material sólido transportado consiste en partículas de mayor tamaño. En las partes bajas de las velocidades son menores y también lo es el tamaño típico de las partículas transportadas. De esta manera, existe una relación interdependiente entre la inclinación del terreno, las velocidades del flujo y el tamaño característico de las partículas sólidas en movimiento. (Rocha, 1998)

2.2. Canales abiertos

Un canal abierto es un conducto a través del cual el agua fluye con una superficie libre. Dependiendo de su origen, puede ser natural, como los ríos, o artificial, como los canales creados por el ser humano con revestimiento de concreto u otros materiales. (Chow, 2004)

El flujo en canales abiertos puede clasificarse en muchos tipos y descubrirse de varias manearas. La siguiente clasificación se hace de acuerdo con el cambio en la profundidad de flujo con respecto al tiempo y al espacio (Chow, 2004):

2.2.1. Flujo permanente

Cuando el tirante de un canal no varía o se considera constante durante un intervalo de tiempo, el flujo del canal es permanente.

a) Flujo uniforme

El flujo es uniforme si la profundidad del flujo no varía a lo largo del tramo del canal considerado.

b) Flujo variado

Se dice que un flujo es variado cuando la profundidad de este varia a lo largo del canal.

- Flujo gradualmente variado, se da cuando la profundidad de agua varia de manera gradual.
- Flujo rápidamente variado, seda cuando la profundidad de agua varia de abrupta en una distancia corta.

2.2.2. Flujo no permanente

El flujo es no permanente cuando la profundidad cambia con el tiempo.

2.3. Ancho estable del cauce

El ancho estable del cauce se logra cuando tanto el lecho como las orillas se mantienen inalterados a lo largo de un extenso periodo, y donde los procesos de transporte y deposición de sedimentos son prácticamente imperceptibles durante las fases de aumento y disminución del nivel del agua.

Según (Terán, 1998) "existen varios métodos de cálculo de la sección estable del lecho del rio, se considera que las condiciones de los ríos, requieren una observación directa; en tal sentido, en base a ensayos, se puede establecer una sección representativa para el rio. Siendo recomendable en condiciones de valle, verificar el ancho estable, como el caso de zonas forestadas, y en base a esto efectuar los cálculos de otros parámetros".

El cálculo del ancho estable del cauce se puede ser calculado mediante 04 métodos empíricos: 1) Método de Simons y Henderson, 2) Método de Manning Strickler 3) Método Blench y Altunin, 4) Método de Pettis,5) Método práctico los cuales se describen a continuación:

- Método de Simons y Henderson

$$B = K_1 \cdot Q^{1/2}$$

Donde:

- K1= Coeficiente para diferentes condiciones de fondo de río
- $Q = Caudal de diseño (m^3/s)$

Tabla N° 1: Coeficientes para diferentes condiciones de fondo de río (K1)

CONDICIONES DE FONDO DE RÍO	K1
Fondo y orillas de arena	5.7
Fondo arena y orillas de material cohesivo	4.2
Fondo y orillas de material cohesivo	3.6
Fondo y orillas de grava	2.9
Fondo arena y orillas material no cohesivo	2.8

- Método de Manning Strickler

Este método incluye como parámetros de cálculos a los coeficientes de rugosidad (n), tipo material (k) y de cauce (m).

$$B = \left(\frac{Q^{\frac{1}{2}}}{S^{\frac{1}{5}}}\right) \left(nK^{\frac{5}{3}}\right)^{3/(3+5m)}$$

Donde:

В	=	Ancho estable (m)
Q	=	Caudal (m3/s)
S	=	Pendiente /m/m)
n	=	Coeficiente de manning
K	=	Coeficiente del tipo de material
m	=	Coeficiente de cauce

Tabla N° 2: Coeficientes de material (K) y cauce (m) – Manning Strickler

Coeficiente - Tipo de material (H	K)	Coeficiente cauce (n	(m)		
Valor practico	10	Cauces aluviales	0.5		
Material aluvial	12	Cauces arenosos	0.7		
Material fácilmente erosionable	16	Cauces de montaña	1		

Coeficiente - Tipo de materia	Coeficiente cauce (m)	
Mat. Muy resistente	3	

- Método de Blench y Altunin

Este método se recomienda para cauces con material cohesivo o formado en arena fina (Dm < 1mm), para diámetros mayores se empiezan a tener resultados absurdos. La ecuación para determinar el ancho de un cauce estable está dada por la relación.

$$B = 1.81. (Q.Fb/Fs)^{0.5}$$

Donde:

 $Q = Caudal de diseño (m^3/s)$

Fb = Factor de redondeo, cuyos valores promedios son: 0.8 para material fino y 1.2 para material grueso.

Fs = Factor de orilla, cuyos valores son: 0.1 para materiales sueltos, 0.2 para materiales ligeramente cohesivo y 0.3 para materiales cohesivos.

- Método de Pettis

La expresión de diseño está dada por:

$$B = 4.44.Q^{0.5}$$

Donde:

B = Ancho del cauce (m)Q = Caudal de diseño (m³/s)

2.4. Periodo de retorno

El período de retorno "T" se refiere al promedio de años necesarios para que el valor del caudal pico de una crecida específica sea igualado o superado una vez. Si asumimos que los eventos anuales son independientes, podemos calcular la probabilidad de que ocurra esto en un período de vida útil de "n" años. (Ministerio de Transportes y Comunicaciones, 2014)

Para seleccionar el periodo de retorno a utilizar en la planificación de una construcción, es esencial evaluar la conexión entre la probabilidad de que ocurra un evento, la vida útil de la estructura y el nivel de riesgo aceptable de fallo. Este último factor depende de consideraciones económicas, sociales, técnicas y diversos aspectos adicionales. (Ministerio de Transportes y Comunicaciones, 2014)

El criterio de riesgo implica establecer de antemano el nivel de riesgo que se está dispuesto a aceptar en caso de que la estructura falle durante su período de vida útil. Esto significa que no se producirá un evento de magnitud superior a la utilizada en el diseño durante el primer año, y de manera similar en los años subsiguientes a lo largo de la vida de la obra. (Ministerio de Transportes y Comunicaciones, 2014)

El riesgo de falla admisible en función del período de retorno y vida útil de la obra está dado por:

$$R = 1 - \left(1 - \frac{1}{T}\right)^n$$

Donde:

T= Periodo de retorno (años)

n= Vida útil de la estructura (años)

R=Riesgo admisible

La fórmula anterior permite calcular el periodo de retorno "T", estableciendo un periodo de vida útil y un riesgo admisible, el cual es la probabilidad de ocurrencia del pico de la creciente estudiada, durante la vida útil de la obra. (Ver Figura N° 2)

En la Tabla N° 3 se muestran diferentes periodos de retorno para distintos valores del riesgo admisible y vida útil de obras.

		-								
RIESGO ADMISIBLE		VIDA ÚTIL DE LAS OBRAS (n años)								
R	1	2	3	5	10	20	25	50	100	200
0.01	100	199	299	498	995	1990	2488	4975	9950	19900
0.02	50	99	149	248	495	990	1238	2475	4950	9900
0.05	20	39	59	98	195	390	488	975	1950	3900
0.1	10	19	29	48	95	190	238	475	950	1899
0.2	5	10	14	23	45	90	113	225	449	897
0.25	4	7	11	18	35	70	87	174	348	695
0.5	2	3	5	8	15	29	37	73	154	289
0.75	1.3	2	2.7	4.1	7.7	15	18	37	73	144
0.99	1	1.11	1.27	1.66	2.7	5	5.9	11	22	44

FUENTE: (Ministerio de Transportes y Comunicaciones, 2014)

El (Ministerio de Transportes y Comunicaciones, 2014) recomienda valores de riesgo admisible para diferentes obras de drenaje los cuales se muestran en la Tabla N° 4.

Tipo de obre	Riesgo Admisible
	(%)
Puentes	25
Alcantarillas de paso de quebradas importantes y badenes	30
Alcantarillas de paso quebradas menores y descarga de agua de cunetas	35
Drenaje de la plataforma (a nivel longitudinal)	40
Subdrenes	40
Defensas Ribereñas	25

Tabla N° 4: Valores máximos recomendados de riesgo admisible de obras de drenaje

FUENTE: (Ministerio de Transportes y Comunicaciones, 2014)

2.5. Número de froude

El número de Froude, un parámetro adimensional, vincula las fuerzas de inercia de la velocidad con las fuerzas gravitatorias. Su definición se encuentra en la siguiente ecuación. (Villón, 2005)

$$F = \frac{v}{\sqrt{g * R}}$$

Donde:

v= Velocidad media de la sección (m/s)

g= Aceleración de la gravedad (m/s^2)

R=Radio hidráulico

2.6. Tipos de flujo

El flujo se puede clasificar en 3 tipos según el número de Froude:

2.6.1. Flujo subcrítico

En este estado, las fuerzas de gravedad se vuelven dominantes, por lo que el flujo es tranquilo y lento, por lo que el número de Froude es menor que uno (F<1).

2.6.2. Flujo crítico

En este caso, las fuerzas de inercia y gravedad están en equilibrio, siendo así el número de Froude igual a uno (F = 1).

2.6.3. Flujo supercrítico

Para que se produzca este tipo de flujo las fuerzas de inercia son más pronunciadas, por lo que el flujo tiene una gran velocidad, siendo rápido o torrentoso, es decir, el número de Froude es mayor a uno (F>1).

2.7. Vertedero

Un vertedero es una estructura diseñada para permitir que el agua fluya en forma de lámina libre. En su funcionamiento, se produce una transición de un flujo lento a uno rápido, alcanzando en algún punto el régimen crítico. Por lo general, se construyen siguiendo el perfil teórico que corresponde a la superficie inferior del agua en un vertedero de pared delgada. Esto se hace para maximizar la capacidad de descarga y asegurar que no haya presiones significativas sobre la estructura del vertedero. (Francisco, 2005)

2.7.1. Vertedero de pared gruesa

Un vertedero de pared gruesa se caracteriza por tener una cresta plana y horizontal con una longitud considerable en comparación con la altura del umbral. En estos casos, la relación entre la longitud de la cresta y la carga ejercida sobre ella debe ser mayor que 1.5 a 3 para garantizar su funcionamiento adecuado. (Mery, 2013)

Un vertedero de pared gruesa tiene un escurrimiento con líneas de corriente paralelas al umbral, y en ese caso la distribución de las presiones según la vertical es hidrostática, lo que produce escurrimiento cercano al crítico en gran parte del umbral. El vertedero de pared gruesa se utiliza a menudo como estructura de aforo de caudal. (Mery, 2013)

El cálculo del caudal unitario sobre el umbral del vertedero está determinado por la siguiente ecuación.

$$q = 1.704 \times (H_1 - P)^{3/2}$$

Donde:

q = Caudal unitario (m2/s)

H1= Bernoullí aguas arriba del vertedero medido con respecto al fondo

del canal de acceso (m).

P=Altura de vertedero (m).

Figura N° 3: Vertedero de pared gruesa FUENTE: (Mery, 2013)

2.8. Coeficiente de rugosidad Manning

La determinación aproximada del coeficiente "n" requiere la evaluación de condiciones como el tipo de cauce, el estado del flujo y el nivel de mantenimiento. Estos factores proporcionan una base para estimar el valor adecuado de "n" en un problema dado. En general, al seleccionar un factor de Manning, se acepta que las condiciones que promueven la turbulencia y la desaceleración aumentarán el valor de "n", mientras que las que reducen la turbulencia y la desaceleración disminuirán dicho valor. (Chow, 2004)

- Cálculo del coeficiente de rugosidad por el método de Cowan

Cowan desarrolló un procedimiento para estimar el valor de "n" al considerar diversos factores fundamentales que influyen en la rugosidad. Este método se basa en la siguiente fórmula (Chow, 2004):

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) \times m$$

Donde:

n₀ = Valor básico del coeficiente de rugosidad para un tramo recto y uniforme

 n_1 = Incremento por irregularidades de las secciones

 $n_2 =$ Incremento por variaciones de forma

 $n_3 =$ Incremento por obstrucciones

n₄ = Incremento por vegetación del cauce

m = Factor correctivo por curvas y meandros del río

Los valores pueden ser escogidos de acuerdo a las características establecidas en la Tabla N°

5.

Carácterísticas de la	Comoctorísticos	Valor medio del
canalización	Caracteristicas	coeficiente n
	Tierra	0.02
Material del lecho: no	Roca cortada	0.025
	Grava fina	0.024
	Grava gruesa	0.028
	Suaves	0.000
Crada da imagularidadagu n.	Pocas	0.005
Grado de megularidades: m	Moderadas	0.010
	Severas	0.020
Variacionas de la sección, no	Graduales	0.000
variaciones de la sección. Il2	Ocasionales	0.005

Tabla N° 5: Valores de los parámetros de rugosidad según Cowan

Carácterísticas de la	Caractorísticas	Valor medio del	
canalización	Caracteristicas	coeficiente n	
	Frecuentes	0.010 - 0.015	
	Despreciables	0.000	
Obstruccionas: no	Pocas	0.010 - 0.015	
Obstrucciones. Its	Muchas	0.020 - 0.030	
	Severas	0.040 - 0.060	
	Pocas	0.005 - 0.010	
Vagatación	Regular	0.010 - 0.025	
vegetacion. 114	Mucha	0.025 - 0.050	
	Gran cantidad	0.050 - 0.100	
	Pocas	1.00	
Curvas:m	Regular	1.05	
	Muchas	1.10	

FUENTE: (Chow, 2004)

En la Tabla N° 6 se pueden apreciar los valores del coeficiente de rugosidad mínimo, normal y máximo para diferentes clases de canales. (Chow, 2004)

	Tipo de canal y descripción	Mínimo	Normal	Máximo
А	Corrientes naturales			
A 1	Corrientes menores (ancho superficial en			
	nivel creciente <100 pies)			
a.	Corrientes en planicies			
	1. Limpias, rectas, máximo nivel, sin montículos ni pozos profundos	0.025	0.030	0.033
	2. Igual al anterior, pero con más piedras y malezas	0.030	0.035	0.040
	3.Limpio, serpenteante, algunos pozos y bancos de arena	0.033	0.040	0.045
	4. Igual al anterior, pero con algunos matorrales	0.035	0.045	0.050
	5. Igual al anterior, niveles bajos, pendientes y secciones más ineficientes	0.040	0.048	0.055
	6. Igual al 4, pero con más piedras	0.045	0.050	0.060
	7. Tramos lentos, con malezas y pozos profundos	0.050	0.070	0.080

Tabla N°	6: \	Valores	de d	coeficiente	de 1	rugosidad	para	canales	de	diferentes	clases
	•••			Councience		- agobiaaaa	para	canalos	~~	unter entees	CIGO CD

	Tipo de canal y descripción	Mínimo	Normal	Máximo
	8. Tramos con muchas malezas,			
	pozos profundos o canales de	0.075	0 100	0 150
	crecientes con muchos árboles con	0.075	0.100	0.130
	matorrales bajos			
	Corrientes montañosas, sin vegetación en el			
L	canal, bancas usualmente empinadas,			
L	' árboles y matorrales a lo largo de las bancas			
	sumergidas en niveles altos.			
	1.Fondo: gravas, cantos rodados y	0.030	0.040	0.050
	algunas rocas.	0.050	0.040	0.050
	2. Fondo: cantos rodados con rocas	0.040	0.050	0.070
	grandes	0.040	0.050	0.070
A.2	Planicies de inundación			
а	. Pastizales, sin matorrales			
	1. Pasto corto	0.025	0.030	0.035
	2. Pasto alto	0.030	0.035	0.050
t	b. Áreas cultivadas			
	1. Sin cultivo	0.020	0.030	0.040
	2. Cultivos en línea maduros	0.025	0.035	0.045
	3. Campo de cultivo maduros	0.030	0.040	0.050
C	. Matorrales			
	1. Matorrales dispersos, mucha	0.035	0.050	0.070
	maleza	0.0000	0.000	01070
	2. Pocos matorrales y árboles, en	0.035	0.050	0.060
	invierno			
	3. Pocos matorrales y árboles, en	0.040	0.060	0.080
	verano			
	4. Matorrales medios a densos, en	0.045	0.070	0.110
	invierno			
	5. Matorrales medios a densos, en	0.070	0.100	0.160
	verano Árbolog			
Ĺ	I. AIDORS			
	1. Sauces densos, fectos y en	0.110	0.150	0.200
	2 Terrano limpio, con tronços sin			
	retoños	0.030	0.040	0.050
	3 Igual que el anterior pero con			
	una gran cantidad de retoños	0.050	0.060	0.080
	4 Gran cantidad de árboles			
	algunos troncos caídos, con poco			
	crecimiento de matorrales, nivel	0.080	0.100	0.120
	de agua por debajo de las ramas			
	5. Igual al anterior, pero con nivel			
	de creciente por encima de las	0.100	0.120	0.160
	ramas		-	
	Corrientes mayores (ancho superficial en			
* 2	nivel de creciente > 100 pies). El valor de n			
A.3	es menor que el correspondiente a			
	corrientes menores con descripción similar,			

Tipo de canal y descripción	Mínimo	Normal	Máximo
debido a que las bancas ofrecen resistencia			
menos efectiva.			
Sección regular, sin cantos rodados ni	0.025		0.060
matorrales	0.025		0.000
b. Sección irregular y rugosa	0.035	•••••	0.100
ELIENTE: (Chow 2004)			

FUENTE: (Chow, 2004)

2.9. Pantalla de infiltración

Las pantallas de infiltración son estructuras, como muros de contención, diseñadas para retener el agua del río durante todo el año. Su propósito es aumentar el nivel de la napa freática mediante la infiltración, lo que garantiza un suministro constante de agua a los pozos subterráneos en la zona circundante. Posteriormente, esta agua se transfiere a los depósitos elevados para su distribución a la población. (Alegría, 2019)

2.10. Software Iber 2D

Iber es un modelo número de simulación de flujo turbulento en régimen no permanente en lamina libre, y de procesos medioambientales en hidráulica fluvial. (Bladé, 2014)

El modelo Iber es un modelo numérico bidimensional diseñado para simular el flujo superficial del agua. Este modelo integra módulos de hidrodinámica, turbulencia, transporte de sedimentos y calidad del agua, empleando el método de volúmenes finitos para resolver las ecuaciones pertinentes. Además, ofrece una interfaz de usuario amigable tanto para la preparación de datos como para la visualización de resultados, permitiendo la creación de videos y la representación de variables en 3D. Esto lo convierte en una herramienta docente versátil, gratuita y relativamente fácil de usar, adecuada para realizar modelaciones hidráulicas e hidrodinámicas de manera práctica y efectiva. (Cueva M., 2018)

2.10.1. Hidrodinámica

El módulo hidrodinámico de Iber utiliza ecuaciones bidimensionales de Saint Venant, las cuales presuponen una distribución uniforme de la presión hidrostática y la velocidad en el lecho del canal. Estas condiciones se aplican a ríos y estuarios. (Bladé, 2014)

$$\frac{\partial h}{\partial t} + \frac{\partial h U_x}{\partial x} + \frac{\partial h U_y}{\partial y} = M_s$$

$$\frac{\partial h}{\partial t}(hU_x) + \frac{\partial}{\partial x}(\partial U_x^2) + \frac{\partial}{\partial y}(hU_xU_y) = -gh\frac{\partial Z_b}{\partial x} + \frac{\tau_{sx}}{\rho} - \frac{\tau_{bx}}{\rho} - gh\frac{\partial h}{\partial x} + 2\Omega sin\lambda U_y + \frac{\partial}{\partial x}(h\tau_{xx}^e) + \frac{\partial}{\partial y}(h\tau_{xy}^e) + M_x + \frac{\partial}{\partial x}(h\tau_{xy}^e) + M$$

 $\frac{\partial h}{\partial t} \left(h U_y \right) + \frac{\partial}{\partial y} \left(\partial U_y^2 \right) + \frac{\partial}{\partial x} \left(h U_x U_y \right) = -gh \frac{\partial Z_b}{\partial y} + \frac{\tau_{sy}}{\rho} - \frac{\tau_{by}}{\rho} - gh \frac{\partial h}{\partial y} + 2\Omega sin\lambda U_x + \frac{\partial}{\partial x} (h\tau_{xy}^e) + \frac{\partial}{\partial y} (h\tau_{yy}^e) + M_y \left(h \tau_{yy}^e \right) + M_y \left(h \tau_{yy}^e$

Donde:

h= tirante de agua.

Ux, Uy= velocidades horizontales promediadas en profundidad.

Zs= elevación de la lámina libre. g: aceleración de la gravedad.

 τ s= fricción en la superficie libre debida al rozamiento producido por el viento.

 τb = fricción debida al rozamiento de fondo.

 ρ = densidad del agua.

 Ω = velocidad angular de rotación de la tierra.

 λ = latitud del punto considerado.

 τ^{e}_{xx} , τ^{e}_{yy} , τ^{e}_{xy} = tensiones tangenciales efectivas horizontales.

Ms, Mx, My= son respectivamente los términos fuente, sumidero y de momento, mediante los cuales se realiza la modelización de precipitación, infiltración y sumideros.

2.10.2. Condiciones de contorno

En un modelo bidimensional, es esencial hacer una distinción entre dos tipos de límites: abiertos y cerrados. Los límites cerrados, también conocidos como límites tipo pared, son impermeables en su naturaleza. (Bladé, 2014)

Contorno cerrado: Estos límites cerrados generan una fuerza de fricción lateral en el fluido, que es bastante similar a la fricción generada en el fondo. Dentro de estos límites cerrados, podemos considerar las siguientes condiciones de contorno tipo pared: (Bladé, 2014)

- Condiciones de deslizamiento libre (esfuerzo tangencial cero).
- Condición de fricción de la pared (funciones de la pared).

En construcción hidráulica y, en particular, en la ingeniería de flujo, la fuerza de fricción se origina debido a la resistencia al movimiento del fluido. Por lo general, se suele pasar por alto el contorno de la pared debido a que las dimensiones horizontales son significativamente diferentes de las verticales. Esto es especialmente cierto en aguas poco profundas, donde la fuerza de fricción se determina en gran medida por el ancho del cauce y la profundidad del agua. (Bladé, 2014)

Por otra parte, en tramos de canal muy estrechos, el comportamiento del flujo puede verse afectado por el rozamiento lateral, este rozamiento de pared se define por la siguiente expresión: (Bladé, 2014)

$$u_* = \sqrt{\frac{\tau_W}{\rho}}$$

Donde:

u*= velocidad de fricción de pared. Tw= fricción de la pared. ρ= densidad del agua.

