Exporting	Elasticity	1990 1990 Export Export Prices Volumes —		Est Excess Supp	Estimated Excess Supply Functions		
or Region ¹	Supply (Eesj)	(Pxj) ²	(Qxj)	c ³	d ⁴		
		(\$/M.T.)	(1,000 M.T.)				
Argentina	3.474	372.3	70	265.14	1.531		
Australia	0.984	363.5	470	-5.81	0.786		
Burma	3.441	270.0	186	191.54	0.422		
China	49.294	241.7	300	236.80	0.016		
India	153.899	467.5	420	464.46	0.007		
Italy	0.420	618.1	525	-852.90	2.802		
Pakistan	0.453	325.0	904	-392.25	0.793		
Spain	2.656	606.4	110	378.09	2.076		
Thailand	1.272	270.4	3927	57.77	0.054		
U.S.	1.126	324.9	2424	36.46	0.119		
Uruguay	0.269	356.9	250	-969.87	5.307		
Vietnam	2.641	250.0	1500	155.33	0.063		
O.S.America	11.918	415.7	179	380.82	0.195		

Table 11. The Estimated Excess Supply Functions for Exporting Countries or Regions, Used by the Reactive Programming Model

¹ See footnote of table 9 for regions' shorthand.
² Export prices (F.O.B.) were obtained from FAO Yearbook of Trade (1991), as follows: Px = Export Values/Export Volumes.
³ c = Pxj - dQxj
⁴ d = [(Pxj/Qxj)x(1/Eesj)]

$$Eedi = (Edi-Esi) \frac{Qdi}{Qmi} + Esi$$
(7)

where

- Eedi = elasticity of excess demand in importing country or region i
 - Edi = elasticity of domestic demand in importing country or region i
 - Esi = elasticity of domestic supply in importing country or region i
- Qdi = level of domestic demand of country or region i, for 1990
- Qmi = excess of demand (imports) of country or region i, for 1990

Thus, to calculate the elasticities of excess of demand, Eedi, for 43 importing countries or regions, elasticities of domestic supply and demand in each importing country or region (Esi and Edi), domestic demand of each importing country or region (Qdi), and export volumes of each importing country or region (Qmi) were needed.

Domestic demands (Qdi) and export volumes (Qmi) were taken directly from data reported by the Foreign Agricultural Service (U.S.D.A., 1991). Domestic demand and supply price elasticities were taken from U.S.D.A's Trade Liberalization Database (Sullivan et al., 1989; Gardiner et al., 1989), and complemented by other sources (Rojko et al., 1978; Liu and Roningen, 1985; Tyers and Anderson, 1986; Zhang, 1990b).

Similar to the excess of supply calculations, the

elasticities of excess of demand for each importing country or region were estimated by equation (7). The results are shown in Table 12.

Linear price-dependent excess demand function were also estimated for each importer, resulting in equations with the following form:

$$Pmi = a + b Qmi$$
(8)

- where Pmi : export price (C.I.F.) of importing countries or regions in 1990, derived from total import values divided by import volumes for each importing country or region i
 - Qmi : import quantities in 1990 (1000 MT), for each importing country or region i

Similarly, coefficients a and b were derived from the formula of the price elasticities of demand and the values of the variables specified in equation (8), as follows:

$$b = \frac{\text{Pmi}}{\text{Qmi}} \cdot \frac{1}{\text{Eedi}}$$
(9)

and a = Pmi - bQmi (10)

After the intercept and slope coefficients were derived, the excess demand equations for 43 importing countries or regions were calculated from above formulas, as shown in Table 13.