La velocidad tangencial en la pared se puede determinar en función de la velocidad de fricción, de la altura de rugosidad y de la distancia a la pared, tal que:

$$|u| = \frac{u_*}{K_s} * Ln(E.y)$$

$$K_S^+ = \frac{K_S * u_*}{v}$$

Donde:

|u| = velocidad tangencial.

Ks= altura de rugosidad.

v= viscosidad cinemática.

y= distancia en perpendicular a la pared.

E= parámetro que depende de las características del flujo.

Para el cálculo del parámetro de Iber considera condiciones de flujo turbulento liso, rugoso y transición entre liso y rugoso, tal y como se representa en la Tabla N° 7.

Tabla N° 7: Fricción de pared

Tipo de régimen	$K_s^+ = \frac{K_s * u_s}{v}$	$ \boldsymbol{u} = \frac{u_*}{K_s} * \boldsymbol{Ln}(\boldsymbol{E},\boldsymbol{y})$
Turbulento liso	$K_{s}^{+} < 5$	E = 9
Turbulento rugoso	$5 < K_s^+ < 70$	$E = \frac{30}{K_s^+}$
Turbulento liso- rugoso	$K_{s}^{+} > 70$	$E = \frac{1}{0.11 + 0.033 * K_s^+}$

FUENTE: (Bladé, 2014)

Contorno abierto:

En el ámbito de la hidráulica fluvial, se parte del supuesto de que el flujo se desplaza a un ritmo lento en la sección que está siendo modelada. En esta situación, se establece la profundidad del agua en el límite aguas abajo como una condición, mientras que aguas arriba se suele definir el caudal de entrada y la dirección del flujo. En ausencia de datos más precisos, se asume que la dirección del flujo es perpendicular al límite de entrada. También es posible especificar tanto la velocidad como el caudal específico aguas arriba, en caso de que se esté imponiendo el caudal en el límite de entrada. En este caso, se realiza una distribución del caudal unitario utilizando la siguiente ecuación: (Bladé, 2014)

$$q_n = \frac{h^{5/3} * Q}{\int h^{5/3} dy}$$

Donde:

qn= caudal específico, en m3/s/m.Q= Caudal total de entrada por el contorno, en m3/s.h= tirante de agua, en m.

Además del nivel de la superficie libre o tirante, en el límite de salida se pueden aplicar condiciones de contorno tipo vertedero utilizando la curva de gasto. Esta condición establece una relación entre el caudal de salida y la profundidad del agua en cada punto del límite y se expresa de la siguiente manera: (Bladé, 2014)

$$q = C_d (Z_s - Z_W)^{1,5}$$

Donde:

q= caudal de salida.

Cd= coeficiente de descarga del vertedero.

Zs= cota de lámina libre.

Z_w= cota superior del vertedero.

La condición de contorno tipo curva de gasto establece una relación entre el caudal de salida y la elevación del nivel del agua en cada punto. Este vínculo se incorpora al modelo a través de una tabla en la cual se registran conjuntos de valores que representan el caudal específico y la elevación de la superficie del agua. (Bladé, 2014)

Iber aplica un conjunto de condiciones en los límites abiertos, las cuales se detallan en la Tabla N° 8.
С	ONTORNO	RÉGIMEN	CONDICIONES ESTABLECIDAS
		Subcrítico/Crítico	Caudal total en dirección normal al contorno.
	Caudal total	Supercrítico	Caudal total en dirección normal al contorno y velocidad media.
Entrada		Subcrítico/Crítico	Caudal específico en dirección normal al contorno.
	Caudal específico	Cum a norrétie a	a. Caudal específico en dirección normal al contorno y calado.
		Supercritico	b.Caudal específico en dirección normal al contorno y cota de agua.
			a.Calado
			b.Cota de agua.
		Subcrítico	c.Vertedero (cota y coeficiente de
			descarga).
Salida			d.Curva de gasto.
		Supercrítico/Crítico	No es necesario imponer ninguna condición.

	T	abla	N°	8:	Con	dic	ciones	de	contorno	im	olemen	tadas	s en l	los	cont	ornos	abierto	os
--	---	------	----	----	-----	-----	--------	----	----------	----	--------	-------	--------	-----	------	-------	---------	----

FUENTE: (Bladé, 2014)

2.10.3. Malla de cálculo

Las ecuaciones hidrodinámicas bidimensionales, así como las ecuaciones asociadas a los modelos de turbulencia y transporte de sedimentos, se resuelven comúnmente a través del método de volumen finito, que es uno de los enfoques más ampliamente empleados en la dinámica de fluidos computacional. (Bladé, 2014)

Para abordar la resolución de una ecuación diferencial mediante el método de volumen finito, el primer paso consiste en realizar una discretización espacial. En este proceso, la región de interés se divide en celdas relativamente pequeñas, que son conocidas como cuadrículas computacionales. (Bladé, 2014)

Iber utiliza mallas no estructuradas que consisten en polígonos con 3 lados. La principal ventaja de emplear este tipo de mallas radica en su capacidad para adaptarse fácilmente a diversas geometrías, sin requerir una estructura interna predefinida. Esta característica

especial las hace ampliamente reconocidas y apreciadas en la hidráulica fluvial. (Bladé, 2014)

Figura N° 4: Ejemplo de malla no estructurada FUENTE: (Bladé, 2014)

2.10.4. Etapas del modelo

Iber consta de tres etapas: preproceso, proceso y postproceso. Aquí se describe brevemente la cada una de ellas:

a) Preproceso

En esta etapa, se prepara y configura el modelo antes de ejecutar las simulaciones. Esto incluye la definición de la geometría del sistema hidráulico, la creación de la malla no estructurada, la especificación de las condiciones iniciales y de contorno, así como la configuración de los parámetros de simulación. El preproceso es esencial para garantizar que la simulación se realice de manera adecuada y con los datos correctos.

b) Proceso

Durante esta fase, se ejecutan las simulaciones hidrodinámicas y de transporte de sedimentos utilizando las condiciones y parámetros definidos en el preproceso. Se resuelven las ecuaciones matemáticas que describen el flujo del agua en el sistema. El proceso proporciona

resultados numéricos que representan el comportamiento del flujo en la configuración de estudio.

c) Postproceso

Después de completar las simulaciones, el postproceso se encarga de analizar y visualizar los resultados obtenidos. Esto implica la generación de gráficos, tablas y representaciones visuales que ayuden a interpretar los datos de manera efectiva. El postproceso permite extraer información valiosa de las simulaciones y tomar decisiones informadas sobre el diseño o la gestión de sistemas fluviales.

En conjunto, estas tres operaciones son fundamentales en el uso de Iber para llevar a cabo análisis y estudios relacionados con la hidráulica fluvial. Cada una de ellas desempeña un papel crucial en el proceso de modelado y simulación.

III. DESARROLLO DEL TRABAJO

3.1. Ubicación del área de estudio

La ubicación política, hidrográfica y geográfica del tramo de estudio es la siguiente:

3.1.1. Ubicación Política

Distrito: Cieneguilla

Región: Lima

País: Perú

En la Figura N° 5 se puede visualizar la ubicación política de la zona de estudio.

Figura N° 5: Ubicación política de la zona de estudio

3.1.2. Ubicación Hidrográfica

Hidrográficamente, la cuenca en estudio forma parte de la unidad hidrográfica Lurín ocupa esta unidad hidrográfica en 78.1% y forma parte de la Región Hidrográfica del Pacífico.La Unidad Hidrográfica del río Lurín delimitada en punto de captación (km 0+000 puente Inca Moya) se encuentra ubicada en la Autoridad Administrativa del Agua Cañete Fortaleza y la Administración Local del Agua Chillón, Rímac y Lurín. En la Figura N° 6 se muestran las subcuencas de la cuenca de Lurín ubicadas aguas arriba del inicio del tramo de estudio.

Figura N° 6: Subcuencas del río Lurín a partir del punto de captación

3.1.3. Ubicación Geográfica

Geográficamente el área del Proyecto se sitúa en el valle del río Lurín. Comprende el tramo a lo largo de 1.8 km del río Lurín desde la altura del puente vehicular Inca Moya hasta aguas abajo de la PTAR Cieneguilla (ver Figura N° 7), el cual está ubicado entre las coordenadas UTM, Datum WGS-84 que se muestran en la Tabla N° 9.

	Coord	enadas
Punto	Esta (m)	Norte
	Este (III)	(m)
Inicio	303014	8659491
Fin	301678	8658318

Tabla N° 9: Ubicación en coordenadas UTM - WGS84 del tramo de estudio

Figura N° 7: Tramo de estudio – Puente peatonal Inca Moya a la PTAR Cieneguilla.

3.2. Materiales

3.2.1. Estudio de Topografía - Tramo puente vehicular Inca Moya a PTAR Cieneguilla

El estudio de levantamiento topográfico del río Lurín fue elaborado por el Consorcio HC&A-Aquaters, el cual se desarrollado 500 m aguas arriba del puente vehicular Inca Moya y 500 m aguas abajo de la PTAR Cieneguilla. El levantamiento topográfico se realizó mediante fotogrametría área con drones. Este método permite obtener las propiedades geométricas de los objetos y las situaciones espaciales mediante el procesamiento de imágenes fotográficas.

Para el levantamiento topográfico se estableció una red de puntos geodésicos monumentados los cuales están instalado estratégicamente. Además, se establecieron puntos de foto control los cuales fueron colocados estratégicamente para el reajuste del modelo Fotogramétrico.

A continuación, se muestra la información recogida del estudio como es el Modelo de elevación digital (DEM) (Ver Figura N° 8:) y el ortomosaico (Ver Figura N° 9).

Figura N° 8: Modelo de Elevación Digital del tramo de estudio

Figura N° 9: Ortomosaico tramo de estudio

3.2.2. Estudio de Hidrología - Tramo puente vehicular Inca Moya a PTAR Cieneguilla

El estudio de hidrología del río Lurín fue elaborado por el Consorcio HC&A-Aquaters, este estudio aborda la generación de caudales máximos y medios en el punto de origen del tramo de análisis.

En la Tabla N° 10 se muestran las estaciones pluviométricas con sus respectivos periodos de registro, las cuales fueron utilizadas para la elaboración del estudio hidrológico.

N°	Estación	Latitud	Longitud	Altitud	Unidad Hidrográfica	Periodo de registro
1	Antioquia	-12.066	-76.529	1422	Cuenca Lurín	1981-2020
2	Campo de Marte	-12.071	-77.043	123	Cuenca Rímac	2000-2020
3	Chalilla	-11.934	-76.334	3975	Cuenca Lurín	1981-1984
4	Chaute	-11.935	-76.504	2215	Cuenca Rímac	1988-1995
5	Chosica	-11.93	-76.69	867	Cuenca Rímac	1989-2021

Tabla N° 10: Estaciones pluviométricas analizadas en el estudio hidrológico

N°	Estación	Latitud	Longitud	Altitud	Unidad Hidrográfica	Periodo de registro
6	Huarochiri	-12.139	-76.234	3120	Cuenca Mala	1981, 1984-2020
7	Langa	-12.126	-76.421	2863	Cuenca Lurín	1981-2020
8	Matucana	-11.839	-76.378	2417	Cuenca Rímac	1981-2021
9	Modelo	-12.071	-77.041	123	Cuenca Rímac	1981-1999
10	Ñaña	-11.987	-76.842	543	Cuenca Rímac	1990-2020
11	Pantanos de Villa	-12.211	-76.989	4	Intercuenca 1375539	1994-2006
12	San Jose de Parac	-11.801	-76.258	3829	Cuenca Rímac	1981-2021
13	San Lazaro de Escomarca	-12.181	-76.352	3758	Cuenca Lurín	1981-2020
14	Santa Eulalia	-11.92	-76.667	970	Cuenca Rímac	1981-2021
15	Santiago de Tuna	-11.983	-76.524	2926	Cuenca Lurín	1981-2021
16	Von Humboldt	-12.082	-76.939	247	Cuenca Rímac	1981-1989, 1991, 1993-1999

FUENTE: (Consorcio HC&A - Aquaters, 2023)

En el Anexo 01, se muestran los datos históricos de precipitación de las estaciones consideradas en la elaboración del estudio hidrológico.

a) Caudales medios

La generación de los caudales promedios en la cuenca de interés fue realizada mediante el modelo GR2M, considerando una modelización semidistribuida. El resultado de ello se muestra en la Tabla N° 11.

	Caudal
Mes	promedio
	(m ³ /s)
Enero	6.6
Febrero	15
Marzo	15.8
Abril	5.5
Mayo	2.5
Junio	1.7

Tabla N° 11: Caudales medios mensuales – Puente vehicular Inca Moya

Mes	Caudal promedio	-
	(m^3/s)	
Julio	1.1	-
Agosto	1	
Setiembre	0.7	
Octubre	0.2	
Noviembre	0.3	
Diciembre	1.3	_
FUENTE: (Co	onsorcio HC&A	- Aquaters, 2023)

b) Caudales Máximos

La generación de caudales máximos fue realizado al inicio del tramo de estudio (Pte. Vehicular Inca Moya) a partir de los hietogramas generados y con ayuda del software HEC-HMS, para los periodos de retorno de 2, 15, 25, 50, 100, 200 y 500 años. El resultado se muestra en la Tabla N° 12.

Periodo de	Caudal
retorno (años)	(m3/s)
2	2.83
5	8.7
10	24.66
25	58.82
50	92.33
100	123.72
200	163.62
500	230.68

Tabla N° 12: Caudales Máximos – Puente vehicular Inca Moya

FUENTE: (Consorcio HC&A - Aquaters, 2023)

3.2.3. Softwares

- Ofimática: Word, excel, Power Point y Visio.
- Gis: ArcMap 10.3, Arcgis Pro y Global Maper.
- BIM: Civil 3D e Infraworks.
- Modelamiento hidráulico 2D: IBER V3.3.0

• Google Earth

3.3. Evaluación del cauce (tramo de estudio)

Se realizo la evaluación del cauce, en el cual se caracterizó la morfología del río, recopilando información relevante sobre las características físicas del entorno fluvial, así como también se identificaron las estructuras existentes que interactúan con el flujo del cauce.

3.3.1. Morfología del río en el tramo de estudio

El tramo en estudio del río Lurín se presenta recto sin sinuosidades y de pendiente que ronda entre los valores 0.0135 m/m hasta 0.0163 m/m, tal como se puede ver en la Tabla N° 13, su conformación está afecto de intervenciones humanas, sin embargo, como material aluvial se puede observar gravas y bloques de rocas de 40 cm aproximadamente.

	Progresiva	Progresiva	Pandianta
Nº	de inicio	final	
	(Km)	(Km)	(%)
1	0+000	0+090	1.49
2	0+090	0+815	1.63
3	0+815	0+990	1.52
4	0+990	1+090	1.32
5	1+090	1+280	1.44
6	1+280	1+420	1.35
7	1+420	1+475	1.43
8	1+475	1 + 700	1.45

Tabla Nº 13: Pendiente del río Lurín - Tramo de estudio

El ancho del cauce es variable en el tramo de estudio, sus valores se encuentran en un rango de 58m a 25m, siendo el promedio de 34.5m. En la Tabla N° 14 se muestran los diferentes anchos del cauce en las diferentes progresivas del tramo de estudio.

Progresiva (m)	Ancho (m)	Progresiva (m)	Ancho (m)
0+000	58	1 + 000	37
0+100	56	1 + 100	30
0+200	42	1+200	33
0+300	32	1 + 300	35
0 + 400	32	1 + 400	31
0+500	32	1 + 500	25
0+600	30	1 + 600	25
0+700	27	1 + 700	30
0+800	35	1 + 900	27
0+900	40	1+800	21

Tabla N° 14: Anchos del río Lurín – Tramo de estudio

Desde la progresiva 0+050(puente vehicular Inca Moya) hasta la progresiva 0+265, en ambas márgenes, existen diques enrocados.

De la progresiva 0+000 hasta la progresiva 1+100 se puede apreciar escasa vegetación en ambas márgenes del cauce. Sin embargo, entre la progresiva 1+100 y 1+500 se aprecia la existencia de arbustos en la margen derecha.

En su mayoría la ribera está conformado por materiales generados, transportados y depositados por la actividad del hombre, entre ellos se encuentran las vías de acceso, los gaviones existentes, acumulaciones de desmonte entre otros.

3.3.2. Estructuras existentes

Dentro del tramo de estudio del río Lurín, se encontraron estructuras como diques enrocados, gaviones, muros de concreto, entre otras. Estas cumplen un rol fundamental para determinar la ubicación de las pantallas de infiltración. En la Tabla N° 15 se muestran la ubicación de las estructuras identificadas el tramo comprendido entre el puente Inca Moya y la PTAR Cieneguilla.

Nº	Estructura	Progr.	Margan
1	ESH uttul a	(Km)	Iviai geli
1	Enrocado aguas arriba del puente vehicular inca moya (inicio)	0-125	MD y MI
2	Puente vehicular Inca Moya	0+050	-
3	Enrocado aguas abajo del puente vehicular inca moya(fin)	0+265	MD y MI
4	Muros de contención de concreto (inicio)	0+740	MD
5	Muros de contención de concreto (fin)	0+968	MD
6	Muros de gavión (inicio)	1+531	MD
7	Muros de gavión (Fin)	1+671	MD
8	Descarga del rebose del emisor existente, antes de ingresar a la PTAR	1+800	MD

Tabla N° 15: Estructuras existentes en el cauce – Tramo Puente Inca Moya a PTAR Cieneguilla

En las Figura N° 10 al Figura N° 17 se muestran fotografías de diferentes estructuras en el cauce, tomadas en la temporada de avenidas y estiaje.

Figura N° 10: Fotografía tomada en temporada de avenidas - progresiva 0+055 Nota: Vista aguas arriba

Figura N° 11: Fotografía tomada en temporada de avenidas - progresiva 0+280 $\!$

Nota: Vista aguas arriba - Diques enrocado desde 0-125 hasta 0+265

Figura N° 12: Fotografía tomada en temporada de estiaje-- Progresiva 0+300

Nota: Vista aguas abajo - Cauce conformado por material propio del rio

Figura N° 13: Fotografía tomada en temporada de estiaje
– Progresiva 0+735

Nota: Vista aguas abajo - Margen derecha presenta muro de concreto de 0+740 a 0+938

Figura N° 14: Fotografía tomada en temporada de estiaje
– Progresiva 1+540

Nota: Vista aguas abajo - Margen derecha presenta muros de gavión de 1+531 a 1+671

Figura N° 15: Fotografía tomada en temporada de estiaje– Progresiva 1+800 Nota: Descarga del alcantarillado de reboso del emisor existente, antes de ingresar a la PTAR

3.4. Predimensionamiento hidráulico

Los procedimiento y criterios tomados en el predimensionamiento de las pantallas de infiltración, además del encauzamiento y explanación del cauce fueron realizadas teniendo en cuenta las ventajas técnicas y la funcionalidad hidráulica de las pantallas con el río, las cuales deberán dar las mejores condiciones para favorecer su infiltración.

3.4.1. Criterios de diseño

Mediante la ecuación de vertedero de cresta ancha, se realizarán escenarios donde se plantean distintos arreglos de espaciamiento y altura de pantallas con la finalidad de buscar la solución óptima para fines de infiltración.

Para ello se tendrá la siguiente consideración:

- Las alternativas de arreglos hidráulicos, se basarán en modificar las distancias entre pantallas y las alturas de estas sobre el lecho del rio.
- El remanso generado por una pantalla deberá llegar aproximadamente al pie de la pantalla aguas arriba.

- El espaciamiento entre pantallas deberá garantizar velocidades bajas del flujo entre pantallas, esto con la finalidad de obtener pequeños embalses y beneficiar su capacidad de infiltración.
- La longitud de las pantallas de infiltración estará definida por el ancho estable del cauce.
- Para el análisis se considera un espesor de pantalla de 1m.
- El remanso producido por la ubicación de la primera pantalla no deberá afectar al puente vehicular Inca Moya.
- Los niveles de agua generados por las diferentes pantallas no deberán generar desbordamientos del río.
- La cantidad de pantallas deberá tener en cuenta el volumen retenido, considerando el arreglo más eficiente.

3.4.2. Determinación del periodo de retorno

Las pantallas de infiltración son estructuras que no se encuentran normadas, por lo cual se tomaron consideraciones de estructuras similares para determinar el periodo de retorno para la ubicación de la primera pantalla y verificar que no exista ningún desbordamiento. A continuación, se muestra las consideraciones para determinar el periodo de retorno.

En primer lugar, se estima el periodo de retorno para el predimensionamiento de pantallas de infiltración considerando una proyección de la vida útil de la estructura de 20 años. Adicionalmente, se adopta un nivel de riesgo aceptable del 25%, que es valor considerado en el marco establecido para puentes y defensas ribereñas, tal y como se detalla en la Tabla N° 4.

El cálculo del periodo de retorno se realizó mediante la formula descrita en el ítem 2.4, la cual se muestra a continuación:

$$R = 1 - \left(1 - \frac{1}{T}\right)^n$$

Donde:

T= Periodo de retorno (años) n= Vida útil de la estructura (años) R=Riesgo admisible Consideraciones: n=20 años R=25% Remplazando:

$$T = \frac{1}{1 - (1 - 0.25)^{1/20}}$$

Aplicando la formula se tiene un periodo de retorno de:

En segundo lugar, se consideró las recomendaciones que da el ANA en su manual de criterios de diseño de estructuras hidráulicas, en el cual se recomienda que las bocatomas deberían diseñarse para un periodo de retorno de 50 a 100 años. Para el caso de las pantallas podemos considerar la misma recomendación, ya que estas se encuentran dispuestas transversalmente al cauce al igual que una bocatoma.

En resumen, basándonos en el cálculo que resulta en un periodo de retorno de 88 años, y teniendo en cuenta las recomendaciones del ANA, se considera que el valor para el periodo de retorno es de 100 años con un caudal de 123.72 m3/s.

El periodo de retorno obtenido de 100 años se tomará para lo siguiente:

- Cálculo del ancho estable.
- Determinar la ubicación de la primera pantalla.

3.4.3. Cálculo de ancho estable del cauce

El ancho de las pantallas está en función del ancho estable del cauce, los cuales se calcularon tomando en consideración 4 métodos: 1) Método de Simons y Henderson, 2) Método de Manning Strickler 3) Método Blench y Altunin, 4) Método de Pettis descritos en el ítem 2.3. El caudal considerado para los cálculos es de 123.72 m3/s para un TR100, determinado en el ítem 3.4.2.

- Método de Simons y Henderson

$$B = 2.9 * 123.72^{1/2}$$

 $B = 32.75m$

- Método de Manning Strickler

$$B = \left(\frac{123.72^{\frac{1}{2}}}{0.015^{\frac{1}{5}}}\right) \left(0.04 * 10^{\frac{5}{3}}\right)^{3/(3+5*0.5)}$$

$$B = 36.35m$$

- Método de Blench y Altunin

$$B = 1.81. (123.72 * 1.2/0.1)^{0.5}$$

$$B = 57.81$$
m

- Método de Pettis

$$B = 4.44 * 123.72^{0.5}$$

$$B = 50.13m$$

- Método de práctico

$$B = 29m$$

Tabla IN 10: Resulten del calculo del ancho esta
--

Método	Ancho Calculado (m)	Ancho elegido (m)
Simons y Henderson	32.75	
Manning Strickler	36.35	40
Blench y Altunin	57.81	
Pettis	50.13	

De estos métodos se definió el valor del ancho estable en 40 metros, así como se muestran en la Tabla N° 16, teniendo en cuenta el ancho existente y la recuperación del ancho y recorrido histórico del cauce, antes de la intervención ciudadana.

3.4.4. Estabilidad del fondo del cauce

Considerando que los cauces naturales son irregulares, tanto en el lecho como en las laderas, la manera de obtener las pendientes de fondo, es identificar los cambios pronunciados de pendiente en longitudes lo suficientemente largas que tengan influencia en el comportamiento del flujo.

Para propiciar la infiltración en el cauce del río es necesario que este cuente con variables hidráulicas definidas, por lo cual se busca que el cauce se comporte como un canal con pendiente y dimensiones estables en todo su recorrido.

En base a lo descrito se buscará una pendiente de fondo uniforme, la cual se deberá mantener en todo el recorrido del tramo de estudio. Para la explanación y perfilado del cauce se tendrá en cuenta la afectación a la pendiente natural del cauce. De acuerdo a los descrito líneas arriba se identificaron variaciones de fondo en el cauce natural que presentaron pendientes marcadas que oscilan desde los 0.012 m/m hasta 0.0163 m/m, teniendo como valor más recurrente una pendiente aproximada de 0.0145m/m.

Con la finalidad de realizar la menor cantidad de movimiento y, en consecuencia, con los valores del cauce natural, se realizó el perfilado del terreno a lo largo de la toda la zona de intervención con una pendiente estabilizada que se definió en 1.45%. Tal como se muestra en la Figura N° 16 y Figura N° 17.

Figura N° 16: Comparación del perfil longitudinal del cauce natural y estabilizado

Figura Nº 17: Comparación de sección del cauce natural y explanado

3.4.5. Pantalla de infiltración

El análisis para la determinación de la altura de las pantallas sobre el cauce y el distanciamiento de las mismas, se realizará con el caudal promedio máximo anual (marzo) que es de 15.77 m3/s obtenido de la Tabla N° 11, ya que es en los meses de avenidas donde se da el mayor efecto de recarga, principalmente en el mes de marzo.

Por otro lado, también se considerará el caudal extraordinario de TR 100 años para ubicar la primera pantalla, y este no afecte hidráulicamente al puente vehicular Inca Moya.

3.4.5.1. Altura de pantalla sobre el cauce

Mediante la ecuación del vertedero de pared gruesa explicada en el ítem 2.7.1 se calcularon las diferentes cargas de agua para diferentes alturas de pantallas (0.5m - 2m) sobre el cauce, para el análisis se consideró el caudal promedio del mes de marzo el cual es de 15.77 m3/s y la longitud de pantalla de 40m determinara en el ítem 3.4.3. En la Tabla N° 17 se muestran resultados de la carga de agua sobre las pantallas para diferentes alturas de pantallas sobre el cauce.

Tabla Nº 17: Carga aguas arriba de la pantalla medido con respecto al fondo

Descripción			V	alores (n	n)		
Altura de pantalla (P)	0.5	0.75	1	1.25	1.5	1.75	2
Carga aguas arriba (H)	0.88	1.13	1.38	1.63	1.88	2.13	2.38

El resultado obtenido de la carga de agua se analizará considerando la distancia entre pantallas, con la finalidad de elegir el mejor arreglo.

3.4.5.2. Determinación de distancia entre pantallas

Para la determinación del espaciamiento entre pantallas se debe considerar evitar que la cota de agua sobre una cresta no esté por encima de la cota de la cresta de la pantalla aguas arriba, esto para evitar que el agua sobre las pantallas actúe como un flujo (Figura N° 19) y pueda estancarse en lo posible (Figura N° 18). Además, se procura que el nivel de agua sobre la pantalla llegue hasta el pie de corona de la pantalla aguas arriba. Por lo cual se realizaron cálculos para diferentes alturas de pantallas y diferentes espaciamientos de las mismas, y así encontrar su mejor disposición.

Figura N° 18: Escenario ideal

Figura N° 19: Escenario a evitar

En la tabla Tabla N° 18 se realizó el cálculo de la diferencia de cotas del nivel de agua sobre la corona de la pantalla y la cota de la corona de la pantalla ubicada aguas arriba, para las diferentes alternativas de disposición de pantallas.: Los datos obtenidos de carga de agua fueron obtenidas de la Tabla N° 17.

Diferencia de coto 2 - coto 1 para diferentes arreglas de pantallas (m)									
Diferen		<u>ota 2 - cota 1 para diferentes arregios de pantanas (m)</u> Distancia entre pantallas (m)							
		10	20	25	50	80	100	120	150
	0.5	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80
	0.75	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80
Altura de	1	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80
pantanas	1.25	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80
(m)	1.5	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80
(111)	1.75	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80
	2	-0.24	-0.09	-0.02	0.35	0.78	1.07	1.36	1.80

Tabla N° 18: Diferencia de cotas entre pantallas

Los valores negativos de la tabla anterior muestran que las cotas de la superficie de agua de la pantalla están por encima de la cota superior de la pantalla anterior aguas arriba. Por otro lado, tener una pantalla con elevaciones muy altas por encima del cauce ocasionaría una gran erosión aguas debajo de las pantallas, por lo cual se es conservador al elegir su altura.

En lo ideal se requiere que la cota de agua esté al pie de la pantalla aguas arriba, según la Tabla N° 18 el arreglo de pantalla 1.0 m de alto y 100 m de espaciamiento cumple con lo requerido (resaltado en verde).

3.4.5.3. Volúmenes retenidos entre pantallas

Por último, se realizó el cálculo de los volúmenes retenidos entre pantallas.

En la Tabla N° 19 se muestran los valores retenidos en los diferentes arreglos, la primera fila se tienen los valores correspondientes al escenario sin pantallas, las demás filas corresponden a una situación con pantallas.

Volúmenes retenidos (m3) para diferentes arreglos de pantallas										
		10	20	25	50	80	100	120	150	Distancia entre pantallas (m)
		169	84	67	33	20	16	13	10	#Pantallas
ıra 1)	0	18205	18205	18205	18205	18205	18205	18205	18205	
Altı (m	1	86190	80808	78138	65010	49120	41329	36471	31391	

Tabla N° 19: Volúmenes retenidos por distintos arreglos de pantallas

Tabla Nº 20: Variación porcentual con respecto al escenario sin pantallas

	Espaciamiento entre pantallas (m)							
Altura de pantalla sobre el cauce (m)	10	20	25	50	80	100	120	150
1	373%	344%	329%	257%	170%	127%	100%	72%

Figura N° 20: Volúmenes retenido entre pantallas de 1m de altura para diferentes espaciamientos

En la Figura N° 20 se muestra la variación de volumen de almacenamiento superficial para distintos espaciamientos con la pantalla de 1.0m. Como se mencionó líneas arriba, el espaciamiento óptimo para 1m de pantalla es de 100 m, puesto que el nivel del agua llega al pie de la pantalla anterior. Sin embargo, también se debe tener en cuenta la cantidad de pantallas como resultado del espaciamiento elegido.

El valor elegido se comparó con el espaciamiento de 80m, el cual tiene un volumen de almacenamiento de 4800 m3 más que el de 100m de espaciamiento, en contraparte se necesitaría 4 pantallas más, el cual implicaría mayores recursos, este argumento refuerza la elección del arreglo de 100m de espaciamiento y 1.0m de altura de pantalla sobre el cauce, como el arreglo más optimo.

3.4.5.4. Ubicación de la primera pantalla

Debido a que en el inicio de la zona de interés se encuentran los puentes existentes peatonales y vehiculares Inca Moya, fue necesario considerar estas ubicaciones a fin de no alterar el flujo bajo estos puentes, para ello es imprescindible conocer la altura de la carga de agua por sobre la corona de la primera pantalla, esto permite conocer la longitud del remanso proyectando una línea horizontal sobre la pantalla hasta la intersección con el cauce. Se debe

garantizar que esta longitud de remanso debe estar lo suficientemente alejado de la zona del puente.

Para el cálculo de la carga de agua por encima de la corona de la primera pantalla se utilizó la ecuación de vertedero de pared gruesa, ya que las condiciones hidráulicas presentes cumplen con los requerimientos mínimos para su uso, ya que se cuenta con una pendiente y ancho de uniforme producto de la estabilización del cauce y el cálculo del ancho estable, además que se trata de una obstrucción transversal al flujo sin presencia de algún desnivel en el fondo del lecho.

Consideraciones para el cálculo: Caudal=123.72 m3/s Longitud de pantalla= 40m Altura de pantalla= 1m

Aplicando la fórmula de vertedero de pared gruesa se obtiene la carga hidráulica aguas arriba de la pantalla:

$$\frac{123.72}{40} = 1.704 \times (H_1 - 1)^{3/2}$$

H = 2.48

Esta altura de carga de agua producto de la altura de la pantalla por sobre el nivel de fondo, nos sirve para proyectar la longitud de remanso generada, obteniendo así la ubicación de la primera pantalla en la cual la longitud de remanso no altere las condiciones hidráulicas bajo el puente vehicular Inca Moya, tal como se muestra en la Figura N° 21.

Figura N° 21: Distancia entre primera pantalla de infiltración y Pte. Vehicular Inca Moya

De este análisis se define que la longitud de la ubicación de la primera pantalla se encuentre en la progresiva 0+220 del eje del cauce y a 170 metros aguas abajo del puente vehicular Inca Moya (VerFigura N° 22).

Figura N° 22: Ubicación de primera pantalla – Vista de planta

Pantalla N°	Progresiva
1	0+220
2	0+320
3	0+420
4	0+520
5	0+620
6	0+720
7	0+820
8	0+920
9	1+020
10	1+120
11	1+220
12	1 + 320
13	1 + 420
14	1+520
15	1+620
16	1+720

Tabla Nº 21: Ubicación de pantallas de infiltración

3.4.6. Encauzamiento del río

Con la finalidad de mantener el río con propiedades hidráulicas uniformes en todo su recorrido, así como proteger las pantallas de infiltración, y mantener el ancho de diseño establecido en el cauce, se considera un encauzamiento mediante muros de gavión de todo el tramo de estudio donde se implante las pantallas de infiltración. De acuerdo a los cálculos realizados en el ítem 3.4.5.4 en donde se determinó la ubicación de la primera pantalla la carga de agua aguas arriba de la pantalla para un caudal de TR100 es de 1.48m, sin embargo, se considera también la altura de la pantalla sobre el cauce el cual es de 1m, como margen de seguridad para la altura del gavión se considerará el valor de 3m, el cual se evaluará en el modelamiento hidráulico.

En la Figura N° 23 se puede apreciar la sección con el encauzamiento planteado, y en la Tabla N° 22 la ubicación de las estructuras de encauzamiento.

Figura N° 23: Sección típica del río explanado

Estructura de	Margen	derecho	Margen i	zquierdo	Altura
encauzamiento	Inicio	Fin	Inicio	Fin	(m)
Dique enrocado existente	0+000	0+260	0+000	0+260	3
Muro de gavión	0+260	1+780	0+260	1 + 780	3

Tabla Nº 22: Ubicación de estructuras de encauzamiento

3.5. Modelamiento hidráulico

El modelamiento hidráulico realizado con el software Iber 2D se llevó a cabo en dos escenarios diferentes: uno para caudales extraordinarios de un TR100 años y otro para caudales medios correspondientes al mes de marzo. A continuación, se detalla el procedimiento realizado en Iber 2D para llevar a cabo estos modelamientos hidráulicos.

3.5.1. Generación del DEM con pendiente estabilizada

Tal como se describió en el ítem 3.4.4 se estableció una pendiente de estabilización de 1.45% de pendiente del río, para lo cual se tomó como base el DEM obtenido del estudio topográfico y generar uno nuevo con pendiente estabilizada. Para ello se utilizó el software Civil 3d realizando el siguiente procedimiento:

- Se creo la superficie en el programa Civil 3D, para lo cual se realizó los siguientes pasos Surface > Create Surface > Create Surface from DEM.
- Luego de obtener la superficie base del terreno se trazó una polilínea como eje del cauce para posteriormente convertirlo en un alineamiento mediante la herramienta *Create Alignment from Objects*.

- Del alineamiento generado se debe obtener el perfil del terreno, para lo cual se realiza lo siguiente: Create Surface Profile > Add Surface> Draw in profile view > Create profile View
- Para generar el perfil del terreno con la pendiente de estabilizada se debe crear una nueva rasante del cauce, para lo cual se utiliza la herramienta *Profile creation Tools* y se ubica el punto de inicio y el punto final obteniendo la pendiente de 1.45%.
- Con la pendiente generada se procede a crear el corredor, peor antes se necesita de un ensamble el cual se crea mediante la herramienta *Create Assembly*. Para generar el corredor se utiliza la herramienta *Create corridor* en el cual se añaden los imputs generados anteriormente como es el alineamiento, rasante y perfil, y finalmente obteniendo el corredor del proyecto.
- Para finalizar se genera la superficie del corredor, esta superficie se pega sobre la topografía actual obteniendo una superficie nueva, esta última se exporta en formato Tiff para ser importada al software Iber.

En la Figura N° 24 se muestra el DEM en la situación actual y el DEM con la pendiente estabilizada:

Figura N° 24: DEM situación actual y DEM con pendiente estabilizada

3.5.2. Geometría del modelo geométrico

Para realizar el modelo se delimitaron las diferentes áreas establecidas en el predimensionamiento hidráulico, diferenciando la geometría en gavión, pantalla y río; así mismo se realizó el dibujo isométrico de las pantallas y gaviones, para lo cual se utilizó el software Civil 3d y ArcGIS Pro.

Para realizar la delimitación de la geometría del modelo se realizó los siguientes pasos:

• En el software Civil 3d se delimito el dominio del modelo mediante polígonos, en los cuales se diferenciaron las áreas de acuerdo a su cobertura y el tamaño de malla que se le quisiera dar, el archivo se exporto en formato DXF.

- Posterior a la delimitación el archivo, se importó el archivo DXF al software ArcGIS
 Pro, donde se procedió a crear una columna de atributos de acuerdo a las características de cada suelo.
- Finalmente se generó las pantallas de infiltración ubicadas y distanciadas según el predimensionamiento hidráulico, para ello se utilizó el software Civil 3d y mediante la herramienta de corredor se generaron las estructuras. Posterior a ello se importó al software Iber 3.3.0 y con ello generar las superficies.

Figura N° 25: Dibujo Isométrico de gaviones y pantallas de infiltración

3.5.3. Coeficiente de rugosidad

El coeficiente de rugosidad del río se determinó inicialmente mediante el método de Cowan descrito en el ítem 2.8 y los valores de la Tabla N° 5, los cuales se obtuvieron de acuerdo a la visita de campo y a las nuevas características geométricas que tendrá el cauce debido al encauzamiento y explanación, tal como se muestra en la Figura N° 23.

En la Tabla N° 23 se muestra los valores considerados para el cálculo del coeficiente de Manning por el método de Cowan. Para dichos valores se tuvo en cuenta que la simulación se realiza bajo un cauce explanado.

Consideraciones		Valor
Material del lecho: n ₀	Grava gruesa	0.028
Grado de irregularidades: n1	Suaves	0
Variaciones de la sección: n2	Graduales	0
Obstrucciones: n ₃	Pocas	0.01
Vegetación: n ₄	Pocas	0.005
Curvas:m	Pocas	1

Tabla N° 23: Valores considerados para el cálculo del coeficiente de Manning

Aplicando la formula del método de Cowan obtenemos el siguiente coeficiente de Manning para el río:

$$n = 0.04$$

Para la determinación de los valores de coeficiente de rugosidad de las pantallas y gaviones se consideraron los valores establecidos por Chow (2004) indicados en la Tabla N° 24.

En la Tabla N° 24 se muestra los valores del coeficiente de rugosidad utilizados en el modelamiento hidráulico.

Cobertura de suelo	Coeficiente de Manning
Cauce	0.04
Gavión	0.035
Pantalla	0.014

Tabla N° 24: Coeficiente de rugosidad considerados en el modelo hidráulico

3.5.4. Importación de geometría

Se importo la geometría de muros de gavión y pantallas de infiltración al software Iber V3.3.0 mediante el siguiente procedimiento:

- a) En el software Iber se guarda el modelo del proyecto mediante la siguiente herramienta Archivo/Guardar, insertando el nombre y lugar donde se guardará el archivo.
- b) Creado el modelo se procedió a importar el dxf mediante la siguiente herramienta *Archivo/Importar/DXF/Open*.
- c) Importado el archivo dxf se colapsa todo el modelo para eliminar líneas y puntos repetidos, para lo cual se realiza la siguiente herramienta *Geometría/Editar/Colpsar/Modelo*.
- d) Finalmente se genera la superficie NURBS mediante la siguiente herramienta Geometria/Crear/Superficie NURBS/Por contorno.

En la Figura N° 26 se muestra la superficie generada en Iber 2d.

Figura N° 26: Superficie NRBS generada en Iber 2d

3.5.5. Condiciones de contorno

Par asignar las condiciones de contorno de la información hidrodinámica, como es el hidrograma del modelamiento además de definir la entrada y salida del flujo, se realiza el siguiente procedimiento:

a) Para definir la entrada del flujo y asignar el hidrograma se realizó el siguiente procedimiento: *Datos/Hidrodinamica/Condiciones de contorno/Entrada 2D/Caudal total* en este último se añade el hidrograma o caudal a modelar para posterior mente mediante la herramienta de *Asignar* se selección la línea por donde ingresaría el flujo.

Análisis 2D	
Entrada 2D 💌	🎙 Caudal Total — 🗆 🗙
Entrada Caudal Total 💌	Caudal Total
Régimen Crítico/Subcrítico 🔻	140-
Caudal Total Tiempo [s] Q [m3/s]	120 + Q[m3/s]
Entrada Num 1	100-
	80 + +
	20-
	0 500 1000 1500 2000 Tiempo [s]
	Cerrar
<u>A</u> signar <u>E</u> ntidades ▼ <u>D</u> ibujar ▼ <u>D</u> esasignar ▼	
Cerrar	

Figura N° 27: Hidrograma de entrada para TR100

b) En la misma ventana se designó el límite por donde saldría el flujo, para ello se debe cambiar el análisis a *Salida 2D/Condición del flujo, Supercrítico-Critico* y por último asignar las líneas por donde saldría el flujo.

Figura N° 28: Condición de contorno de entrada y salida

3.5.6. Asignación de rugosidad del suelo

Para asignar el coeficiente de rugosidad de Manning del suelo, indicados en Tabla N° 24 a la geometría importada del modelo se utilizó la siguiente herramienta: *Datos/Rugosidad/Uso de suelo*, en esta ventana se crean nuevos valores de cobertura con la opción de *Nuevo uso de suelo* posterior a ello se asignan estos valores a cada superficie anteriormente creada, así como se muestra en la Figura N° 29.

Figura N° 29: Asignación rugosidad para cada tipo de cobertura

3.5.7. Generación de Malla de computo

La discretización del dominio computacional se realizó de acuerdo a las características topográficas y de interés, discretizando en las zonas del lecho y las pantallas se generó mallas no estructuradas, debido a su ajuste a la topografía del terreno. Sin embargo, se tuvo en cuenta zonas donde se requiera un mayor detalle por lo cual se generó un tamaño de malla más pequeño. Para llevar a cabo esta generación se realizó lo siguiente:

a) Para generar la malla de cómputo se utilizó la herramienta *Malla/No* estructurada/Asignar tamaño a superficies, en donde se procedió a asignar cada tamaño de malla cada superficie discretizada. La asignación del tamaño de malla a los siguientes componentes del modelo se indica en la Tabla N°25.
Cobertura de suelo 7	Γamaño de malla (m)
Cauce	2
Gavión	2
Pantalla	0.3

Tabla N° 25:Tamaño de malla de componentes del modelo

- b) Finalmente se generó la malla 2D no estructurada mediante la herramienta Malla/Generar Malla
- En la Figura N° 30 se aprecia la malla no estructura del modelo generado.

Figura N° 30: Malla computacional del modelo hidráulico

Con la finalidad de eficiencia computacional, en las zonas de menor interés, como las llanuras y alrededores, se utilizó una malla computacional de un mayor tamaño; sin embargo, en el cauce y en las pantallas de infiltración se asignó un tamaño de malla de 2m y 0.3m respectivamente.

3.5.8. Importación de DEM al modelo

Para que el mallado del modelo tenga las cotas de terreno se debe importar el DEM generado en formato TIFF, para lo cual se utiliza la siguiente herramienta: *Herramientas Iber/MDT/Importar MDT/Superficie* en la cual elegimos el DEM del proyecto.