Estimation of Ocean Transportation Costs

The model constraint requiring prices at import points and export points to differ by the transportation cost between the two points is an important component of the

Importing	Elastici	ities of ²	1990 Domestic	1990 Import	Elasticity of Excess
Countries	Domestic	Domestic	Demand	Volume	Demand ³
or Region ¹	Demand (Edi)	Supply (Esi)	(Odi) ³	(Omi)	(Eedi)
			(~ /	~ /	
			(1,000	M.T.)	
Angola	-0.30	0.30	63	50	-0.456
Bangladesh	-0.03	0.04	17864	100	-12.465
Brazil	-0.45	0.40	7400	405	-15.131
Cameroon	-0.30	0.05	114	50	-0.748
Canada	-0.25	0.10	130	130	-0.250
Cuba	-0.05	0.15	545	200	-0.395
Ghana	-0.30	0.30	142	75	-0.836
Guinea	-0.30	0.30	461	120	-2.005
Hong Kong	-0.07	0.07	395	400	-0.068
Indonesia	-0.22	0.20	28185	60	-197.095
Iran	-0.30	0.50	1840	850	-1.232
Iraq	-0.30	0.50	585	360	-0.800
Kuwait	-0.30	0.50	85	90	-0.256
Liberia	-0.30	0.05	283	120	-0.775
Madagascar	-0.30	0.05	163	155	-0.318
Malaysia	-0.33	0.50	1500	367	-2.892
Mauritania	-0.30	0.05	90	60	-0.475
Mexico	-0.40	0.65	440	130	-2.904
Nigeria	-0.51	0.30	740	200	-2.697
Peru	-0.20	0.15	780	246	-0.960
Philippines	-0.33	0.25	6360	360	-9.997
Reunion	-0.30	0.30	50	50	-0.300
Saudi Arabia	-0.30	0.50	525	525	-0.300
Senegal	-0.30	0.05	495	390	-0.394
Sierra Leone	-0.30	0.30	416	110	-1.969
				1000	

Table 12.	Derivation	of Price	Elasticiti	ies of	Excess	Demand	for	Importir	g Countr:	ies
	or Regions,	Used to	Estimate H	Price-d	lependen	t Exces	s De	emand Fur	octions	

(Continued)

Importing	Elastici	ties of ²	1990 Domostic	1990	Elasticity
Countries or Region ¹	Domestic Demand (Edi)	Domestic Supply (Esi)	Demand (Qdi) ³	Volume (Qmi)	Demand ³ (Eedi)
			(1,000)	M.T.)	
Singapore Somalia South Africa Sri Lanka Syria Taiwan Tanzania U.A.Emirates Ex-U.S.S.R. Zaire E.C.10 Ot.W.Europe East Europe Ot.C.Am/Carib.	$\begin{array}{c} -0.05 \\ -0.30 \\ -0.30 \\ -0.30 \\ -0.25 \\ -0.30 \\ -0.30 \\ -0.15 \\ -0.30 \\ -0.50 \\ -0.44 \\ -0.15 \\ -0.65 \end{array}$	0.07 0.30 0.33 0.04 0.50 0.20 0.30 0.50 0.45 0.30 0.35 0.20 0.30 0.30 0.58	195 98 300 1700 135 1573 537 220 1914 255 981 164 489 1144	$220 \\ 90 \\ 300 \\ 200 \\ 140 \\ 4 \\ 50 \\ 220 \\ 400 \\ 80 \\ 1090 \\ 152 \\ 284 \\ 346$	$\begin{array}{r} -0.036\\ -0.353\\ -0.300\\ -2.850\\ -0.271\\ -176.763\\ -6.144\\ -0.300\\ -2.421\\ -1.613\\ -0.415\\ -0.491\\ -0.475\\ -3.487\end{array}$
Ot.S.S.Africa Ot.S.Asia Ot.E.As./Oc. Ot.Md.E./N.Af.	-0.30 -0.50 -0.15 -0.20	0.30 0.40 0.20 0.15	1772 2245 2769 2361	853 85 266 866	-0.946 -23.371 -3.443 -0.804

Table 12. (Continued)

¹ See footnote of table 9 for regions' shorthand.

² (Sullivan et al., 1989; Gardiner et al., 1989; Rojko et al., 1978; Liu and Roningen, 1985; Tyers and Anderson, 1986; Zhang, 1990b).

³ Domestic demand includes apparent consumption, annual stock changes, and allowances for feed, seed, and waste.