En la figura Figura N° *31* se puede apreciar la malla computacional con las elevaciones del terreno proyectado.

Figura N° 31: Malla computacional y DEM explanado

3.5.9. Simulación del Modelo y Post-proceso

Antes de iniciar la simulación se debe configurar los parámetros de cálculo, para lo cual se debe establecer el tiempo de simulación, recursos del hardware para la simulación, número de Courant. Los valores se consideraron para las dos simulaciones realizadas (TR100 y caudal medio de marzo).

Los parámetros de cálculo del modelo se realizan utilizando la herramienta *Datos/Datos del problema* en dicha ventana en el apartado de *Parámetros de Tiempo* se introdujeron los datos de instante inicial, tiempo máximo de simulación e intervalo de resultados 2D, las cuales se muestran en la Tabla N° 26.

Parámetros de Tiempo	Tiempo (segundos)
Instante Inicial	0
Tiempo máximo de simulación	12000
Intervalo de resultados 2D	20

Tabla Nº 26:Parámetros de tiempo del modelo

En la misma ventana, en el apartado de General se ingresan los valores de número de procesadores, para el caso se utilizaron 7, número de Courant-Friedrichs-Levy (CFL), se recomienda su valor de 0.45, y el límite seco mojado de 0.01m, los cuales se pueden ver en la Tabla N° 27.

Tabla Nº 27:Parámetros generales del modelo

Parámetros	Valores
Número de procesadores	7
CFL	0.45
Límite seco-Mojado(m)	0.01

 En el apartado de Resultados, se elige las variables que se obtienen del modelo, para la finalidad del estudio se consideraron obtener los siguientes resultados: Calado, Velocidad, Cota del Agua, Número de Froude, Máximo calado, Máxima Velocidad y Máxima Cota de Agua.

En la Figura N° 32 se muestran los parámetros ingresados al modelo.

Figura Nº 32: Parámetros del modelo

- Por último, para iniciar con la simulación del modelo hidráulico nos dirigimos a la herramienta Calcular/Calcular(F5), e inmediatamente aparece una ventana donde se podrá visualizar el caudal de ingreso y el tiempo de simulación.
- Culminado el tiempo de cómputo de la simulación nos dirigimos a la herramienta de postproceso, en donde podremos visualizar los resultados del modelamiento utilizando la herramienta Ventana/Ver resultados del cual podremos extraer los resultados de velocidad, tirante, entre otros.

3.5.10. Calibración del modelo hidráulico

La calibración del modelo consistió en identificar y validar el coeficiente de Manning calculado en el ítem 3.5.3. Se realizo simulaciones preliminares con la topografía actual del cauce (en condiciones naturales), para contrastar el resultado del tirante y caudal observado en campo.

Para llevar a cabo esta tarea se realizó el siguiente procedimiento:

Mediante un trabajo de campo se realizó el aforo en 1 sección del río con un correntómetro, con los cuales se determinó el caudal y tirante promedio del río aforado mediante el método de vadeo. En la Tabla Nº 28 se muestran los resultados del aforo realizado.

Tabla N° 28: Caudal aforado en la progresiva 1+000ParámetrosValorUnidad

Tirante promedio	0.21	m
Caudal	0.92	m3/s

En la figura Figura N° 33 se muestra el aforo realizado en la progresiva 1+000 por el método de vadeo con un correntómetro.

Figura N° 33: Aforo de caudal Prog.1+000 - Método de vadeo Fuente: (Consorcio HC&A - Aquaters, 2023)

Con los datos tomados en campo, se procedió a realizar un modelamiento en condiciones naturales, es decir sin estructuras en el cauce, y se simulo el caudal aforado en campo (0.92 m3/s), además se consideró un coeficiente de Manning de un valor de 0.045, que es el recomendado para este tipo de cauces, como lo indica la Tabla N° 6.

- Posterior a realizar la simulación en el cauce, se obtuvo el tirante simulado el cual resulto 0.216m siendo superior en un 2.8 % al tirante medido en campo, que es de 0.21m.
- Este porcentaje de error es un valor aceptable, lo cual indica que los parámetros (tamaño de malla, numero de Manning, numero de courant,etc) considerados en el modelo son los adecuados.
- Si bien el número de Manning calibrado se realizó con el valor de 0.045, se debe tener en cuenta que la sección del cauce y su cobertura serán modificadas por la implementación de pantallas de infiltración, por lo cual el Manning considerado en el modelo definitivo es de 0.04 así como se indica en la Tabla N° 24.

IV. RESULTADOS Y DISCUSIÓN

4.1. Predimensionamiento hidráulico

Del predimensionamiento hidráulico se pudo obtener como resultado lo siguiente:

a) Periodo de retorno

Se ha determinado el periodo de retorno para el predimensionamiento de pantallas de infiltración, empleando criterios similares a los aplicados en estructuras como puentes y defensas ribereñas. Además, se han tenido en cuenta las recomendaciones de la Autoridad Nacional del Agua (ANA) para el diseño de bocatomas. Como resultado de este análisis, se ha establecido un periodo de retorno de 100 años.

b) Ancho estable

.

Se llevó a cabo el cálculo del ancho estable utilizando diversos métodos, tales como Simons - Henderson, Manning Strickler, Blench – Altunin y Pettis. Después de evaluar los resultados, se determinó que el ancho estable del cauce sea 40 metros. Este valor no solo regula el ancho del cauce, sino que también influye en la longitud final de las pantallas de infiltración.

c) Estabilidad del fondo del cauce

Se realizo la estabilización del fondo del cauce, mediante su explanación y perfilado, para lo cual se determinó como pendiente el valor de 1.45%

d) Pantalla de infiltración

Se determino la altura sobre el lecho del cauce y la distancia entre las pantallas de infiltración, obteniendo valores de 1 metro y 100 metros, respectivamente. Además, la primera pantalla se ubicó a 170 metros aguas debajo del puente vehicular Inca Moya, resultando un total de 16 pantallas de infiltración

e) Estructuras de encauzamiento

Se establecieron los muros de gavión como estructuras de encauzamiento desde el Km 0+260 al 1+780, con una altura de 3 metros. Estos muros se sitúan en ambas márgenes del río, protegiendo las pantallas de infiltración y preservando el ancho del río establecido.

4.2. Modelamiento hidráulico

En esta sección se describe y analiza los resultados del modelamiento hidráulico de las pantallas de infiltración, para caudal medio de marzo y para un período de retorno de 100 años.

4.2.1. Resultados para caudal medio de marzo

A continuación, analizamos los resultados de las velocidades y tirante en todo el tramo de estudio, con las 16 pantallas de infiltración instaladas, obtenidos de la simulación para un caudal de 15.77 m3/s.

- a) Resultado Velocidad
- Respecto al comportamiento de las velocidades con las pantallas de infiltración se pude ver que los mayores valores se encuentran ubicadas inmediatamente después de cada pantalla, sin embargo, las menores velocidades se encuentran ubicadas aguas arriba de las mismas.
- Como se describió líneas arriba, las velocidades más altas se dan aguas debajo de cada pantalla, estas llegan a tener valores entre 3 a 4.02 m/s, extendiéndose por una longitud de 1.5m. Por otro lado, las velocidades más bajas rondan entre 0.2 a 0.5m/s

estas se extienden aproximadamente por una longitud de 35m, aguas arriba de cada pantalla.

- Entre las pantallas, parte central, los valores de velocidad rondan 0.5 a 1.5m/s, esto por una longitud de 50m, casi llegando a la pantalla ubicada aguas arriba.
- En la pantalla N°15, aguas abajo, se puede apreciar que las velocidades de 1.5 a 2.5m/s se extienden por una longitud de 23m, valor mayor respecto al resto de situaciones en las que se extienden aproximadamente 10m.
- b) Resultado Tirante
- Inversamente a los resultados de velocidad, los valores mayores de tirante se encuentran ubicadas aguas arriba de cada pantalla, sin embargo, los valores más bajos se encuentran ubicados inmediatamente después de la caída de cada pantalla.
- Los tirantes de valores más altos se encuentran entre 1.0 a 1.44m, estos se ubican aguas arriba de cada pantalla extendiéndose por una longitud de 23m aproximadamente.
- Los tirantes de que se encuentran ubicadas aguas debajo de la pantalla se encuentran entre 0.1 a 0.2m, este se extiende por una longitud de 3.5m aproximadamente.
- Entre las pantallas, la parte central presenta valores de tirantes que rondan entre 0.4 a 0.7m, estos distribuidos uniformemente en el ancho del cauce.
- El modelamiento arrojo que la carga de agua sobre las pantallas se encuentra entre 0.32 a 0.36m, valores cercanos a los calculados realizados en el ítem 3.4.5.1

Los resultados del modelamiento de velocidad y tirante para el caudal promedio de marzo de 15.77 m3/s se muestran en las Figura N° 34 y Figura N° 35.

Figura N° 34: Resultados de modelamiento para caudal promedio de marzo - Velocidad

Figura N° 35: Resultados de modelamiento para caudal promedio de marzo - Tirante

4.2.2. Resultados para caudal TR100

A continuación, analizamos los resultados de las velocidades y tirante en todo el tramo de estudio, con las 16 pantallas de infiltración instaladas, explanación y encauzamiento del cauce, obtenidos de la simulación para un caudal de 123.72 m3/s.

- a) Resultados de Velocidad
 - En el puente vehicular Inca Moya, específicamente en el pilar derecho se presentan mayores velocidades respecto al pilar izquierdo, encontrándose entre 3.5 a 4.5m/s y 1.5 a 2.5 m/s respectivamente.
 - Las velocidades máximas rondan los valores de 4.5 a 6.23 m/s, abarcando una longitud aproximada de 15m aguas debajo de cada pantalla. Estas altas velocidades forman un flujo supercrítico en el río. Su distribución es uniforme en todo el ancho del cauce. Por otro lado, las velocidades bajas se encuentran ubicadas aguas arriba de cada pantalla, presenta una distribución irregular, rondando los valores más bajo entre 0.2 a 1.5 m/s.
 - Entre las pantallas, en su parte central se pueden apreciar valores de velocidad que rondan entre 1.5 a 2.5 m/s, estas velocidades se extienden por una longitud de 72m aproximadamente.
 - La pantalla N°15, es la pantalla que presenta una longitud más extensa de velocidades altas, esta se extiende hasta 20m aguas debajo de la pantalla.
- b) Resultados de Tirante
 - Del ráster de tirantes se puede observar que el remanso de la primera pantalla no llega a afectar al puente vehicular Inca Moya, ya que mantiene alturas 4m por debajo de la losa del puente.
 - Los tirantes entre pantallas alcanzan su umbral máximo antes de cada pantalla, sin embargo, este valor es el más bajo inmediatamente después de la caída de cada pantalla.

- Los tirantes de 2 a 2.59m se encuentran aguas arriba de las pantallas, aproximadamente a 24m. Sin embargo, en la parte central del cauce, se puede apreciar tirantes que rondan entre 1.5 a 2m.
- Los tirantes más bajos se encuentran entre 0.2 a 0.6m, estos se encuentran aguas debajo de cada pantalla, llegando a extenderse aproximadamente a una longitud de 6m.
- La pantalla N°15 presenta tirantes altas aguas arriba de la misma, estas se extienden una longitud de 40m aproximadamente.
- El modelamiento arrojo que el tirante aguas arriba de las pantallas encuentra entre 2.21 a 2.41m, valores muy cercanos al calculado en el ítem 3.4.5.4.

Los resultados del modelamiento de tirante y velocidad para TR100 se muestran en las Figura N° 36 y Figura N° 37.

Figura N° 36: Resultados de modelamiento para TR100 – Tirante

Figura N° 37: Resultados de modelamiento para TR100 - Velocidad

V. CONCLUSIONES

- A través del predimensionamiento hidráulico, se establecieron los criterios de diseño para las pantallas de infiltración, determinando su longitud, altura sobre el cauce y distancia entre ellas, estos parámetros se fijaron en 40 metros, 1 metro y 100 metros, respectivamente. En total, se ubicaron 16 pantallas de infiltración, las cuales se extienden desde el Km 0+220 hasta el Km 1+720, con la capacidad de retener un volumen de 41,329 metros cúbicos de agua durante el mes de marzo.
- De los modelamientos hidráulicos, se concluye que la implementación de las pantallas de infiltración en el río, genera pequeños embalses que reducen las velocidades del agua y a su vez elevan los tirantes, lo que propicia la infiltración del cauce y contribuye a la de recarga de acuíferos.
- La ubicación de la primera pantalla se ubicó a 170 metros aguas abajo del puente Inca Moya, en la progresiva 0+220, para evitar modificar el comportamiento del flujo en el puente vehicular Inca Moya.
- Se concluye que la estructura de encauzamiento es del tipo muro de gavión el cual tiene una altura de 3m en todo su recorrido y se encuentran dispuestas en ambas márgenes del cauce, iniciando desde la progresiva 0+260 hasta la progresiva 1+780.
- La aplicación del modelamiento hidráulico para un periodo de retorno de 100 años confirma que la altura de las estructuras de encauzamiento, establecida en 3 metros, resulta efectiva en la prevención del desbordamiento del río.

 El cauce originalmente presentaba irregularidades y vegetación, esto fue modificado mediante la explanación del tramo de estudio y la implementación de pantallas de infiltración y muros de gavión, siendo un proceso crucial para el proyecto. Esta acción resultó en la necesidad de ajustar de manera conservadora el valor calibrado inicialmente del coeficiente de Manning, de 0.045 a un valor de 0.040, este último valor refleja las nuevas condiciones del cauce. Esto resalta la importancia de considerar la adaptación del cauce a las necesidades del proyecto

VI. RECOMENDACIONES

- Se recomienda que el presente estudio se complemente con un modelamiento matemático de erosión y transporte de sedimentos. Este modelamiento permitirá verificar las zonas de erosión y sedimentación en el área de estudio, lo que a su vez facilitará la identificación de las áreas que podrían requerir mantenimiento o protección. Esta información es crítica para garantizar la eficiencia a largo plazo de las pantallas de infiltración.
- Se sugiere la implementación de estaciones de aforo tanto en la entrada como en la salida del tramo de estudio. Estas estaciones serán fundamentales para monitorear de manera continua el volumen infiltrado en la zona de estudio. La recopilación constante de datos permitirá evaluar con precisión el rendimiento de las pantallas de infiltración y su influencia en el ciclo hidrológico local.
- Se recomienda llevar a cabo un monitoreo de los niveles de acuífero antes y después de la implementación de las pantallas de infiltración. Esto ayudará a determinar los niveles de recuperación que pueden lograrse con las pantallas y permitirá evaluar su contribución a la recarga del acuífero.
- El modelamiento para un caudal TR100 dio como resultado velocidades erosivas aguas abajo de cada pantalla, producto de la caída generada por las mismas, estas oscilan entre 4.0 y 6.2 m/s, y se extienden por aproximadamente 15 metros. Para prevenir la erosión causada por estas altas velocidades y garantizar la integridad de las pantallas en el cauce se recomienda la colocación de protección, como el tipo enrocado en todo el lecho del cauce.

- Se recomienda que la altura de las pantallas debajo del lecho del cauce se determine considerando los aspectos hidrogeológicos y geotécnicos del tramo de estudio, buscando que esta altura preserve la seguridad de las pantallas y asimismo cumpla lo mayores beneficios para la recarga de acuíferos.
- Se recomienda que en posteriores investigaciones se determine la recarga del acuífero producida por efectos de las pantallas de infiltración establecidas en el río Lurín.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Alegría, P. (2019). ANÁLISIS HIDRÁULICO ESTRUCTURAL PARA LAS PANTALLAS
 DE INFILTRACIÓN, CASO: PLANTA LA ATARJEA LIMA-2019. Lima:
 UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA.
- ANA. (2009). Diagnostico Situacional de la Recarga de Acuíferos.
- ANA. (2010). CRITERIOS DE DISEÑOS DE OBRAS PARA FORMULACION DE PROYECTO HIDRAULICOS MULTISECTORIALES Y DE AFIANZAMIENTO HIDRICO.
- ANA. (2010). TRATAMIENTO DE CAUCE DEL RIO PARA EL CONTROL DE INUNDACIONES EN LA CUENCA CHICAMA.
- Bladé, E. C.-C. (2014). *Modelización bidimensional del flujo de lámina libre en aguas poco profundas.*
- Chow, V. T. (2004). *HIDRÁULICA DE CANALES ABIERTOS*. Bogotá: Martha Edna Suárez R.
- Consorcio HC&A Aquaters. (2023). Estudio Hidrológico. Cieneguilla.
- Consorcio HC&A Aquaters. (2023). Estudio Topográfico. Cieneguilla.
- Cueva M., C. J. (2018). El modelo iber como herramienta docente de ayuda al aprendizaje y analisis de fenómenos de flujo bidimensionales. Mexico: Asociación Mexicana de Hidráulica. Obtenido de

https://educacioneningenieria.org/index.php/edi/article/view/1126/1006.

- Felices, A. R. (1998). HIDRÁULICA FLUVIAL.
- Francisco, L. (2005). *Dimensionamiento y optimización de obras Hidráulicas*. España: Colegio I.C.C.P.
- INGEMMET. (2021). Hidrogeología de la cuenca del río Lurín.
- Mery, H. (2013). HIDRÁULICA APLICADA AL DISEÑO DE OBRAS.
- Ministerio de Transportes y Comunicaciones. (2014). MANUAL DE CARRETERAS: HIDROLOGÍA, HIDRÁULICA Y DRENAJE.

- Rocha, A. (1998). *INTRODUCCIÓN A LA HIDRÁULICA FLUVIAL*. Lima: Facultad de Ingeniería Civil Universidad Nacional de Ingenería.
- Terán, R. (1998). *DISEÑO Y CONSTRUCCIÓN DE DEFENSAS RIBEREÑAS*. Lima: Escuela Superior de Administración de Aguas "Charles Sutton".
- Villón, M. (2005). Diseño de Estructuras Hidráulicas. Lima: Villón.

VIII. ANEXOS

ANEXO 1: Información de precipitaciones de las estaciones consideradas en el estudio hidrológico

Estación:	Antioquia - 156100					Longitud:		-12.07	''W''		Dpto.:	Lima	
Parámetro:	Precip	oitación	total m	ensual	(mm)	Latit	ud:	-76.53	''S''		Prov.:	Huaro	ochiri
						Altitu	ıd:	1422	m.s.n	.m.	Dist.:	Antio	quia
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1965	S/D	12.0	47.5	0.7	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	S/D
1966	5.4	0.0	33.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.5
1967	57.8	178.2	35.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	272.6
1968	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
1969	0.0	52.0	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.1	86.7
1970	66.5	1.5	7.0	3.9	0.0	0.0	0.0	0.0	3.8	0.0	0.0	11.0	93.7
1971	6.2	9.9	18.1	1.3	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.3	36.9
1972	8.9	27.9	69.8	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	32.1	138.9
1973	67.2	7.2	39.6	3.8	0.1	0.0	0.0	0.0	2.6	0.0	0.1	3.1	123.7
1974	7.5	25.4	24.5	1.3	0.0	0.2	0.0	0.8	0.0	0.0	0.0	2.3	62.0
1975	13.9	28.4	38.6	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	9.0	90.7
1976	29.5	50.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	84.6
1977	11.3	103.0	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	2.0	123.8
1978	3.2	2.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.9
1979	0.0	1.1	178.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	179.1
1980	0.0	0.0	14.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.7	0.0	16.3
1981	0.0	3.9	52.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	56.6
1982	0.9	29.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.1
1983	19.3	19.6	37.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.0
1984	0.0	27.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	5.5	2.0	36.2
1985	S/D	S/D	S/D	S/D	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.5	S/D
1986	13.9	3.7	10.7	0.9	1.2	0.0	0.0	0.0	0.0	0.0	0.0	18.6	49.0
1987	18.0	0.2	16.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.5
1988	16.3	19.9	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	55.8	95.3
1989	13.5	69.9	9.3	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	94.0
1990	0.1	0.0	4.5	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.4	49.2	55.6
1991	26.2	4.0	20.6	1.6	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	52.7
1992	0.0	9.2	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.5
1993	4.3	18.6	50.5	8.4	0.0	0.0	0.0	0.0	0.0	0.0	1.7	3.9	87.4
1994	39.3	24.3	20.9	3.9	0.0	0.0	0.0	0.0	0.1	0.0	0.0	3.6	92.1
1995	8.8	0.4	20.4	2.1	0.0	0.0	0.0	0.0	0.3	0.4	11.3	3.7	47.4
1996	14.9	31.5	24.7	7.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.4
1997	5.6	6.0	0.3	0.0	0.0	0.0	0.0	0.1	0.0	0.4	4.9	30.3	47.6
1998	36.4	52.9	49.8	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.1	152.6
1999	18.7	102.1	13.9	1.6	2.8	0.0	0.0	0.0	0.0	3.3	0.5	1.2	144.1
2000	23.1	48.6	10.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4	86.6

Tabla N° 29: Registro histórico de precipitaciones – Estación Antioquia

Registro Histórico - Estación Antioquia

Estación:	Antioquia - 156100					Long	itud:	-12.07	''W''		Dpto.:	Lima	
Parámetro:	Precip	oitación	total m	ensual	(mm)	Latit	ud:	-76.53	''S''		Prov.:	Huaro	ochiri
						Altitu	ıd:	1422	m.s.n	.m.	Dist.:	Antio	quia
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2001	37.3	19.4	14.7	3.3	0.0	0.0	0.0	0.0	0.0	0.0	8.6	0.0	83.3
2002	1.9	37.6	26.7	5.1	0.1	0.0	0.0	0.1	0.0	1.6	1.0	1.8	75.9
2003	2.7	12.7	7.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.5	46.8
2004	0.0	31.9	4.4	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	39.9
2005	1.1	2.4	0.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	5.1
2006	23.1	25.3	14.6	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	17.1	83.3
2007	4.4	12.0	23.8	8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	50.3
2008	16.7	28.5	67.8	0.6	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	114.8
2009	16.7	46.9	46.9	13.4	0.0	0.0	0.0	0.0	0.0	0.7	1.3	0.1	126.0
2010	5.8	10.2	11.7	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.4	40.7
2011	S/D	7.2	1.2	1.2	0.0	0.0	S/D	0.0	0.0	0.0	1.7	28.2	S/D
2012	12.5	15.2	33.6	S/D	0.0	0.0	0.0	0.0	0.0	3.4	1.2	1.0	S/D
2013	0.6	37.6	17.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	3.0	58.9
2014	13.9	4.7	44.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	0.0	10.9	75.4
2015	20.6	14.6	79.8	24.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	143.5
2016	2.9	18.5	14.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.2	57.6
2017	36.6	105.8	102.0	5.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	250.0
2018	5.2	8.8	14.5	26.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	54.9
2019	21.8	27.0	14.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	9.0	75.4
2020	26.5	13.5	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	14.8	26.4	26.3	2.8	0.2	0.0	0.0	0.0	0.1	0.3	0.9	7.0	79.7
Des. Est.	16.4	32.8	30.7	5.6	0.6	0.0	0.0	0.1	0.6	0.7	2.1	12.0	54.6
Máximo	67.2	178.2	178.0	26.3	3.3	0.2	0.2	0.8	3.8	3.4	11.3	55.8	272.6
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
Nº Datos	53	55	54	53	55	55	54	55	55	55	55	55	51
S/D: Sin Dato													
FUENTE: SEN	IAMHI												

Registro Histórico - Estación Antioquia

Tabla N° 30: Registro histórico de precipitaciones – Estación Campo de Marte

Estación: Parámetro:	Camp Preciț	o de M oitación	arte - 00 total m	06617 Iensual	(mm)	Long Latit Altitu	itud: ud: ıd:	-12.07 -77.04 123	''W'' ''S'' m.s.n	.m.	Dpto.: Prov.: Dist.:	Lima Lima Jesús	María
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2000	0.8	0.2	0.0	0.0	0.0	2.1	1.5	1.9	1.3	0.0	0.0	0.2	8.0
2001	0.3	1.5	0.0	0.2	0.0	0.8	2.1	2.0	0.7	0.0	0.0	0.4	8.0

Registro Histórico - Estación Campo de Marte

Estación:	Campo de Marte - 006617				Long	itud:	-12.07	''W''		Dpto.:	Lima		
Parámetro:	Precip	itación	total m	ensual	(mm)	Latit	ud:	-77.04	''S''		Prov.:	Lima	
						Altitu	ıd:	123	m.s.n	.m.	Dist.:	Jesús	María
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2002	0.0	1.7	0.0	0.0	0.0	1.4	2.5	2.4	0.8	0.2	1.4	0.0	10.4
2003	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.7	1.2	0.0	0.0	0.2	4.5
2004	0.0	0.0	0.1	0.0	0.0	1.7	0.0	1.0	S/D	0.0	0.2	0.0	S/D
2005	0.4	0.0	0.8	0.0	0.5	0.0	0.5	0.2	0.9	0.0	0.1	0.0	3.4
2006	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.3	0.2	0.4	0.2	0.3	2.9
2007	0.3	0.0	0.6	0.0	0.0	0.3	3.4	2.0	0.5	0.4	0.2	0.0	7.7
2008	0.0	0.0	0.4	0.0	0.7	2.1	0.0	2.4	3.4	0.4	0.0	0.0	9.4
2009	0.0	0.1	0.2	0.0	0.0	1.3	5.2	1.1	1.1	0.4	2.7	3.2	15.3
2010	4.7	0.0	0.0	0.0	0.0	0.0	0.6	1.0	0.5	0.4	0.0	0.0	7.2
2011	0.5	0.0	0.0	0.0	0.0	1.1	4.7	3.2	0.4	0.3	0.0	0.0	10.2
2012	0.0	0.9	0.1	0.0	0.8	0.3	0.0	1.5	0.4	2.1	0.0	1.1	7.2
2013	0.0	0.2	0.0	0.0	0.0	1.0	2.8	3.2	1.1	0.0	0.3	0.0	8.6
2014	0.8	2.0	0.0	0.0	0.0	1.4	3.1	1.9	3.0	0.3	0.9	0.0	13.4
2015	0.0	0.0	1.8	0.5	0.3	0.1	1.6	S/D	S/D	1.0	1.7	0.8	S/D
2016	3.2	0.3	0.0	0.0	0.0	0.7	1.3	1.5	0.3	0.2	0.0	0.0	7.5
2017	0.8	1.5	3.3	0.5	0.3	0.9	0.0	1.0	2.2	0.0	0.6	0.2	11.3
2018	0.3	1.2	0.2	0.5	0.9	5.6	6.3	2.5	2.1	1.6	0.2	0.0	21.4
2019	1.0	0.0	0.3	0.4	4.4	5.7	3.9	4.7	3.8	1.3	0.6	0.2	26.3
2020	0.2	0.0	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	0.6	0.5	0.4	0.1	0.4	1.3	2.1	1.9	1.3	0.5	0.5	0.3	10.2
Des. Est.	1.2	0.7	0.8	0.2	1.0	1.6	1.9	1.0	1.1	0.6	0.7	0.7	5.9
Máximo	4.7	2.0	3.3	0.5	4.4	5.7	6.3	4.7	3.8	2.1	2.7	3.2	26.3
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	2.9
Nº Datos	21	21	20	20	20	20	20	19	18	20	20	20	18
S/D: Sin Dato													
FUENTE: SEN	JAMHI												

Registro Histórico - Estación Campo de Marte

Tabla N° 31: Registro histórico de precipitaciones
– Estación Chalilla

				0									
Estación:	Chalil	la - 155	119			Long	itud:	-11.93	''W''		Dpto.:	Lima	
Parámetro:	Precipitación total mensual (mm				(mm)	Latit	ud:	-76.33	"S"		Prov.:	Huaro	ochiri
						Altitud: 3975		m.s.n.m.		Dist.:	San Damian		
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1965	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1966	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D

Registro Histórico - Estación Chalilla

Estación:	Chalilla - 155119					Longitud:		-11.93	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación	total m	ensual	(mm)	Latit	ud:	-76.33	"S"		Prov.:	Huard	chiri
						Altitu	ıd:	3975	m.s.n	.m.	Dist.:	San D	amian
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1967	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1968	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1969	S/D	65.9	96.4	31.2	0.0	0.0	0.0	0.0	0.0	25.0	17.5	S/D	S/D
1970	142.8	18.4	74.7	3.1	4.9	0.0	0.0	16.7	5.8	2.0	16.3	82.6	367.3
1971	81.0	134.0	182.4	42.3	3.1	0.0	0.0	2.7	0.0	7.2	6.8	48.7	508.2
1972	133.2	101.2	255.6	46.2	0.0	0.0	0.0	0.0	0.9	26.0	53.1	108.9	725.1
1973	135.9	73.9	183.0	23.2	4.0	0.0	0.0	1.3	11.6	19.7	7.5	73.0	533.1
1974	94.6	148.7	128.1	17.0	0.0	0.0	0.0	0.0	0.0	0.0	28.8	11.9	429.1
1975	55.7	82.4	208.9	13.1	0.8	0.4	0.0	0.0	0.5	1.1	17.2	40.4	420.5
1976	20.2	160.3	76.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.3	307.2
1977	10.9	129.6	23.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	51.1	1.3	216.2
1978	95.9	7.6	17.0	34.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.6	196.8
1979	62.7	61.0	164.3	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	14.7	302.9
1980	6.4	65.9	37.9	0.0	0.0	0.0	0.0	0.0	8.1	0.0	18.3	14.2	150.8
1981	91.6	43.7	135.5	22.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	293.3
1982	172.2	117.1	128.9	0.0	0.0	0.0	0.0	0.0	0.0	32.5	4.8	0.0	455.5
1983	1.1	16.5	146.9	7.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	174.5
1984	49.7	179.1	234.8	113.6	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	76.9	87.8	130.9	22.2	0.9	0.0	0.0	1.4	1.8	7.6	14.8	35.0	362.9
Des. Est.	53.9	53.2	72.9	29.1	1.7	0.1	0.1	4.3	3.7	11.8	17.6	34.8	161.4
Máximo	172.2	179.1	255.6	113.6	4.9	0.4	0.2	16.7	11.6	32.5	53.1	108.9	725.1
Mínimo	1.1	7.6	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150.8
Nº Datos	15	16	16	16	15	15	15	15	15	15	15	14	14

Registro Histórico - Estación Chalilla

S/D: Sin Dato

FUENTE: SENAMHI

Tabla N° 32: Registro histórico de precipitaciones
– Estación Chaute

Registro Histórico - Estación Chaute

Estación: Parámetro:	Chaute - 151206 Precipitación total mensual (mm) Ene, Feb. Mar. Abr. May.					Longitud: Latitud: Altitud:		-11.94 "W" -76.5 "S" 2215 m.s.n.m.		Dpto.: Prov.: Dist.:	Lima Huaroo San Ba	chiri artolome	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1988	S/D	89.7	76.2	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.8	S/D
1989	58.3	215.9	145.5	0.9	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	422.5
1990	14.0	5.9	49.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.0	110.4
1991	5.7	29.7	101.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	140.7
1992	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	8.8

Registro Histórico - Estación Chaute

Estación:	Chaute - 151206					Longitud:		-11.94	''W''		Dpto.:	Lima	
Parámetro:	Precip	oitación	total m	ensual	(mm)	Latitud:		-76.5	''S''	"S"		Huaroo	chiri
						Altitu	ıd:	2215	m.s.n	.m.	Dist.:	San Ba	rtolome
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1993	11.8	50.9	125.0	14.8	0.0	0.0	0.0	0.0	0.0	0.0	2.6	29.3	234.4
1994	94.7	115.4	33.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	5.7	33.5	285.2
1995	32.5	40.1	39.8	7.4	0.0	0.0	0.0	0.0	0.0	1.5	0.0	7.0	128.3
Promedio	31.7	68.5	71.3	4.9	0.0	0.0	0.0	0.0	0.0	0.4	1.0	20.4	190.0
Des. Est.	33.6	71.3	49.7	6.2	0.0	0.0	0.0	0.0	0.0	0.8	2.1	18.6	135.7
Máximo	94.7	215.9	145.5	14.8	0.0	0.0	0.0	0.0	0.0	1.9	5.7	44.8	422.5
Mínimo	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.8
Nº Datos	7	8	8	8	8	8	8	8	8	8	8	8	7
S/D: Sin Dato													

FUENTE: SENAMHI

Tabla N° 33: Registro histórico de precipitaciones
– Estación Chosica

Registro Histórico - Estación Chosica

Estación:	Chosic	ca - 151	209			Long	itud:	-11.93	''W''		Dpto.:	Lima	
Parámetro:	Precip	oitación	total n	nensual	(mm)	Latit	ud:	-76.69	''S''		Prov.:	Lima	
						Altitu	ıd:	867	m.s.n	.m.	Dist.:	Lurig	ancho
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1989	S/D	S/D	9.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1990	4.6	0.0	4.7	0.0	0.9	0.1	0.0	0.0	0.0	0.3	1.0	3.2	14.8
1991	0.3	2.9	7.8	1.0	0.5	0.0	0.0	0.0	0.0	1.0	0.0	0.5	14.0
1992	0.3	2.9	1.5	0.3	0.8	S/D	0.0	0.4	0.0	0.0	0.0	1.4	S/D
1993	0.0	1.3	5.5	2.8	0.0	0.0	0.0	0.0	0.2	0.0	1.8	3.0	14.6
1994	22.7	9.7	5.0	2.5	0.4	0.0	0.0	0.0	1.0	0.0	0.4	2.3	44.0
1995	9.5	0.5	2.5	2.0	2.2	0.0	0.0	0.0	0.5	0.3	2.1	0.0	19.6
1996	6.0	8.0	18.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	32.8
1997	0.9	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1998	S/D	12.9	5.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1999	7.5	32.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	39.6
2000	20.7	8.1	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.0
2001	6.2	7.2	10.7	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	25.7
2002	1.6	30.7	1.6	0.0	0.0	0.0	0.6	0.0	0.5	0.0	0.0	0.0	35.0
2003	1.5	10.3	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.8	21.5
2004	0.8	0.6	1.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	5.5
2005	2.3	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	5.9
2006	9.4	9.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	29.3
2007	2.2	3.0	2.8	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.7
2008	7.3	12.1	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.9

Estación:	Chosic	ca - 151	209			Long	itud:	-11.93	''W''		Dpto.:	Lima	
Parámetro:	Precip	oitación	total n	nensual	(mm)	Latit	ud:	-76.69	''S''		Prov.:	Lima	
						Altitu	ıd:	867	m.s.n	.m.	Dist.:	Lurig	ancho
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2009	8.2	24.3	17.8	1.6	0.0	S/D	0.0	0.0	0.0	0.0	0.0	0.0	S/D
2010	0.0	0.3	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
2011	6.7	7.0	1.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	2.5	5.1	23.8
2012	8.4	12.8	4.0	37.4	0.0	0.0	0.0	0.0	0.0	1.5	0.5	1.1	65.7
2013	0.0	2.5	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	7.1
2014	5.8	2.8	12.5	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	24.1
2015	2.5	15.1	41.8	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	61.5
2016	1.0	6.7	0.5	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	12.6
2017	51.8	14.3	40.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	106.5
2018	8.8	14.7	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	24.4
2019	4.3	3.8	0.0	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	0.0	10.0
2020	5.9	3.8	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	S/D	S/D
2021	6.2	3.2	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.3
Promedio	6.9	8.5	7.0	2.1	0.2	0.0	0.0	0.0	0.1	0.1	0.3	1.1	26.6
Des. Est.	9.9	8.3	10.3	6.8	0.4	0.0	0.1	0.1	0.4	0.3	0.7	1.7	22.4
Máximo	51.8	32.1	41.8	37.4	2.2	0.1	0.6	0.4	1.9	1.5	2.5	6.8	106.5
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
Nº Datos	31	31	31	31	31	29	31	31	31	32	32	31	27
S/D: Sin Dato													

Registro Histórico - Estación Chosica

FUENTE: SENAMHI

Tabla N° 34: Registro histórico de precipitaciones– Estación Huarochiri

Registro Histórico - Estación Huarochiri

Estación:	Huaro	chiri - (000633			Long	itud:	-12.14	''W''		Dpto.:	Lima	
Parámetro:	Precip	itación	total m	ensual	(mm)	Latit	ud:	-76.23	''S''		Prov.:	Huaro	ochiri
						Altitu	ıd:	3120	m.s.n	.m.	Dist.:	Huaro	ochiri
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	25.2	76.7	91.0	34.5	2.0	0.0	0.0	0.0	0.0	7.0	8.8	30.7	275.9
1965	76.2	81.7	45.7	0.0	0.0	0.0	0.0	0.0	6.4	0.0	0.0	21.2	231.2
1966	65.3	52.4	74.2	17.9	2.4	0.0	0.0	0.0	0.0	92.4	19.6	21.4	345.6
1967	106.0	155.4	133.0	16.4	18.6	0.0	0.0	0.0	3.7	34.9	14.2	9.6	491.8
1968	47.8	22.0	38.0	10.0	15.6	0.0	0.0	0.0	0.0	6.6	9.2	11.2	160.4
1969	17.5	68.2	125.6	12.6	0.0	0.0	0.0	0.0	0.0	6.2	25.8	95.6	351.5
1970	102.8	29.8	26.7	28.2	7.8	0.0	0.0	0.0	8.4	6.2	5.6	21.2	236.7
1971	25.0	75.2	108.4	15.3	0.0	0.0	0.0	0.0	0.0	0.4	0.0	29.0	253.3
1972	49.0	93.2	154.8	11.8	2.0	0.0	0.0	0.0	0.0	7.8	3.0	25.2	346.8

Estación:	Huaro	chiri - ()00633			Long	itud:	-12.14	''W''		Dpto.:	Lima	
Parámetro:	Precip	itación	total m	ensual	(mm)	Latit	ud:	-76.23	''S''		Prov.:	Huard	chiri
						Altit	ud:	3120	m.s.n	.m.	Dist.:	Huaro	chiri
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1973	85.6	39.4	99.7	54.6	0.0	0.0	0.0	2.6	11.4	9.4	0.0	28.6	331.3
1974	57.6	95.8	147.6	29.6	0.0	0.0	0.0	0.0	3.8	0.0	2.8	16.2	353.4
1975	24.0	28.2	130.2	22.4	5.6	3.6	0.0	0.0	2.8	0.0	10.2	54.4	281.4
1976	106.4	91.0	65.2	15.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	10.0	288.6
1977	39.6	96.8	110.8	2.2	0.0	0.0	0.0	0.0	0.0	0.0	10.0	5.2	264.6
1978	29.4	39.2	37.4	38.4	0.0	0.0	0.0	0.0	2.0	1.0	2.2	31.3	180.9
1979	11.6	73.4	88.4	52.2	0.0	0.0	0.0	0.0	0.0	2.2	0.0	5.6	233.4
1980	88.7	3.2	48.4	S/D	0.0	0.0	0.0	0.0	4.2	5.0	0.0	0.0	S/D
1981	S/D	S/D	S/D	5.0	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1982	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1983	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1984	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	S/D
1985	13.2	58.4	74.8	16.6	4.8	0.0	0.0	0.0	0.0	0.0	2.0	30.0	199.8
1986	140.2	96.4	57.3	121.2	18.6	0.0	0.0	0.0	0.0	0.0	12.4	S/D	S/D
1987	144.7	61.2	10.4	30.4	0.0	0.0	0.0	0.0	0.0	3.4	3.4	9.6	263.1
1988	50.3	100.8	56.8	29.8	18.4	0.0	0.0	0.0	0.0	2.4	0.0	50.4	308.9
1989	81.3	131.9	190.5	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	1.9	S/D
1990	29.1	0.0	24.7	0.0	0.0	0.0	0.0	0.0	0.0	24.8	30.5	18.9	128.0
1991	46.7	8.1	59.6	8.0	0.0	S/D	0.8	2.0	7.1	35.6	2.9	20.4	S/D
1992	48.2	42.3	20.2	2.0	0.0	0.0	0.0	0.0	0.0	13.3	12.4	26.4	164.8
1993	43.1	90.8	105.4	24.6	10.1	0.0	0.0	0.0	4.1	19.9	79.2	S/D	S/D
1994	114.9	113.9	57.6	5.5	2.0	S/D	0.0	0.1	1.5	2.0	2.7	20.2	S/D
1995	60.2	46.2	87.4	11.0	0.0	0.0	0.0	0.0	6.3	10.7	53.8	71.0	346.6
1996	115.0	116.3	129.1	16.5	1.6	S/D	0.0	3.5	0.0	5.7	14.6	32.3	S/D
1997	59.7	54.2	29.8	9.3	6.6	0.0	0.0	0.0	6.0	7.3	45.2	154.9	373.0
1998	262.7	278.8	263.1	49.1	1.5	0.8	0.0	0.6	2.2	0.6	7.2	96.6	963.2
1999	86.5	341.1	162.5	48.8	21.1	1.8	0.0	0.0	9.8	40.1	11.0	107.3	830.0
2000	146.3	284.5	159.1	48.6	1.4	0.0	0.0	0.0	3.6	41.2	16.3	154.0	855.0
2001	186.1	205.1	255.3	S/D	3.8	0.0	2.5	0.0	11.2	18.5	100.8	7.1	S/D
2002	57.8	182.5	S/D	75.5	7.5	0.0	0.0	0.0	6.3	29.9	66.2	42.5	S/D
2003	160.6	80.7	146.4	11.2	0.0	0.0	0.0	0.0	0.0	9.8	1.3	219.8	629.8
2004	24.5	189.6	116.9	31.1	0.6	1.8	0.0	0.0	5.9	8.6	31.1	124.0	534.1
2005	58.0	62.0	130.0	22.0	2.2	0.0	0.0	0.0	1.2	0.0	0.0	130.4	405.8
2006	106.4	179.3	234.5	78.0	0.0	2.1	0.0	2.7	1.5	4.9	37.0	131.4	777.8
2007	142.0	112.8	232.9	70.4	3.6	3.0	0.0	0.0	0.0	32.3	9.0	40.4	646.4
2008	232.4	251.6	156.3	13.8	0.0	S/D	0.0	4.0	0.0	6.4	42.7	37.2	S/D
2009	133.4	263.0	141.6	65.8	0.0	0.0	0.0	0.0	0.2	49.7	71.3	61.0	786.0

Registro Histórico - Estación Huarochiri

Estación:	Huaro	chiri - (00633			Long	itud:	-12.14	''W''		Dpto.:	Lima	
Parámetro:	Precip	itación	total m	ensual	(mm)	Latit	ud:	-76.23	''S''		Prov.:	Huaro	chiri
						Altitu	ud:	3120	m.s.n	.m.	Dist.:	Huard	chiri
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2010	84.8	121.2	147.4	35.8	0.3	0.0	0.0	0.0	5.2	4.7	20.3	107.5	527.2
2011	186.3	83.2	144.9	S/D	0.0	0.0	0.6	0.0	0.2	2.7	33.1	83.0	S/D
2012	44.3	116.1	S/D	68.1	0.4	0.5	0.0	0.0	11.1	27.5	23.6	41.3	S/D
2013	43.3	135.1	131.8	12.5	6.3	0.0	1.7	1.3	0.0	11.9	11.6	35.5	391.0
2014	95.9	63.8	133.5	38.3	0.4	0.0	0.0	1.1	0.0	11.0	24.6	97.3	465.9
2015	96.1	85.9	193.4	33.2	1.2	0.0	0.0	3.5	0.9	9.5	7.4	26.9	458.0
2016	5.2	143.6	73.4	40.3	0.4	0.0	0.0	2.6	1.3	1.4	0.0	33.6	301.8
2017	249.2	252.6	301.3	38.5	11.6	0.0	0.0	0.7	1.8	12.2	12.2	9.5	889.6
2018	137.0	125.1	220.0	67.3	0.0	6.0	0.6	0.0	0.0	10.8	4.6	44.7	616.1
2019	206.0	207.5	200.4	13.9	0.0	0.0	0.0	0.0	6.8	16.9	22.3	103.9	777.7
2020	98.4	148.7	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	89.6	112.4	119.5	30.7	3.5	0.4	0.1	0.5	2.7	12.8	18.1	50.7	431.7
Des. Est.	62.4	78.0	69.2	25.1	5.7	1.2	0.4	1.1	3.5	16.9	22.5	48.8	229.2
Máximo	262.7	341.1	301.3	121.2	21.1	6.0	2.5	4.0	11.4	92.4	100.8	219.8	963.2
Mínimo	5.2	0.0	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	128.0
Nº Datos	53	53	50	49	51	47	51	51	51	51	51	51	40
S/D: Sin Dato													