Importing	Elasticity	1990 Import ²	1990 Import	Est Excess Dema	imated and Functions
Countries or Region ¹	of Excess Prices Demand (Eedi) (Pmi)		Volumes (Qmi)	a ³	b ⁴
		(\$/M.T.)	(1,000 M.T.)	an a tha Call Shekaran dan dalaman	
Angola	-0.456	268.4	50	857.00	-11.772
Bangladesh	-12.465	314.8	100	340.06	-0.253
Brazil	-15.131	363.0	405	386.99	-0.059
Cameroon	-0.748	294.5	50	688.22	-7.874
Canada	-0.250	390.4	130	1952.00	-12.012
Cuba	-0.395	229.8	200	811.57	-2.909
Ghana	-0.836	300.0	75	658.85	-4.785
Guinea	-2.005	337.2	120	505.38	-1.401
Hong Kong	-0.068	400.0	400	6260.81	-14.652
Indonesia	-197.095	285.0	60	286.45	-0.024
Iran	-1.232	354.1	850	641.57	-0.338
Iraq	-0.800	364.7	360	820.58	-1.266
Kuwait	-0.256	617.6	90	3034.30	-26.852
Liberia	-0.775	369.2	120	845.33	-3.968
Madagascar	-0.318	233.0	155	965.56	-4.726
Malaysia	-2.892	302.7	367	407.35	-0.285
Mauritania	-0.475	220.0	60	683.16	-7.719
Mexico	-2.904	351.0	130	471.87	-0.930
Nigeria	-2.697	272.0	200	372.85	-0.504
Peru	-0.960	344.9	246	704.26	-1.461
Philippines	-9.997	215.4	360	236.95	-0.060
Reunion	-0.300	386.3	50	1673.97	-25.753
Saudi Arabia	-0.300	565.0	525	2448.33	-3.587
Senegal	-0.394	230.0	390	813.41	-1.496

Table 13. The Estimated Excess Demand Functions for Importing Countries or Regions, Used by the Reactive Programming Model

(Continued)

Importing	Elasticity	1990 Import ²	1990 Import Volumos	Est Excess Dema	imated and Functions
or Region ¹	Demand (Eedi)	(Pmi)	(Qmi)	a ³	b ⁴
		(\$/M.T.)	(1,000 M.T.)		
Sierra Leone	-1.969	354.5	110	534.53	-1.637
Singapore	-0.036	370.3	220	10553.55	-46.288
Somalia	-0.353	350.0	90	1340.57	-11.006
South Africa	-0.300	294.9	300	1277.90	-3.277
Sri Lanka	-2.850	268.4	200	362.58	-0.471
Syria	-0.271	334.3	140	1565.93	-8.797
Taiwan	-176.763	352.0	4	353.99	-0.498
Tanzania	-6.144	352.9	50	410.34	-1.149
U.A. Emirates	-0.300	387.1	220	1677.43	-5.865
Ex-U.S.S.R.	-2.421	371.5	400	524.95	-0.384
Zaire	-1.613	445.2	80	721.29	-3.451
E.C.10	-0.415	679.7	1090	2317.53	-1.503
Ot.W.Europe	-0.491	536.5	152	1630.22	-7.196
East Europe	-0.475	425.7	284	1322.24	-3.157
Ot.C.Am/Carib.	-3.487	324.7	346	417.82	-0.269
Ot.S.S.Africa	-0.946	297.0	853	610.81	-0.368
Ot.S.Asia	-23.371	352.0	85	367.06	-0.177
Ot.E.As./Oc.	-3.443	317.6	266	409.83	-0.347
Ot.Md.E./N.Af.	-0.804	367.1	866	823.57	-0.527

Table 13. (Continued)

¹ See footnote of table 9 for regions' shorthand. ² Import prices (C.I.F.) were obtained from FAO Yearbook of Trade (1991), as follows: Pmi = Import Values/Import Volumes. ³ a = Pi - bQmi ⁴ a = Pi - bQmi

 $4 \text{ b} = (\text{Pmi}/\text{Qmi}) \times (1/\text{Eedi})$

spatial equilibrium model. Transportation costs are a main component of our spatial equilibrium problem.

Maritime transportation cost data were not available for all possible trade routes in the model. Using data compiled by Maritime Research Inc. for 1990, estimates were made based on regression analysis in which transportation cost was a function of distance, and a dummy variable. This dummy variable represents the difference between ocean freight rates for U.S. flag and foreign vessels.

The estimated equation and relevant statistics are as follows:

Ln TCij = -0.266 + 0.4872 Ln DISTij + 0.603 Fij (0.67) (5.92) (5.01) $R^2 = 0.65$ Std.Error = 0.37 d.f. = 37

where:

- TCij = ocean transportation cost (in U.S. dollars/M.T.)
 from exporting country or region i to importing
 country or region j
- Fij = dummy variable for shipments occurring on U.S.
 flag vessels. This value was 0 for foreign
 flag vessels, and 1 for U.S. flag vessels

Ln = natural logarithm

The numbers appearing in parentheses below the estimated coefficients are their t-ratios, which all were statistically significant at the 95 percent probability level. Table 35 in appendix section shows the observations used to run the regression model.

It must be mentioned that this mixed logarithm specification (including a double logarithm and the dummy variable for type of flag vessel) was better than the quadratic or linear function, in terms of better fitness (R² adjusted), more efficiency (less variability of the estimators of the parameters), and statistical significance of the estimators.

The use of this mixed logarithm equation to estimate transportation costs implies the existence of increasing costs, but at a decreasing rate, when distance is increased.

For foreign flag shipment, the log of the ocean transportation cost function was as follows:

Ln TCij = -0.266 + 0.4872 Ln DISTij

For U.S. flag shipments, the log of the ocean transportation cost function was as follows:

Ln TCij = 0.337 + 0.4872 Ln DISTij

After the ocean transportation costs were estimated in logarithmic values, these were transformed to real values (U.S. dollars per metric ton). Tables 36 and 37 in appendix section depict distances and costs of transportation used to obtain results for the base solution of minimum cost, in which no shipment is obligated to be loaded on specific flag vessel conditions. This was done to have a base comparison for evaluation of the effects of U.S. Cargo Preference Law.

In reality, foreign countries never use U.S. flag vessels. The U.S. flag vessels are used only for U.S. rice exports, in a certain percentage given by the cargo preference policies. The distances between the ports were taken from the Reed's Marine Distance Tables (Caney and Reynolds, 1978).

Postoptimality Analysis

The main objective of this study was to analyze the effects of changes in ocean freight rates on flows of rice trade. Therefore, postoptimality analysis was used, which permitted for variation in ocean freight rates. Four different scenarios, presented in the next chapter, were utilized for the comparison of ocean freight rates in different conditions with the results obtained from an optimum solution of minimum transportation cost. For this purpose, the reactive programming package for the Mississippi State University main frame computer (RP-MSU-05-062281) was utilized.

Summary

The introduction of demand and supply functions in a spatial equilibrium context can be traced back to articles by Enke in 1951, and Samuelson in 1952. Solutions to practical problems of this type having linear demand and supply functions have been found using quadratic programming (Takayama and Judge, 1964), and for problems with great flexibility in terms of supply and demand relations, using reactive programming. The earliest version of the reactive programming model was reported by Tramel and Seale in 1959.

Reactive programming, the algorithm used in this study, has a wide applicability and flexibility. Demand and supply functions may be entered in linear, log-linear, or log-log form. Supplies and demands may also be fixed in some or all regions; in fact, reactive programming has been also designed to solve transportation problems as a special case in which all supplies and demands are given at fixed quantities.

There were three basic components of reactive programming in this study: excess supply functions, excess demand functions, and transportation costs. Excess supply and demand functions were indirectly estimated using secondary information obtained from past studies (elasticities of domestic supply and demand, imports, exports, demand, and supply for each of the countries or regions participating in the analysis).