Registro Histórico - Estación Huarochiri

FUENTE: SENAMHI

Tabla N° 35: Registro histórico de precipitaciones- Estación Langa

Registro Histórico - Estación Langa

Estación:	Langa -	151214				Long	itud:	-12.13	''W''		Dpto.:	Lima	
Parámetro:	Precipi	tación tot	al mens	sual (n	nm)	Latit	ud:	-76.42	''S''		Prov.:	Huaroo	chiri
						Altitu	ıd:	2863	m.s.n	.m.	Dist.:	Langa	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1980	S/D	2.0	49.3	4.5	0.0	0.0	0.0	0.0	0.0	16.6	0.0	0.0	S/D
1981	91.1	169.6	411.8	0.0	0.0	0.0	0.0	0.0	19.7	0.0	0.0	38.5	730.7
1982	115.0	105.8	43.0	0.0	0.0	0.0	0.0	3.2	S/D	S/D	S/D	S/D	S/D
1983	19.7	113.4	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.2	214.3
1984	33.8	86.0	118.0	32.1	0.0	0.0	0.0	0.0	0.0	72.9	0.0	12.6	355.4
1985	59.2	82.1	104.0	9.9	0.0	0.0	0.0	0.0	0.0	10.0	15.0	9.6	289.8
1986	67.0	61.0	94.2	39.0	0.0	0.0	0.0	2.3	0.0	1.5	8.2	74.4	347.6
1987	133.2	49.7	11.0	S/D	0.0	0.0	0.0	0.0	0.0	0.0	3.0	2.5	S/D
1988	10.5	40.0	19.7	5.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.6	120.3
1989	131.2	134.8	129.2	39.7	0.0	0.0	0.0	0.0	0.0	15.1	0.0	0.0	450.0

Estación:	Langa -	151214				Long	itud:	-12.13	''W''		Dpto.:	Lima	
Parámetro:	Precipit	tación to	tal mens	sual (n	nm)	Latit	ud:	-76.42	''S''		Prov.:	Huaroo	hiri
						Altitu	ıd:	2863	m.s.n	.m.	Dist.:	Langa	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1990	0.0	0.0	24.0	1.5	S/D	0.0	0.0	0.0	0.0	5.6	27.0	25.7	S/D
1991	20.3	42.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	96.3
1992	8.2	7.3	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D	S/D
1993	72.1	97.0	149.1	9.3	0.0	0.0	0.0	0.0	0.0	1.3	22.9	22.3	374.0
1994	106.4	79.3	56.3	18.1	1.6	0.0	0.0	0.0	7.3	0.0	3.1	18.8	290.9
1995	44.8	42.0	46.6	11.0	0.0	0.0	0.0	0.0	5.0	1.4	25.9	14.1	190.8
1996	53.3	63.3	63.9	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	189.4
1997	40.3	82.4	18.2	0.4	0.0	0.0	0.0	0.5	4.0	0.9	10.9	74.0	231.6
1998	132.4	111.1	120.3	13.2	0.0	0.0	0.0	0.0	0.0	0.2	1.5	28.0	406.7
1999	41.4	223.7	70.0	60.3	8.7	0.0	0.0	0.0	2.1	11.0	3.5	22.7	443.4
2000	81.5	105.8	41.3	18.5	0.0	0.0	0.0	0.0	1.5	0.0	0.0	41.5	290.1
2001	121.4	83.2	148.7	40.5	0.0	0.0	0.0	0.0	0.0	0.9	42.7	0.0	437.4
2002	11.4	71.7	87.0	26.2	1.1	0.0	0.0	0.0	3.7	8.6	32.0	5.4	247.1
2003	26.3	44.8	55.5	8.1	0.0	0.0	0.0	0.0	0.0	0.7	0.7	92.4	228.5
2004	9.2	98.9	38.1	23.5	0.0	0.0	0.0	0.0	1.2	0.0	3.0	21.5	195.4
2005	37.0	33.5	39.7	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	41.9	152.2
2006	62.4	85.6	82.5	19.7	0.0	0.0	0.0	0.0	0.3	1.7	14.5	70.6	337.3
2007	27.5	33.6	68.5	41.9	0.0	0.0	0.0	0.0	0.0	6.6	2.9	6.9	187.9
2008	110.9	152.7	121.0	5.2	0.0	0.0	0.0	0.3	0.0	0.3	11.0	9.0	410.4
2009	82.2	135.2	110.9	40.8	0.0	0.0	0.0	0.0	0.0	16.7	13.1	23.2	422.1
2010	10.2	75.0	57.9	13.6	0.0	0.0	0.0	0.0	0.4	1.1	4.4	35.1	197.7
2011	83.8	37.5	48.3	36.1	0.0	0.0	1.5	0.0	0.0	0.0	12.9	20.8	240.9
2012	19.6	101.5	105.5	32.3	0.0	0.0	0.0	0.0	0.0	12.3	2.6	26.9	300.7
2013	8.4	73.8	90.4	0.7	1.6	0.0	0.0	0.0	0.5	1.5	7.0	17.6	201.5
2014	49.4	33.4	91.9	18.1	1.5	0.0	0.0	0.0	2.2	9.3	22.5	30.4	258.7
2015	44.7	46.4	128.1	21.6	0.0	0.0	0.0	0.0	0.0	2.0	3.8	16.2	262.8
2016	14.8	46.3	46.4	20.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.3	142.6
2017	143.2	128.4	282.3	9.6	2.3	0.0	0.0	0.0	0.0	1.5	3.8	2.3	573.4
2018	57.4	35.7	64.6	26.5	0.0	4.0	0.0	0.0	0.0	4.7	3.4	0.6	196.9
2019	87.8	86.2	43.2	2.0	3.9	0.0	0.0	0.0	9.0	1.0	0.6	28.6	262.3
2020	98.1	25.4	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	59.2	76.3	84.1	16.8	0.5	0.1	0.0	0.2	1.5	5.3	7.7	24.7	293.6
Des. Est.	42.2	46.7	73.4	15.7	1.6	0.6	0.2	0.6	3.7	12.2	10.5	22.9	132.7
Máximo	143.2	223.7	411.8	60.3	8.7	4.0	1.5	3.2	19.7	72.9	42.7	92.4	730.7
Mínimo	0.0	0.0	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	96.3
Nº Datos	40	41	40	39	39	40	40	40	39	39	39	38	35
C/D. C: D. +-													

Registro Histórico - Estación Langa

S/D: Sin Dato

Registro Histórico - Estación Langa

Estación:	Langa -	151214				Long	itud:	-12.13	''W''		Dpto.:	Lima	
Parámetro:	Precipit	tación tot	al mens	sual (n	ım)	Latit	ud:	-76.42	"S"		Prov.:	Huaroc	chiri
					Altitu	ıd:	2863	m.s.n	.m.	Dist.:	Langa		
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
FUENTE: SE	NAMHI												

Registro Histórico - Estación Matucana

Tabla N° 36: Registro histórico de precipitaciones
– Estación Matucana

Estación:	Matuca	ana - 00	00548			Long	itud:	-11.84	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación	total m	ensual	(mm)	Latit	ud:	-76.38	"S"		Prov.:	Huaro	ochiri
						Altitu	ıd:	2417	m.s.n	.m.	Dist.:	Matuo	cana
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1966	S/D	38.7	52.5	22.3	0.2	0.0	0.0	0.0	0.0	18.0	0.0	37.0	S/D
1967	77.3	147.7	97.1	17.2	3.7	0.0	S/D	S/D	2.1	15.2	4.3	8.4	S/D
1968	24.9	24.9	33.3	11.2	7.7	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1969	11.4	54.6	73.3	26.3	0.0	0.0	0.0	0.0	0.9	18.1	24.1	55.2	263.9
1970	106.9	8.9	35.4	29.1	9.1	0.0	0.0	0.0	21.8	14.5	5.4	53.8	284.9
1971	57.4	72.6	116.0	27.4	0.0	0.0	0.0	0.0	0.0	6.6	1.2	43.0	324.2
1972	63.5	106.2	144.8	13.8	0.0	0.0	0.0	0.0	1.5	12.6	5.0	48.2	395.6
1973	82.3	80.8	58.7	5.7	0.0	0.0	0.0	0.0	33.9	8.3	7.5	56.9	334.1
1974	45.8	76.4	75.8	9.4	0.0	0.0	0.0	0.0	0.4	0.6	4.6	21.3	234.3
1975	33.4	59.0	118.3	8.9	6.2	0.8	0.0	0.0	1.3	7.0	12.4	40.1	287.4
1976	70.3	73.4	58.1	0.5	0.5	0.9	0.0	0.0	0.8	0.0	0.0	26.2	230.7
1977	32.9	69.5	37.8	2.7	5.9	0.0	0.0	0.0	2.5	0.6	28.7	26.2	206.8
1978	29.1	29.8	21.0	5.4	0.0	0.0	0.0	0.0	1.5	0.0	7.8	12.6	107.2
1979	15.1	43.2	65.5	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0.9	S/D	S/D
1980	18.0	8.3	21.0	18.8	0.0	0.0	0.0	0.0	0.0	14.1	0.0	13.7	93.9
1981	62.0	43.4	72.8	0.0	0.0	0.0	0.0	0.0	0.0	4.2	1.5	33.9	217.8
1982	28.2	25.3	29.0	0.0	0.0	0.0	S/D	0.0	0.0	0.0	10.3	0.9	S/D
1983	9.5	62.0	169.2	25.9	0.0	0.0	0.0	0.0	0.0	S/D	S/D	32.7	S/D
1984	34.1	196.8	86.5	10.5	1.0	1.8	0.0	0.0	0.0	20.5	29.2	73.4	453.8
1985	17.9	55.7	67.7	8.7	2.2	0.0	0.0	1.6	2.7	1.7	23.2	53.5	234.9
1986	100.8	74.2	60.7	22.8	4.9	0.0	0.0	4.1	0.0	3.7	10.6	37.1	318.9
1987	113.0	48.5	45.8	0.0	0.0	0.0	0.0	1.2	0.2	0.0	S/D	32.7	S/D
1988	64.7	70.6	44.8	36.8	6.1	0.0	0.0	0.0	0.0	0.9	0.0	47.5	271.4
1989	91.4	73.9	86.9	5.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	260.1
1990	52.2	4.9	19.7	1.9	6.1	0.3	0.0	0.6	0.0	13.4	36.4	43.0	178.5
1991	12.7	60.6	116.4	11.7	2.1	0.0	0.0	0.0	0.0	17.9	4.4	4.4	230.2
1992	29.2	25.0	101.8	26.6	0.0	0.0	0.0	0.0	0.0	32.0	4.4	21.9	240.9
1993	98.8	158.9	147.4	50.4	0.0	0.0	0.0	0.0	0.0	24.0	40.0	98.9	618.4
1994	64.9	95.3	45.6	33.2	2.6	0.0	0.0	0.0	0.5	0.3	12.4	51.6	306.4

Estación:	Matuca	ana - 00	0548			Long	itud:	-11.84	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación	total mo	ensual	(mm)	Latit	ud:	-76.38	''S''		Prov.:	Huaro	ochiri
						Altitu	ıd:	2417	m.s.n	.m.	Dist.:	Matu	cana
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1995	62.6	31.5	61.5	35.9	0.0	0.0	0.0	0.0	4.5	8.9	34.0	39.8	278.7
1996	72.5	80.6	87.9	27.2	0.0	0.0	0.0	0.0	0.0	0.0	4.7	7.2	280.1
1997	45.9	50.7	9.4	3.9	0.0	0.0	0.0	0.0	0.0	7.3	14.3	49.4	180.9
1998	91.6	111.4	122.9	17.0	0.0	0.0	0.0	2.5	2.2	0.0	0.0	19.9	367.5
1999	57.2	163.3	54.3	24.4	0.0	0.0	0.0	0.0	4.0	19.1	19.3	30.1	371.7
2000	82.5	105.3	67.8	21.9	5.6	0.0	0.0	0.0	0.0	17.1	0.0	50.0	350.2
2001	116.8	65.1	110.2	14.9	0.0	0.0	0.0	0.0	0.0	1.9	41.4	2.2	352.5
2002	17.8	74.3	61.9	32.4	6.2	0.0	0.0	0.0	1.2	S/D	22.2	42.9	S/D
2003	32.3	46.0	64.1	15.7	0.0	0.0	S/D	0.0	0.0	0.0	0.7	86.1	S/D
2004	10.1	74.4	57.8	31.1	0.0	3.6	0.0	S/D	0.0	6.3	22.5	92.7	S/D
2005	69.7	28.9	63.1	8.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	52.7	223.3
2006	83.1	67.2	129.7	52.2	0.0	0.0	0.0	0.0	0.0	2.3	16.3	74.8	425.6
2007	76.0	60.4	143.4	30.0	0.0	S/D	S/D	0.0	S/D	4.0	0.0	26.9	S/D
2008	75.5	112.2	72.2	14.2	S/D	S/D	S/D	0.0	S/D	3.2	13.3	36.5	S/D
2009	105.5	98.9	130.6	32.3	0.0	0.0	0.0	0.0	0.0	17.7	37.2	51.4	473.6
2010	36.5	75.3	67.3	20.9	0.0	0.0	0.0	0.0	0.0	7.6	12.9	56.7	277.2
2011	62.1	65.7	58.3	57.4	0.0	0.0	S/D	0.0	2.3	0.0	25.5	59.1	S/D
2012	22.1	85.4	87.0	53.7	0.0	0.0	0.0	0.3	4.3	27.4	17.7	32.9	330.8
2013	27.3	87.8	91.8	27.6	5.5	0.0	0.0	0.0	1.4	9.7	13.2	37.4	301.7
2014	46.9	37.0	62.4	17.7	0.0	0.0	0.0	3.3	2.8	10.8	14.1	74.3	269.3
2015	55.4	32.0	120.7	24.0	0.0	0.0	0.0	3.6	1.7	2.5	12.1	25.4	277.4
2016	11.9	71.5	57.8	21.4	0.0	0.0	0.0	0.0	3.0	0.0	0.0	36.0	201.6
2017	124.5	126.2	155.9	26.8	1.7	0.0	0.0	0.0	2.1	8.4	9.5	5.1	460.2
2018	67.8	72.1	99.5	37.1	1.1	0.8	0.0	0.0	0.0	2.9	3.1	14.9	299.3
2019	85.1	83.1	70.6	7.4	0.0	0.0	0.0	0.0	7.7	15.7	14.6	52.9	337.1
2020	57.0	55.7	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	26.4	4.6	0.0	0.0	0.0	3.2	S/D	S/D	S/D	S/D
Promedio	56.4	70.0	78.0	20.3	1.6	0.2	0.0	0.3	2.1	8.0	12.2	39.1	296.4
Des. Est.	31.4	38.6	37.8	14.3	2.5	0.6	0.0	0.9	5.6	8.3	12.0	23.3	99.1
Máximo	124.5	196.8	169.2	57.4	9.1	3.6	0.0	4.1	33.9	32.0	41.4	98.9	618.4
Mínimo	9.5	4.9	9.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	93.9
Nº Datos	54	55	54	55	54	52	48	52	52	51	51	52	41

Registro Histórico - Estación Matucana

S/D: Sin Dato

FUENTE: SENAMHI

Estación:	Ñaña -	000543				Long	itud:	-11.99	''W''		Dpto.:	Lima	
Parámetro:	Precip	itación t	otal me	nsual (mm)	Latit	ud:	-76.84	''S''		Prov.:	Lima	
						Altitu	ıd:	543	m.s.n	.m.	Dist.:	Lurig	ancho
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	S/D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	S/D
1965	0.0	0.6	0.7	0.0	0.8	0.0	0.0	0.0	0.8	0.0	0.0	0.7	3.6
1966	2.9	0.0	0.3	0.0	0.0	0.0	0.5	0.0	0.0	1.5	1.5	2.0	8.7
1967	5.0	6.1	6.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.2
1968	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D	S/D
1969	4.5	0.0	0.0	0.0	0.0	S/D	0.0	S/D	0.0	0.0	0.0	S/D	S/D
1970	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D	0.0	0.0	0.0	0.0	S/D
1971	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	0.0	0.0	S/D
1972	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1973	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	0.0	S/D
1974	0.0	0.6	0.0	0.0	S/D	0.0	S/D	S/D	S/D	S/D	0.0	0.8	S/D
1975	0.8	0.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.7
1976	8.0	2.3	S/D	S/D	S/D	0.0	0.0	0.0	S/D	0.5	0.0	0.0	S/D
1977	1.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	2.9
1978	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2
1979	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0
1980	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1981	S/D	0.0	S/D	S/D	S/D	0.0	0.0	0.0	0.0	S/D	0.0	0.0	S/D
1982	0.0	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1983	S/D	S/D	S/D	S/D	0.0	0.0	0.0	S/D	0.0	0.0	S/D	S/D	S/D
1984	0.0	0.0	0.0	0.0	S/D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1985	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D	S/D
1986	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	0.0	0.0	S/D	S/D	S/D
1987	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	0.0	0.0	S/D
1988	0.0	0.5	0.0	0.0	S/D	S/D	S/D	0.9	0.0	S/D	0.0	1.8	S/D
1989	0.8	2.1	0.8	S/D	0.0	1.5	0.7	0.0	0.0	0.0	0.0	0.0	S/D
1990	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1991	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
1992	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1993	0.0	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	S/D
1994	0.0	0.0	0.6	0.0	0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0	1.0
1995	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1996	0.0	0.0	0.0	0.0	S/D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1997	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1999	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2000	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2

Tabla N° 37: Registro histórico de precipitaciones
– Estación Ñaña

Registro Histórico - Estación Ñaña

Estación:	Ñaña -	000543				Long	itud:	-11.99	''W''		Dpto.:	Lima	
Parámetro:	Precip	itación to	otal me	nsual (mm)	Latit	ud:	-76.84	''S''		Prov.:	Lima	
						Altitu	ıd:	543	m.s.n	m.	Dist.:	Lurig	ancho
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2001	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7
2002	0.0	14.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D	0.0	0.0	0.0	S/D
2003	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2004	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2005	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2006	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2007	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2008	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2011	0.0	0.0	0.0	0.0	0.0	0.0	S/D	0.0	0.0	0.0	0.0	0.0	S/D
2012	0.0	6.2	0.4	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	2.6	9.4
2013	0.0	5.6	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	7.0
2014	7.0	0.0	3.2	0.0	1.8	1.6	6.0	4.2	0.0	0.0	0.0	0.0	23.8
2015	0.0	0.0	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	2.4
2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2017	2.6	0.0	6.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.8
2018	3.7	3.4	0.2	2.4	0.0	3.8	0.2	0.0	0.0	0.0	0.0	0.0	13.7
2019	0.7	1.6	0.0	0.0	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	4.7
2020	0.0	1.2	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	0.9	1.0	0.7	0.1	0.1	0.2	0.2	0.1	0.1	0.0	0.1	0.2	3.8
Des. Est.	1.9	2.5	2.0	0.4	0.3	0.7	0.9	0.6	0.4	0.2	0.3	0.5	5.7
Máximo	8.0	14.0	7.9	2.4	1.8	3.8	6.0	4.2	2.4	1.5	1.5	2.6	23.8
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nº Datos	48	48	45	44	42	46	47	46	49	50	52	49	33
S/D: Sin Dato													

Registro Histórico - Estación Ñaña

FUENTE: SENAMHI

Tabla N° 38: Registro histórico de precipitaciones
– Estación Pantanos de Villa

Registro Histórico - Estación Pantanos de Villa

Estación:	Pantanos de Villa - 000624				Longitud: -12.21		-12.21	''W''		Dpto.:	Dpto.: Lima		
Parámetro:	Precip	itación	total m	ensual	(mm)	Latit	ud:	-76.99	''S''		Prov.:	Lima	
						Altitu	ıd:	4	m.s.n	.m.	Dist.:	Chor	rillos
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1994	S/D	S/D	S/D	S/D	S/D	S/D	0.8	0.0	0.0	0.0	0.0	0.0	S/D
1995	0.0	S/D	0.0	0.3	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	S/D