Transportation cost data were not available for all possible international routes of rice shipment. Thus, estimation of shipping costs became a necessary step before the trade model was established. Logarithm functions along with the use of a dummy variable which related ocean freight rates to distances between ports of rice exporting and

importing, were used to estimate values of ocean freight rates for the all routes. About 65 percent of the total variation of ocean freight rates was explained by variations in the distances between ports.

CHAPTER IV

ANALYSIS OF RESULTS

Results of the analysis of ocean freight rates in the international rice trade are presented below. Four different scenarios were selected. In each scenario, models representing different levels of ocean freight rates variation were analyzed and compared to a base solution, estimated in base of minimum transportation costs, without any kind of preferences in terms of specific flag vessels.

The first section presents a comparative analysis of the actual flows, prices and quantities of rice shipped and received from one country to other, as compared to the optimum solution obtained with the reactive programming algorithm, belonging to the base solution. Second, the effects of U.S. cargo preferences policies are evaluated in terms of their impact on the optimum market shares of rice exporting countries or regions. Third, postoptimality analysis was conducted in order to evaluate changes in the level of ocean transportation costs of the major four rice exporting countries. The last section also contains postoptimality analysis regarding the effects of simultaneous changes in ocean freight rates (for all the exporting countries and regions) on the optimum flows, volumes traded and prices of rice, obtained from the base

solution. Special emphasis has been given to the competitive position of the U.S.

The Base Solution

The base solution is one in which optimum results for 1990 rice trade flows were obtained from the Reactive Programming model. For obtaining these results, excess supply and demand functions were estimated from other studies (as mentioned in the methodological section), and transportation costs were those in which no cargo would be obligated to be released on specific flag vessel conditions. This was done to be able to evaluate the effect of different levels of action of the U.S. cargo preference policy on the optimum equilibrium position of the international rice market.

The main objective of this study was to evaluate the effect of changes in ocean freight rates with respect to an optimum equilibrium position obtained in the base solution, thus ocean transportation costs were considered to be the only factors influencing the optimum solution.

Scenario I: Actual Trade Versus Optimum Trade

In this section, results of the actual trade for 1990 are compared to results obtained in the base solution, in which net returns were maximized.

Trade Volumes

Actual rice volume of trade, and the results of optimum rice volumes from the base solution, for exporting countries or regions, are presented in Table 14. In general we can see that the optimum trade volume of the base solution (12,252 M.T.) was larger than that representing the total actual volume of rice trade (11,265 M.T.)

In relation to individual countries or regions, according to the base solution, some exporting countries like India, Spain, and South American countries (except Argentina), simply would stop exporting. Other countries such as Argentina, Australia, and Italy would show important decreasing values in their exports; these estimated values were -52.8, -22.5, and -21.1 percent, respectively. Under the conditions of the base solution, the U.S. would experience a market share reduction equivalent to -11.9 percent, from the actual level of 2,424 M.T. in 1990 to an optimum level of 2,135 M.T., under the base plan. In contrast, the optimum export volume for China would increase notably, from only 300 M.T. to 2,053 M.T. Results from the base solution revealed that rice exports from Burma and Vietnam also would increase by 25.8 and 26.9 percent, respectively. Thailand would slightly increase its exports as a result of the optimum plan (1.8 percent).

As a consequence of increased exports in the optimum solution of the rice trade model, China's market share

Exporting Countries or Region ¹	Actual Exports (A) ²	Optimum Exports (B) ³	% Change from Actual Exports ((B-A)/A)*100
	(100	0 M.T.)	(%)
Argentina	70	33 (0.3)	-52.8
Australia	470	364 (3.0)	-22.5
Burma	186	234 (1.9)	25.8
China	300 (2.7)	2053 (16.8)	584.3
India	420	0	-100.0
Italy	525 (4.7)	414 (3.4)	-21.1
Pakistan	904 (8.0)	876 (7.2)	-3.1
Spain	110 (1.0)	0(0.0)	-100.0
Thailand	3927 (34.9)	3996 (32.6)	1.8
U.S.	2424 (21.5)	2135 (17.4)	-11.9
Uruguay	250 (2.2)	243 (2.0)	-2.8
Vietnam	1500 (13.3)	1904 (15.5)	26.9
O.S.America	179 (1.6)	0	-100.0
Total Volume	11265	12252	8.8

Table 14. Comparison of Trade Volumes and Market Share of Actual and Optimum Solution for Exporting Countries or Regions, 1990

¹ See footnote of Table 9 for regions' shorthand. ² (U.S.D.A., 1991). ³ Results of the base solution.