Año Ene. Feb. Mar. Abr. May. Jun. Jul. Ago. Set. Oct. Nov. I 1996 0.0 0.0 S/D 0.0 0.0 1.0 0.0 <t< th=""><th>Dic. Total 0.6 S/D 0.0 12.4 0.0 7.6 0.0 S/D 0.0 6.3 0.0 6.3 0.0 6.3 0.0 S/D S/D S/D</th></t<>	Dic. Total 0.6 S/D 0.0 12.4 0.0 7.6 0.0 S/D 0.0 6.3 0.0 6.3 0.0 6.3 0.0 S/D S/D S/D
1996 0.0 0.0 S/D 0.0	 0.6 S/D 0.0 12.4 0.0 7.6 0.0 S/D 0.0 6.3 0.0 6.3 0.0 S/D S/D S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D
1997 0.0 0.0 0.0 0.0 0.0 0.0 4.4 5.5 0.0 2.5 1998 2.9 3.1 0.0 0.0 0.5 0.5 0.0 0.6 0.0 0.0 0.0 1999 0.0 2.7 0.0 <t< td=""><td> 0.0 12.4 0.0 7.6 0.0 S/D 0.0 6.3 0.0 6.3 0.0 S/D </td></t<>	 0.0 12.4 0.0 7.6 0.0 S/D 0.0 6.3 0.0 6.3 0.0 S/D
1998 2.9 3.1 0.0 0.0 0.5 0.5 0.0 0.6 0.0 0.0 0.0 1999 0.0 2.7 0.0 <td< td=""><td> 0.0 7.6 0.0 S/D 0.0 6.3 0.0 S/D S/D S/D S/D S/D S/D 38.6 S/D S/D S/D S/D </td></td<>	 0.0 7.6 0.0 S/D 0.0 6.3 0.0 S/D S/D S/D S/D S/D S/D 38.6 S/D S/D S/D S/D
1999 0.0 2.7 0.0	 0.0 S/D 0.0 6.3 0.0 S/D S/D S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D
2000 2.6 0.0 0.0 0.0 0.5 1.8 1.4 0.0 0.0 0.0 2001 0.0 0.0 0.0 0.0 0.0 2.6 2.9 0.8 0.0 0.0 2002 0.0 0.0 0.0 S/D 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 2003 0.0 0.0 0.0 S/D S/D S/D 0.0 0.0 0.0 0.0 2004 S/D 0.0 0.0 S/D	 0.0 6.3 0.0 6.3 0.0 S/D
2001 0.0 0.0 0.0 2.6 2.9 0.8 0.0 0.0 2002 0.0 0.0 0.0 S/D 0.0 1.0 0.0 1.0 0.0 0.0 0.0 2003 0.0 0.0 0.0 S/D S/D 0.0 S/D 0.0 0.0 0.0 0.0 2003 0.0 0.0 0.0 S/D S/D S/D S/D 0.0 0.0 0.0 2004 S/D 0.0 0.0 S/D	 0.0 6.3 0.0 S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D S/D S/D
2002 0.0 0.0 0.0 S/D 0.0 1.0 0.0 1.0 0.0 0.0 0.0 2003 0.0 0.0 0.0 S/D S/D S/D 0.0 S/D 0.0 0.0 0.0 2004 S/D 0.0 0.0 S/D S/D <t< td=""><td>0.0 S/D S/D S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D</td></t<>	0.0 S/D S/D S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D
20030.00.00.0S/DS/DS/DS/DS/D0.00.00.02004S/D0.00.0S/DS/DS/DS/DS/DS/DS/DS/DS/D20050.00.09.70.00.00.00.00.01.40.5S/D20064.64.04.04.00.00.020.02.00.00.00.02007S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2008S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2009S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2011S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2012S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2013S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D <t< td=""><td>S/D S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D S/D S/D</td></t<>	S/D S/D S/D S/D S/D S/D 0.0 38.6 S/D S/D S/D S/D
2004S/D0.00.0S/DS/DS/DS/DS/DS/DS/DS/DS/DS/D20050.00.09.70.00.00.00.00.01.40.5S/D20064.64.04.04.00.00.020.02.00.00.00.02007S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2008S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2009S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2011S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2012S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2013S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2015S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D </td <td>S/D S/D S/D S/D 0.0 38.6 S/D S/D S/D S/D</td>	S/D S/D S/D S/D 0.0 38.6 S/D S/D S/D S/D
2005 0.0 0.0 9.7 0.0 0.0 0.0 0.0 1.4 0.5 S/D 2006 4.6 4.0 4.0 0.0 0.0 20.0 2.0 0.0 0.0 0.0 2007 S/D <	S/D S/D 0.0 38.6 S/D S/D S/D S/D
20064.64.04.00.00.020.02.00.00.00.02007S/DS/	0.0 38.6 S/D S/D
2007S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2008S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2009S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2011S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2012S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2013S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2015S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2016S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2016S/DS/DS/DS/DS/D <td< td=""><td>S/D S/D</td></td<>	S/D S/D
2008S/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2009S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2011S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2012S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2013S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2015S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2016S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D	S/D S/D
2009S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2011S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2012S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2013S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2015S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2016S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D	3/D 3/D
2010S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2011S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2012S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2013S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2014S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2015S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D2016S/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/DS/D	S/D S/D
2011 S/D	S/D S/D
2012 S/D	S/D S/D
2013 S/D	S/D S/D
2014 S/D	S/D S/D
2015 S/D S/D <td>S/D S/D</td>	S/D S/D
2016 S/D	S/D S/D
	S/D S/D
2017 S/D	S/D S/D
2018 S/D	S/D S/D
2019 S/D	S/D S/D
2020 S/D	S/D S/D
2021 S/D	S/D S/D
Promedio 0.9 0.9 1.2 0.4 0.1 0.3 2.3 1.1 0.7 0.0 0.3	0.1 14.2
Des. Est. 1.6 1.6 3.1 1.3 0.2 0.4 5.7 1.5 1.6 0.1 0.8	0.2 13.8
Máximo 4.6 4.0 9.7 4.0 0.5 1.0 20.0 4.4 5.5 0.5 2.5	0.6 38.6
Mínimo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 6.3
Nº Datos 11 11 11 10 10 10 12 11 12 12 10	

Registro Histórico - Estación Pantanos de Villa

S/D: Sin Dato

FUENTE: SENAMHI
Estación: Parámetro:	San Jos Precipi	sé de Pa tación to	rac - 15 otal mer	5225 1sual (n	nm)	Long Latit	itud: ud:	-11.80 -76.26	"W" "S"		Dpto.: Prov.:	Lima Huaroo	chiri
				,	,	Altitu	ıd:	3829	m.s.n	.m.	Dist.:	San M	ateo
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1965	S/D	S/D	98.4	33.7	2.0	0.1	11.3	0.0	1.2	S/D	S/D	84.1	S/D
1966	117.3	101.3	68.0	S/D	0.0	0.0	0.0	0.0	9.1	80.9	13.6	87.6	S/D
1967	129.8	154.4	167.9	4.9	2.0	0.0	3.2	0.0	4.0	90.9	14.9	4.2	576.2
1968	44.0	64.0	64.0	1.0	0.0	0.0	0.0	0.0	0.0	10.1	2.0	53.5	238.6
1969	31.0	116.7	145.1	17.0	0.0	0.0	0.0	0.0	0.0	12.0	45.9	45.0	412.7
1980	S/D	20.3	108.7	20.6	8.1	4.8	S/D	0.0	2.5	S/D	64.2	63.4	S/D
1981	144.5	167.2	140.1	19.3	0.0	0.0	0.0	15.2	14.2	36.4	69.7	128.9	735.5
1982	143.5	S/D	90.2	62.0	0.0	0.0	2.4	1.0	7.6	61.4	70.4	35.6	S/D
1983	85.7	75.0	141.1	90.7	5.3	5.4	0.0	0.0	24.7	32.7	20.1	162.5	643.2
1984	118.9	293.3	201.9	38.1	28.8	33.5	0.0	4.4	3.1	50.2	86.5	141.6	1000.3
1985	79.7	123.2	143.6	49.3	18.6	7.4	0.0	6.3	28.7	13.9	28.9	115.8	615.4
1986	172.3	160.4	133.6	67.6	19.3	0.0	18.3	16.6	7.0	12.4	50.4	99.9	757.8
1987	126.8	128.7	67.9	33.0	8.3	0.0	3.8	16.2	15.6	15.7	55.0	80.7	551.7
1988	114.2	108.7	105.8	74.1	10.0	0.0	0.0	0.9	21.8	33.9	27.7	84.8	581.9
1989	153.0	175.3	175.4	27.7	8.3	5.7	0.0	2.2	19.0	66.8	17.6	11.7	662.7
1990	94.6	35.4	46.0	31.3	20.1	22.7	0.4	2.2	3.1	41.1	62.8	65.8	425.5
1991	24.9	50.2	122.1	32.8	6.2	1.7	1.0	0.0	6.0	33.9	17.2	31.3	327.3
1992	19.9	39.6	49.2	19.3	1.2	0.1	0.0	1.2	0.0	49.1	9.1	24.1	212.8
1993	96.5	109.2	126.8	52.0	6.0	0.0	0.6	0.0	10.8	53.3	96.4	107.9	659.5
1994	137.7	173.5	144.2	51.2	26.4	3.2	2.4	7.0	28.8	15.0	42.8	97.2	729.4
1995	79.1	56.8	103.3	32.7	3.0	0.7	0.0	1.7	12.2	29.7	58.8	94.9	472.9
1996	133.3	154.6	123.5	48.0	2.4	0.5	0.7	1.4	7.5	22.2	35.7	72.1	601.9
1997	115.9	114.9	33.3	18.6	1.1	0.0	0.0	9.2	29.1	27.1	49.8	126.2	525.2
1998	118.8	136.7	123.3	34.3	0.0	2.8	1.0	0.4	27.8	40.2	19.6	64.3	569.2
1999	107.9	218.5	101.6	63.3	39.9	1.7	0.0	1.7	23.6	47.3	51.9	93.8	751.2
2000	154.5	156.7	167.1	23.2	21.5	0.0	2.7	10.4	8.5	54.2	26.6	119.6	745.0
2001	158.6	97.7	166.2	29.2	5.6	0.0	0.6	0.9	24.7	25.3	117.2	39.7	665.7
2002	102.4	105.0	112.4	48.9	17.3	4.5	0.6	0.0	18.5	45.2	63.9	83.1	601.8
2003	122.3	92.7	140.8	40.7	2.2	0.0	0.0	0.0	2.0	56.1	10.8	150.0	617.6
2004	37.4	130.7	88.4	44.8	6.7	6.7	1.3	2.0	16.3	63.6	81.1	149.0	628.0
2005	100.3	71.7	143.3	23.9	0.7	0.0	0.0	0.3	2.3	6.3	11.2	118.9	478.9
2006	155.5	107.6	176.2	70.0	0.9	4.3	0.0	2.2	9.5	30.9	63.9	130.5	751.5
2007	103.7	112.3	168.3	47.9	1.5	0.0	0.0	1.8	2.9	42.4	19.6	69.4	569.8
2008	133.6	154.8	101.0	32.3	0.3	0.0	0.0	6.0	4.3	54.9	45.9	117.3	650.4
2009	161.9	150.1	156.5	62.3	16.5	0.0	14.2	7.2	5.9	111.8	150.3	130.3	967.0
2010	139.5	122.5	146.5	55.8	7.9	2.8	0.0	3.4	52.4	15.6	47.9	174.0	768.3

Tabla N° 39: Registro histórico de precipitaciones– Estación San José de Parac

Registro Histórico - Estación San José de Parac

Estación:	San Jos	sé de Pa	rac - 15	5225		Long	itud:	-11.80	"W"		Dpto.:	Lima	
Parámetro:	Precipi	tación to	otal mer	nsual (n	nm)	Latit	ud:	-76.26	"S"		Prov.:	Huaroo	chiri
						Altitu	ıd:	3829	m.s.n	.m.	Dist.:	San M	ateo
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2011	182.5	147.6	157.8	79.1	17.4	0.0	0.0	1.7	24.0	28.0	78.2	172.9	889.2
2012	86.5	169.7	114.8	127.5	2.8	0.0	2.5	0.0	25.1	61.4	66.3	125.9	782.5
2013	85.6	171.3	154.5	32.3	33.2	1.5	1.4	10.5	6.2	41.8	49.9	87.3	675.5
2014	126.8	108.0	159.6	41.1	7.6	0.0	5.7	35.4	20.2	51.4	56.3	125.0	737.1
2015	126.8	98.3	127.4	36.7	11.2	6.9	0.0	15.6	22.4	34.7	40.5	97.9	618.4
2016	37.1	161.9	119.6	53.0	2.1	4.5	0.0	0.5	38.0	15.7	3.4	124.7	560.5
2017	217.6	200.3	213.9	97.0	33.1	0.3	0.0	1.2	10.2	58.8	39.2	58.5	930.1
2018	143.8	106.0	188.8	105.3	10.3	6.6	3.7	14.9	3.0	39.3	33.9	55.5	711.1
2019	181.2	133.1	123.5	37.8	2.0	0.0	1.2	0.0	22.7	34.0	46.6	157.4	739.5
2020	100.3	118.1	150.0	S/D	S/D	S/D	S/D	0.3	10.7	43.8	52.6	182.4	S/D
2021	193.3	62.7	196.4	81.5	16.4	0.7	0.6	2.0	2.9	52.9	79.7	70.1	759.2
Promedio	116.5	123.5	129.7	46.5	9.4	2.8	1.8	4.3	13.6	41.0	47.7	96.1	640.4
Des. Est.	45.4	51.3	41.2	26.4	10.4	6.0	3.8	6.8	11.6	22.0	30.3	44.1	169.0
Máximo	217.6	293.3	213.9	127.5	39.9	33.5	18.3	35.4	52.4	111.8	150.3	182.4	1000.3
Mínimo	19.9	20.3	33.3	1.0	0.0	0.0	0.0	0.0	0.0	6.3	2.0	4.2	212.8
Nº Datos	45	45	47	45	46	46	45	47	47	45	46	47	42
S/D: Sin Dato													
FUENTE: SEN	JAMHI												

Tabla N° 40: Registro histórico de precipitaciones
– Estación San Lazaro de

Escomarca

Estación: Parámetro:	San La Precipi	izaro de	Escom	arca - 1 ensual (1	56102 mm)	Long Latit Altitı	itud: ud: ıd:	-12.18 -76.35 3758	''W'' ''S'' m.s.n	.m.	Dpto.: Prov.: Dist.:	Lima Huaroo Langa	hiri
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	44.6	101.8	88.9	26.5	3.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	265.1
1965	0.0	117.0	110.8	40.0	0.0	0.0	0.0	0.0	3.6	0.0	9.0	25.1	305.5
1966	70.9	36.8	84.7	30.6	2.7	0.0	0.0	0.0	4.8	66.0	2.4	26.8	325.7
1967	119.2	261.7	155.1	17.3	5.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	565.0
1968	91.1	11.5	75.2	34.2	6.2	0.0	0.0	0.0	0.0	6.0	14.4	19.6	258.2
1969	34.1	100.7	185.3	37.0	0.0	10.0	17.5	0.0	3.8	16.0	65.8	131.6	601.8
1970	223.3	33.2	84.9	86.8	28.9	0.0	0.0	69.2	60.6	4.8	65.0	149.1	805.8
1971	50.9	95.5	188.3	20.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	48.7	403.8
1972	88.2	109.7	268.0	73.0	0.0	0.0	3.9	0.0	0.0	20.3	39.1	157.3	759.5
1973	168.9	77.9	264.9	100.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.7	662.8
1974	55.8	96.6	94.6	35.5	0.0	2.9	0.0	0.0	0.0	0.0	5.0	8.4	298.8

Registro Histórico - Estación San Lazaro de Escomarca

Estación:	San La	zaro de	Escom	arca - 1	56102	Long	itud:	-12.18	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación (total me	nsual (mm)	Latit	ud:	-76.35	''S''		Prov.:	Huaroo	chiri
						Altitu	ıd:	3758	m.s.n	.m.	Dist.:	Langa	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1975	73.5	70.7	131.2	20.0	4.5	0.0	0.0	0.0	0.0	0.0	6.1	67.9	373.9
1976	99.8	100.7	89.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	2.1	8.1	306.4
1977	67.2	141.6	95.1	15.5	0.0	0.0	0.0	0.0	0.0	S/D	11.3	45.5	S/D
1978	43.5	31.0	98.1	45.4	0.0	0.0	0.0	0.0	0.0	7.5	0.0	11.3	236.8
1979	8.5	52.7	207.2	6.8	0.0	0.0	0.0	0.0	0.0	3.0	1.5	0.0	279.7
1980	94.3	8.6	116.5	0.0	0.0	0.0	0.0	0.0	0.0	10.8	7.3	8.0	245.5
1981	18.5	202.2	164.9	146.1	0.0	0.0	0.0	0.0	0.0	0.0	13.6	202.4	747.7
1982	44.8	122.0	33.8	42.7	0.0	0.0	0.0	0.0	0.0	31.8	59.5	13.7	348.3
1983	68.0	78.9	120.9	96.5	30.9	0.0	0.0	0.0	0.0	0.0	0.0	120.4	515.6
1984	75.2	195.5	115.6	33.1	10.3	0.0	0.0	0.0	0.0	77.9	49.9	59.4	616.9
1985	0.0	159.0	97.1	24.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	55.4	336.1
1986	155.5	141.2	83.8	52.1	12.4	0.0	0.0	0.0	0.0	0.0	0.0	68.9	513.9
1987	166.1	63.2	48.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.1	296.1
1988	68.8	108.4	95.1	76.9	8.7	0.0	0.0	0.0	0.0	0.0	96.2	49.5	503.6
1989	112.1	147.1	166.9	37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	463.6
1990	97.3	49.2	110.2	43.9	0.0	0.0	0.0	0.0	0.0	19.1	114.0	111.7	545.4
1991	147.2	97.2	56.8	41.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	342.4
1992	13.3	34.1	54.8	21.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	123.5
1993	58.9	69.2	126.4	78.5	0.0	0.0	0.0	0.0	0.0	15.3	27.7	34.7	410.7
1994	177.7	211.6	181.2	69.3	25.0	0.0	0.0	0.0	19.2	0.0	14.6	45.6	744.2
1995	67.7	26.8	55.8	23.5	5.0	0.0	0.0	0.0	0.0	10.5	76.3	103.1	368.7
1996	154.6	176.5	112.0	55.0	1.5	0.0	0.0	1.0	0.2	14.2	11.4	73.0	599.4
1997	157.6	241.1	23.0	13.0	2.0	0.0	0.0	0.3	9.0	22.0	17.0	123.2	608.2
1998	121.4	72.1	120.1	24.4	0.0	0.3	0.0	0.0	0.9	2.5	7.2	54.0	402.9
1999	57.5	207.9	115.2	91.5	35.0	0.0	2.4	8.3	11.4	30.8	22.1	98.8	680.9
2000	76.1	101.3	71.0	25.3	6.5	0.0	0.0	0.4	13.3	44.9	34.3	99.6	472.7
2001	142.7	101.2	186.5	51.2	0.5	0.0	0.0	0.0	3.6	8.4	49.0	0.0	543.1
2002	45.6	103.5	96.6	80.7	3.4	0.0	2.3	0.5	13.8	24.9	91.3	19.5	482.1
2003	100.1	58.1	126.3	36.9	3.6	0.0	0.0	0.0	0.0	9.8	3.0	191.5	529.3
2004	27.0	90.4	87.8	71.2	0.0	1.0	0.0	0.0	13.4	7.1	9.1	66.8	373.8
2005	57.8	85.1	91.8	71.6	0.0	0.0	0.0	0.0	0.0	0.0	4.1	161.6	472.0
2006	260.9	533.5	180.8	24.8	0.0	0.0	0.0	0.0	0.0	17.1	36.5	121.1	1174.7
2007	119.7	30.9	261.8	63.6	0.0	0.0	0.0	0.0	0.0	26.9	8.6	3.5	515.0
2008	91.7	S/D	127.8	7.8	0.0	0.0	0.0	0.0	0.0	9.2	23.3	15.7	S/D
2009	111.0	109.3	98.6	52.7	4.1	0.0	0.0	0.7	0.0	40.7	26.4	20.8	464.3
2010	49.7	101.7	127.2	50.4	0.6	0.0	0.0	0.0	12.6	3.1	12.5	74.6	432.4
2011	119.8	55.3	96.8	76.4	3.2	0.0	0.0	0.0	1.4	5.4	23.0	37.1	418.4
2012	27.0	122.6	174.8	57.0	0.0	0.0	0.0	0.0	6.1	41.7	21.0	47.2	497.4

Registro Histórico - Estación San Lazaro de Escomarca

Estación:	San Lazaro de Escomarca - 156				56102	Long	itud:	-12.18	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación f	total me	nsual (1	nm)	Latit	ud:	-76.35	''S''		Prov.:	Huaroo	hiri
						Altitu	ıd:	3758	m.s.n.	m.	Dist.:	Langa	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2013	42.0	162.1	227.2	38.3	5.1	0.0	0.5	0.7	0.0	13.6	9.6	41.5	540.6
2014	134.8	43.6	218.7	47.8	4.2	0.0	0.0	6.0	6.6	35.4	66.0	83.9	647.0
2015	158.6	80.8	167.3	70.7	0.0	0.0	0.0	1.1	2.1	6.1	13.1	108.3	608.1
2016	24.1	121.7	69.0	28.7	0.0	0.0	0.0	0.0	1.2	2.4	0.0	22.5	269.6
2017	226.9	155.4	300.3	18.5	5.3	0.0	0.0	0.0	5.9	8.4	5.6	16.2	742.5
2018	127.1	112.5	228.1	67.0	2.0	7.5	0.0	0.0	0.2	23.4	16.5	30.7	615.0
2019	225.0	150.4	119.7	30.3	25.4	0.0	0.0	0.0	16.0	15.2	9.6	93.6	685.2
2020	139.1	127.5	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	94.8	112.5	130.0	45.3	4.4	0.4	0.5	1.6	3.7	12.8	21.4	58.1	487.9
Des. Est.	60.8	80.6	62.6	29.0	8.4	1.7	2.4	9.3	9.2	16.9	27.6	52.5	185.8
Máximo	260.9	533.5	300.3	146.1	35.0	10.0	17.5	69.2	60.6	77.9	114.0	202.4	1174.7
Mínimo	0.0	8.6	23.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	123.5
Nº Datos	57	56	56	56	56	56	56	56	56	55	56	56	54

Registro Histórico - Estación San Lazaro de Escomarca

S/D: Sin Dato

FUENTE: SENAMHI

	Registro Histórico - Estación Santa Eulalia													
Estación:	Santa 1	Eulalia -	155213			Long	itud:	-11.92	''W''		Dpto.:	Lima		
Parámetro:	Precip	itación t	otal men	sual (m	m)	Latit	ud:	-76.67	''S''		Prov.:	Huaro	chiri	
						Altitu	ıd:	970	m.s.n.	m.	Dist.:	Santa	Eulalia	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total	
1964	1.9	9.9	9.6	6.1	0.0	S/D	0.0	0.0	S/D	S/D	S/D	S/D	S/D	
1965	S/D	S/D	S/D	0.8	1.7	0.0	0.0	0.0	0.0	1.3	0.6	2.2	S/D	
1966	29.2	1.0	43.6	0.0	1.5	0.0	0.0	0.0	0.0	22.6	0.0	0.0	97.9	
1967	32.5	98.8	73.6	0.0	0.0	0.0	0.0	0.0	0.2	0.2	S/D	0.2	S/D	
1968	S/D	S/D	S/D	S/D	1.1	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	
1969	11.6	12.2	16.6	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.9	14.6	56.3	
1970	93.1	5.9	31.2	0.0	0.0	0.0	0.0	0.0	10.8	1.5	1.5	0.0	144.0	
1971	0.0	15.4	41.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	63.9	
1972	14.5	31.8	110.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	162.7	
1973	38.1	0.0	89.3	0.0	0.0	0.0	0.0	0.0	2.0	1.0	0.0	14.5	144.9	
1974	10.2	24.7	31.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.4	72.3	
1975	2.8	22.8	19.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	9.5	56.6	
1976	6.7	96.3	11.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.3	120.1	
1977	8.2	11.3	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.5	