⁴ Figures in parenthesis are market shares.

would increase from 2.7 to 16.8 percent of the total rice trade. Market shares for Burma and Vietnam also would increase, although more slightly than China. Argentina, Australia, and other South American countries are regions with reduced market share in the optimum model (Table 14). The competitive position of the U.S. rice industry appear to be relatively weak, as compared to other main rice exporters such as China, Burma, Vietnam, and Thailand.

U.S. Trade Patterns

The actual and optimum U.S. rice trade patterns are shown in Table 15. One of the main differences between the actual trade and the optimum base solution was that the U.S. would ship to fewer countries and regions in the base solution than they actually did in 1990. In 1990, 30 countries and regions imported rice from the U.S. In the base optimum solution this number would be reduced to only 10.

Major actual rice importers of U.S. rice, such as Iraq, Saudi Arabia, the E.C., Middle East and other African countries, would be replaced, in the base solution, by countries like, Mexico, Peru, Senegal, Liberia, and Sierra Leone, and countries of the Central America and Caribbean region. In other cases, countries like Brazil and Mauritania seem to be potential importers for U.S. rice.

Importing Countries or Regions ¹	Actual (A) ²	Optimum (B)	% Change (B-A)/A*100
	(1,000 M.T.	milled equivalent)	
Angola	50		-100.0
Bangladesh	1		-100.0
Brazil		163	
Canada	121		
Ghana	25		-100.0
Guinea	25	120	380.0
Hong Kong	5		-100.0
Indonesia	8		-100.0
Iraq	222		-100.0
Kuwait	1		-100.0
Liberia	61	128	109.8
Madagascar	2		-100.0
Malaysia	1		-100.0
Mauritania		45	
Mexico	113	174	54.0
Peru	72	258	258.3
Saudi Arabia	191		-100.0
Senegal	38	320	742.1
Sierra Leone	15	121	232.0
Singapore	5		-100.0
South africa	109		-100.0
Syria	10		-100.0
U.A. Emirates	4		-100.0
Zaire	1		-100.0
E.C.10 ³	331	421	27.2
Ot.West Europe	86		-100.0
Eastern Europe	12		-100.0
Ot.C.Amer/Carib	. 353	385	9.1
Ot.S.S. Africa	177		-100.0
Others South As	ia 19		-100.0
Ot.E.Asia/Ocean	ia 3		-100.0
Ot.Md.East/N.Af	r. 363		-100.0
Total	2424	2135	-11.9

Table 15. Comparison of U.S. Trade Patterns of Actual and Optimum Solution (Base Solution)

¹ See footnote of Table 9 for regions' shorthand. (U.S.D.A., 1991).

³ E.C.10 in this case means all the E.C. countries except Spain and Italy, the two rice exporting countries.

International Import Prices

As shown in Table 16, the average equilibrium trade price obtained from the base solution would decrease, as compared to that of its actual 1990 level. This is consistent with the fact that in the base solution net returns were maximized. The world average equilibrium price for rice would be 318.3 dollars per metric ton in the base solution, 16.2 percent lower than the actual world average import price of 380 dollars per metric ton. Among the importing countries, the equilibrium import prices for all the African countries, Cuba, and Sri Lanka would be relatively higher than actual levels. On the contrary, for all other countries, the equilibrium import prices would be relatively lower than their actual price levels. It is important to note that of all the regions, the 10 importing countries of the E.C. would have the largest price decreases. E.C. import equilibrium prices would decrease by more than 50 percent (from 679.7 to 338.4 dollars respectively), as compared to actual price paid.