Tabla N° 41: Registro histórico de precipitaciones- Estación Santa Eulalia

Estación:	Santa Eulalia - 155213				Long	itud:	-11.92	''W''		Dpto.:	Lima		
Parámetro:	Precip	itación t	otal men	sual (n	nm)	Latit	ud:	-76.67	''S''		Prov.:	Huaro	chiri
						Altitu	ıd:	970	m.s.n	.m.	Dist.:	Santa	Eulalia
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1978	6.8	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.7
1979	0.0	0.0	23.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.0
1980	0.0	0.0	23.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.0
1981	1.0	10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	12.8
1982	S/D	14.6	4.5	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.6	S/D
1983	0.0	S/D	33.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1984	0.0	17.4	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.4
1985	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6
1986	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	3.3	5.3
1987	S/D	S/D	S/D	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D
1988	17.9	9.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.3	39.7
1989	7.7	43.3	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	62.7
1990	4.5	0.0	10.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	3.5	19.1
1991	0.0	1.8	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.8
1992	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
1993	0.5	2.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.6
1994	19.0	7.4	0.0	0.0	3.9	0.0	0.0	0.0	0.3	0.0	0.0	1.6	32.2
1995	7.5	0.0	2.5	1.1	0.5	0.0	0.0	0.0	0.2	0.7	2.1	0.0	14.6
1996	5.9	12.0	13.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	32.2
1997	3.0	4.3	0.4	0.0	0.0	0.2	0.0	0.0	0.0	0.6	0.9	13.4	22.8
1998	18.7	16.9	18.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	5.4	59.3
1999	8.8	57.0	2.3	0.4	0.0	0.0	0.0	0.0	0.2	0.2	0.0	1.3	70.2
2000	19.1	11.9	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	35.3
2001	12.7	12.1	12.0	1.3	0.0	0.0	0.0	0.0	0.0	0.1	1.2	0.0	39.4
2002	1.2	33.3	3.5	0.1	0.3	0.0	0.0	0.0	0.2	0.0	0.2	0.5	39.3
2003	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.0	0.0	0.0	14.4	S/D
2004	0.0	5.6	6.7	2.1	0.0	0.0	0.0	0.0	0.5	0.0	0.0	3.3	18.2
2005	1.8	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	6.5
2006	10.9	16.8	8.7	0.6	0.0	0.0	0.0	0.0	0.0	0.2	1.4	6.2	44.8
2007	5.3	3.6	5.4	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.0	20.0
2008	12.7	15.0	17.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	0.8	48.7
2009	17.9	29.5	10.9	0.8	0.0	0.0	0.0	0.0	0.0	3.0	1.0	2.1	65.2
2010	6.3	1.2	5.7	0.0	0.0	0.0	0.0	0.0	0.4	0.6	0.0	5.1	19.3
2011	10.8	7.6	2.9	1.3	0.0	0.0	0.0	0.0	0.0	0.0	3.0	6.9	32.5
2012	0.0	17.4	7.2	10.3	0.0	0.0	0.0	0.0	0.0	1.9	0.5	1.5	38.8
2013	0.0	7.6	3.7	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	9.1	21.4
2014	7.2	6.4	3.4	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.7	5.7	24.6
2015	6.1	13.5	39.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	60.8

Registro Histórico - Estación Santa Eulalia

Estación:	Santa l	Eulalia -	155213			Long	itud:	-11.92	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación t	otal men	sual (m	m)	Latit	ud:	-76.67	''S''		Prov.:	Huaro	chiri
						Altitu	ıd:	970	m.s.n	.m.	Dist.:	Santa	Eulalia
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2016	0.5	8.5	1.2	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	14.6
2017	59.8	8.3	50.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	118.9
2018	13.6	15.0	0.0	0.5	0.0	0.8	0.0	0.0	0.0	0.8	0.0	0.0	30.7
2019	12.4	9.3	0.8	0.0	0.0	0.0	0.0	0.0	2.4	0.0	0.4	1.0	26.3
2020	8.1	4.7	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0.0	0.2	8.5	S/D
2021	13.0	4.1	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.6
Promedio	10.7	14.4	16.2	0.7	0.2	0.0	0.0	0.0	0.3	0.6	0.4	3.3	44.1
Des. Est.	16.0	20.2	22.7	1.7	0.6	0.1	0.0	0.3	1.5	3.0	0.7	4.2	38.5
Máximo	93.1	98.8	110.1	10.3	3.9	0.8	0.0	2.0	10.8	22.6	3.0	14.6	162.7
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
Nº Datos	53	53	53	55	56	54	55	56	55	56	55	56	49
S/D: Sin Dato													
FUENTE: SEI	NAMHI												

Registro Histórico - Estación Santa Eulalia

Tabla N° 42: Registro histórico de precipitaciones– Estación Santiago de Tuna Registro Histórico - Estación Santiago de Tuna

Estación:	Santiago de Tuna - 155224 Precipitación total mensual (m					Long	itud:	-11.98	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación	total m	ensual	(mm)	Latit	ud:	-76.52	''S''		Prov.:	Huaroo	chiri
						Altitu	ıd:	2926	m.s.n	.m.	Dist.:	Santiag	go Tuna
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	7.0	S/D	16.5	24.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	20.3	S/D
1965	S/D	S/D	103.9	22.0	1.7	0.0	0.3	0.0	0.3	9.6	0.2	0.5	S/D
1966	29.6	19.6	110.8	3.3	5.3	0.0	0.0	0.0	0.0	23.2	0.1	5.1	197.0
1967	135.8	320.4	121.2	6.5	1.0	0.0	0.8	0.0	0.0	9.9	3.4	15.3	614.3
1968	0.1	11.6	23.9	14.3	6.2	0.2	0.0	0.0	0.1	1.3	2.1	5.3	65.1
1969	11.9	105.2	101.4	7.7	0.0	0.0	0.0	0.0	0.0	7.3	9.5	27.6	270.6
1970	185.5	86.2	20.4	11.8	0.0	0.0	0.0	0.0	21.2	5.0	9.7	7.9	347.7
1971	33.9	87.1	130.3	3.3	0.0	0.0	0.0	0.0	0.0	0.2	0.0	27.8	282.6
1972	38.7	118.1	304.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	14.2	477.0
1973	78.5	33.2	162.3	9.3	0.0	0.0	0.0	0.0	5.5	2.3	4.9	8.2	304.2
1974	19.0	130.9	121.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8	24.0	298.0
1975	10.0	53.0	105.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	59.3	227.5
1976	65.2	149.7	39.6	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	259.3
1977	34.5	209.5	109.2	17.7	0.0	0.0	0.0	0.0	0.0	0.0	9.8	40.1	420.8
1978	19.1	25.8	93.8	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.8	4.2	146.7
1979	2.5	11.5	155.8	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	174.6

Estación:	Santiago de Tuna - 155224					Long	itud:	-11.98	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación	total me	ensual	(mm)	Latit	ud:	-76.52	''S''		Prov.:	Huaroo	chiri
						Altitu	ud:	2926	m.s.n	.m.	Dist.:	Santiag	go Tuna
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1980	29.4	37.8	42.0	13.3	0.0	0.0	0.0	0.0	0.0	3.5	2.1	2.9	131.0
1981	37.1	121.7	179.8	4.4	0.4	0.0	0.0	0.0	0.0	0.0	1.7	40.8	385.9
1982	37.2	236.1	52.3	22.2	0.0	0.0	0.7	0.9	S/D	0.4	27.2	0.0	S/D
1983	67.8	75.1	345.0	4.3	5.8	0.0	0.0	0.0	0.0	0.3	18.0	83.9	600.2
1984	289.2	291.4	78.9	4.3	0.1	0.0	0.0	0.0	0.0	1.5	46.2	14.5	726.1
1985	29.5	52.4	92.7	4.5	6.5	0.0	0.0	0.3	0.0	0.0	19.1	69.7	274.7
1986	145.3	186.8	197.7	37.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64.3	632.0
1987	31.1	21.5	118.7	S/D	0.0	0.0	0.0	0.0	0.0	0.0	0.9	85.4	S/D
1988	106.6	86.7	25.6	16.1	4.8	0.0	0.0	0.0	0.0	5.5	0.0	66.5	311.8
1989	206.4	235.0	202.1	44.3	0.0	0.0	0.0	0.0	0.0	14.0	0.0	5.4	707.2
1990	15.8	5.9	42.1	0.5	0.0	0.0	0.0	0.0	0.0	2.1	10.0	142.9	219.3
1991	64.9	7.2	169.7	4.8	0.5	0.0	0.0	0.0	0.0	3.1	32.3	0.6	283.1
1992	6.4	3.8	7.8	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	3.3	22.1
1993	13.1	219.3	111.3	19.6	1.7	0.0	0.0	0.0	0.0	0.0	0.3	41.9	407.2
1994	84.0	88.0	62.4	6.1	1.2	0.0	0.0	0.0	0.0	0.0	10.7	37.3	289.7
1995	41.6	32.5	63.2	10.4	0.0	0.0	0.0	0.0	0.0	1.9	40.1	23.0	212.7
1996	70.9	92.5	63.1	23.5	7.6	0.0	0.0	0.0	0.0	0.0	2.4	8.5	268.5
1997	40.8	41.4	21.3	10.1	0.0	0.0	0.0	1.5	9.2	10.6	21.2	62.1	218.2
1998	68.4	135.7	135.4	8.2	0.8	0.0	0.0	0.0	0.0	0.0	1.5	106.3	456.3
1999	46.8	113.5	50.0	33.0	6.2	0.0	0.0	0.0	0.6	13.2	10.0	27.0	300.3
2000	74.5	132.0	83.9	20.6	0.0	0.0	0.0	0.0	1.4	5.7	6.2	29.7	354.0
2001	80.7	86.6	102.5	46.2	0.0	0.0	0.0	0.0	0.0	0.6	26.2	1.3	344.1
2002	13.5	124.8	68.3	47.0	6.8	0.0	0.0	0.0	0.0	12.7	25.3	15.7	314.1
2003	24.3	31.3	54.9	0.0	0.0	0.0	2.9	0.0	0.0	2.2	1.0	80.8	197.4
2004	9.5	91.1	31.3	29.2	0.0	0.0	0.0	0.0	1.9	0.4	2.0	31.4	196.8
2005	29.0	54.0	S/D	4.3	0.0	0.0	0.0	0.0	0.0	S/D	0.0	42.3	S/D
2006	65.7	96.6	77.3	60.6	0.6	0.0	0.0	0.0	S/D	0.8	0.0	38.6	S/D
2007	22.4	53.3	107.8	52.2	0.0	0.0	0.0	0.0	0.0	1.2	4.5	18.4	259.8
2008	62.9	142.9	158.7	68.6	0.0	0.0	0.0	S/D	S/D	S/D	S/D	S/D	S/D
2009	106.2	134.4	145.9	44.1	0.4	0.0	0.0	0.0	0.0	9.9	10.4	11.9	463.2
2010	15.8	27.1	29.5	13.1	0.0	0.0	0.0	0.0	1.0	0.0	5.1	22.9	114.5
2011	66.9	54.1	55.5	22.9	0.0	0.0	3.2	0.0	0.0	0.0	11.3	9.2	223.1
2012	40.7	99.1	81.4	29.8	2.8	0.0	0.0	0.0	1.5	11.6	3.6	18.2	288.7
2013	12.5	108.2	62.7	1.7	4.2	0.0	0.0	0.0	0.0	0.0	4.1	1.5	194.9
2014	39.8	54.9	114.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	17.9	24.7	254.9
2015	51.0	73.2	175.4	12.1	0.0	0.0	0.0	0.0	0.0	2.6	2.0	2.0	318.3
2016	13.3	46.4	37.2	30.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	131.3

Registro Histórico - Estación Santiago de Tuna

Estación:	Santia	go de Ti	una - 15	55224		Long	itud:	-11.98	''W''		Dpto.:	Lima	
Parámetro:	Precip	itación	total me	ensual	(mm)	Latit	ud:	-76.52	''S''		Prov.:	Huaroc	chiri
						Altitu	ıd:	2926	m.s.n	.m.	Dist.:	Santiag	go Tuna
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
2017	279.4	232.4	310.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	825.0
2018	52.3	64.1	81.9	21.5	10.0	4.0	0.0	0.0	0.0	2.2	2.0	3.7	241.7
2019	95.6	112.4	25.7	0.0	0.0	0.0	0.0	0.0	0.5	12.4	1.0	15.3	262.9
2020	110.4	41.7	67.0	S/D	S/D	S/D	S/D	0.0	0.6	1.5	5.4	56.3	S/D
2021	98.5	21.3	87.2	16.1	1.3	0.0	0.0	0.0	1.0	3.2	5.4	5.6	239.6
Promedio	60.9	95.1	100.7	16.4	1.3	0.1	0.1	0.1	0.8	3.3	7.5	27.8	315.1
Des. Est.	61.3	73.7	71.6	16.9	2.5	0.5	0.6	0.3	3.2	5.0	10.5	30.3	168.4
Máximo	289.2	320.4	345.0	68.6	10.0	4.0	3.2	1.5	21.2	23.2	46.2	142.9	825.0
Mínimo	0.1	3.8	7.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.1
Nº Datos	57	56	57	56	57	57	57	57	55	56	57	57	50
S/D: Sin Dato													
FUENTE: SEN	NAMHI												

Registro Histórico - Estación Santiago de Tuna

Estación: Parámetro:	Von Humboldt - 000610 Precipitación total mensual (mm)						Longitud: Latitud:		-12.08 "W" -76.94 "S"		Dpto.: Prov.:	: Lima : Lima	
						Altitud:		247 m.s.n.m.		Dist.:	La Molina		
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1964	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S/D	S/D	S/D	S/D	S/D	S/D
1965	S/D	S/D	S/D	S/D	S/D	0.0	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1966	0.0	0.0	0.0	0.0	0.0	0.2	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1967	S/D	S/D	S/D	S/D	S/D	S/D	27.0	2.4	3.2	1.1	0.5	2.0	S/D
1970	17.4	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1980	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1981	3.8	0.2	0.0	5.3	2.8	1.2	1.1	4.8	1.2	0.8	0.0	S/D	S/D
1982	0.5	0.9	0.5	1.0	4.1	2.0	0.6	3.9	1.8	0.2	4.2	0.0	19.7
1983	3.4	2.2	0.8	0.2	0.0	0.0	1.6	1.5	1.0	0.1	0.7	2.1	13.6
1984	2.2	2.2	0.5	0.8	0.7	2.1	0.4	0.4	0.4	S/D	2.2	0.0	S/D
1985	0.1	1.1	1.3	0.0	0.0	0.9	2.8	0.7	2.6	0.7	S/D	0.2	S/D
1986	0.5	0.0	1.0	0.0	0.3	0.4	0.8	1.4	1.2	1.2	0.8	0.3	7.9
1987	0.2	0.4	0.2	0.5	0.7	1.6	1.4	2.2	1.1	1.9	1.1	0.5	11.8
1988	0.0	0.5	0.0	0.0	0.2	0.9	0.1	2.2	2.4	0.0	0.0	0.3	6.6
1989	0.1	1.4	1.1	0.1	0.7	1.9	2.1	2.3	1.6	0.7	0.8	0.1	12.9
1990	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1991	0.4	0.0	0.1	0.5	2.7	2.1	1.9	2.7	0.6	7.4	0.1	0.9	19.4

Tabla N° 43: Registro histórico de precipitaciones
– Estación Von Humbold

Registro Histórico - Estación Von Humboldt

Estación:	Von H	umboldt	- 000610			Long	itud:	-12.08	''W''		Dpto.:	Lima	
Parámetro:	Precipi	itación to	otal mens	n)	Latitud:		-76.94	"S"		Prov.:	Lima		
						Altit	ud:	247	m.s.n	.m.	Dist.:	La M	olina
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1992	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
1993	0.3	0.0	0.2	0.0	1.3	1.6	2.3	1.4	1.7	0.0	0.5	0.0	9.3
1994	1.6	0.0	2.1	0.7	1.1	0.5	0.3	0.7	0.3	0.9	0.3	0.3	8.8
1995	0.3	0.2	0.2	0.5	0.5	1.5	S/D	3.0	1.8	1.4	0.2	0.0	S/D
1996	0.0	2.0	0.0	0.1	0.3	4.4	2.6	0.8	1.9	0.0	1.0	0.1	13.2
1997	S/D	S/D	S/D	0.5	1.7	0.2	0.2	6.1	6.4	0.2	2.2	0.1	S/D
1998	2.2	2.8	4.1	0.3	3.5	4.0	5.0	3.4	1.4	1.2	0.3	0.1	28.3
1999	0.0	4.0	0.0	0.0	0.2	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2000	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2001	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2002	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2003	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2004	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2005	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2006	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2007	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2008	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2009	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2010	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2011	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2012	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2013	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2014	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2015	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2016	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2017	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2018	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2019	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2020	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
2021	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D
Promedio	1.6	1.0	0.6	0.5	1.0	1.3	2.8	2.2	1.7	1.0	0.9	0.4	12.6
Des. Est.	3.8	1.2	1.0	1.2	1.3	1.3	6.2	1.6	1.4	1.7	1.1	0.7	7.3
Máximo	17.4	4.0	4.1	5.3	4.1	4.4	27.0	6.1	6.4	7.4	4.2	2.1	28.3
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nº Datos	21	20	20	20	20	20	18	18	18	17	17	17	12
S/D: Sin Date	5												

Registro Histórico - Estación Von Humboldt

FUENTE: SENAMHI

Estación:	Mode	lo - 000	617			Long	itud:	-12.08	''W''		Dpto.:	Lima	
Parámetro:	Precipitación total mensual (mm)					Latitud:		-77.04	''S''		Prov.:	Lima	
						Altitud:		123	m.s.n.m.		Dist.:	Jesus Maria	
Año	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Set.	Oct.	Nov.	Dic.	Total
1975	S/D	S/D	S/D	S/D	S/D	S/D	2.7	2.1	1.6	1.8	0.1	0.3	S/D
1976	0.7	1.9	0.1	0.0	2.8	0.7	0.2	2.3	4.8	1.3	0.0	0.4	15.2
1977	0.0	0.3	0.0	0.0	0.6	0.8	3.2	2.1	2.4	1.3	0.6	0.9	12.2
1978	0.1	0.0	0.3	0.2	0.0	0.0	0.4	3.5	3.6	1.5	0.2	0.0	9.8
1979	0.0	0.0	1.6	0.0	0.2	1.1	0.4	4.3	1.3	2.1	0.8	0.6	12.4
1980	0.0	0.0	0.0	0.0	0.4	1.7	4.4	1.0	2.5	0.5	0.3	0.6	11.4
1981	2.8	0.3	0.0	0.7	0.0	0.5	0.3	6.3	0.7	0.3	0.0	0.0	11.9
1982	0.0	0.0	0.0	0.0	0.0	0.2	1.0	2.2	1.5	0.0	5.6	1.7	12.2
1983	0.7	1.0	0.4	2.7	2.2	0.8	3.1	3.5	2.0	0.9	0.1	0.1	17.5
1984	0.0	1.0	0.5	0.0	0.0	1.4	0.0	2.0	0.3	0.4	1.3	0.7	7.6
1985	0.0	0.2	0.3	0.0	0.0	0.4	2.0	0.7	3.8	1.9	1.0	0.9	11.2
1986	0.0	0.3	0.2	0.0	0.3	2.5	1.7	2.6	4.9	2.7	0.2	0.3	15.7
1987	0.0	0.0	0.0	0.0	0.1	0.6	1.1	2.8	0.9	0.3	0.3	0.0	6.1
1988	0.0	1.7	0.0	0.0	0.0	0.4	0.8	5.2	1.7	0.2	0.7	2.0	12.7
1989	0.1	0.5	0.2	0.0	0.2	1.2	0.7	2.9	2.8	1.0	1.1	0.0	10.7
1990	0.0	0.0	0.0	0.0	1.2	2.8	1.8	2.4	2.2	1.5	0.0	1.7	13.6
1991	0.1	0.0	0.0	0.0	0.8	1.1	3.0	2.0	1.4	0.8	0.6	0.0	9.8
1992	0.0	0.0	0.0	0.0	0.0	1.5	2.7	3.8	2.8	0.1	0.2	0.0	11.1
1993	0.0	0.0	0.0	0.0	0.7	0.7	0.7	0.9	1.0	0.0	0.3	0.6	4.9
1994	1.0	0.0	0.8	0.0	0.0	1.1	0.4	1.1	0.3	0.7	0.0	0.0	5.4
1995	0.2	0.0	0.0	0.0	0.0	0.0	1.8	1.8	0.6	0.0	0.0	0.0	4.4
1996	S/D	S/D	S/D	S/D	S/D	S/D	1.8	0.8	0.9	S/D	1.5	1.0	S/D
1997	0.0	1.2	0.0	0.0	1.0	0.0	0.0	1.9	5.9	0.1	0.8	1.9	12.8
1998	4.5	2.6	0.0	0.6	1.0	1.5	1.3	3.6	0.7	0.9	0.3	0.0	17.0
1999	0.0	2.9	0.0	0.0	0.0	0.0	1.0	0.4	0.0	0.0	0.0	0.0	4.3
Promedio	0.4	0.6	0.2	0.2	0.5	0.9	1.5	2.5	2.0	0.8	0.6	0.5	10.9
Des. Est.	1.1	0.9	0.4	0.6	0.7	0.8	1.2	1.4	1.6	0.8	1.1	0.7	3.9
Máximo	4.5	2.9	1.6	2.7	2.8	2.8	4.4	6.3	5.9	2.7	5.6	2.0	17.5
Mínimo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	4.3
Nº Datos	23	23	23	23	23	23	25	25	25	24	25	25	23

Tabla N° 44: Registro histórico de precipitaciones- Estación Modelo

Registro Histórico - Estación Modelo

S/D: Sin Dato

FUENTE: SENAMHI