Scenario II. Effects of U.S. Cargo Preference Policies

As mentioned above in Chapter III, there were some differences in transportation costs between U.S. flag vessels and Non-U.S. flag vessels. The former are usually higher than the latter. In this study, the base solution has been a result of using the lowest cost level provided

Importing Countries or Regions ¹	Actual Import Prices (A)	Optimum Import ² Prices (B)	% Change from A (B-A)/A*100
	(C.I.F. \$	per M.T.)	
Angola	268.4	332.7	24.0
Bangladesh	314.8	307.4	-2.4
Brazil	363.0	339.7	-6.4
Cameroon	294.5	337.9	14.7
Canada	390.4	321.4	-17.7
Cuba	229.8	308.1	34.1
Ghana	300.0	336.0	12.0
Guinea	337.2	337.3	0.0
Hong Kong	400.0	289.8	-27.6
Indonesia	285.0	286.5	0.5
Iran	354.1	320.7	-9.4
Iraq	364.7	320.8	-12.0
Kuwait	617.6	320.7	-48.1
Liberia	369.2	338.4	-8.3
Madagascar	233.0	321.2	37.9
Malaysia	302.7	297.5	-1.7
Mauritania	220.0	335.4	52.5
Mexico	351.0	309.6	-11.8
Nigeria	272.0	338.2	24.3
Peru	344.9	326.9	-5.2
Philippines	215.4	237.0	10.0
Reunion	386.3	319.7	-17.2
Saudi Arabia	565.0	319.8	-43.4
Senegal	230.0	335.4	45.8
Sierra Leone	354.5	337.3	-4.9
Singapore	370.3	293.9	-20.6
Somalia	350.0	319.6	-8.7
South Africa	294.9	328.4	11.4
Sri Lanka	268.4	307.7	14.6
Syria	334.3	327.2	-2.1
Taiwan	352.0	286.9	-18.5
Tanzania	352.9	320.2	-9.3
U.A. Emirates	387.1	318.3	-17.8
Ex-U.S.S.R.	371.5	297.8	-19.8
Zaire	445.2	332.7	-25.3

Table 16. Comparison of World Trade Prices of Actual and Optimum Solutions for Importing Countries or Regions

(Continued)

Importing Countries or Regions ¹	Actual Import Prices (a)	Optimum Import ² Prices (b)	% Change from A (b-a)/a*100
	(C.I.F. \$	per M.T.)	
E.C.10 Others West. Europe Eastern Europe Ot.C.Am.and Caribb. Ot.S.S.Africa Others South Asia Ot.E. Asia/Oceania Ot.Md East/N.Africa	679.7 536.5 425.7 324.7 297.0 352.0 317.6 367.1	338.4 332.4 316.2 314.3 324.2 307.3 295.9 326.8	-50.2 -38.0 -25.7 -3.2 9.2 -12.7 -6.8 -11.0
Average ³	380.0	318.3	-16.2

Table 16. (Continued)

¹ See footnote of Table 9 for regions' shorthand. ² Results of the base solution. ³ Weighted by import volumes.

by using Non-U.S. flag vessels. The effects of different level of use of U.S. flag vessels, on the optimum solution is discussed in this section.

According to the cargo preference policy amendment of 1990 (U.S. Congress, 1990), 75 percent of governmentsponsored rice exports should have been shipped by U.S. flag vessels in 1990. Likewise, during 1989 and 1991, on average, government-sponsored rice programs accounted for 14.7 percent of the total exports in those years (Appendix Table 4). Therefore, the solutions discussed in this section have used 50, 75, and 100 percent of that 14.7 percent of rice shipped under government-sponsored programs.

Trade Volumes

Results of three alternative U.S. cargo preferences policies are shown in Table 17. As a whole, these results show that the effects of the U.S. cargo preference policies on the world trade volumes in the rice trade market are minor. However, among exporting countries, the U.S. export volumes would be affected, to some extent. Decreases ranged from 0.7 percent to 1.6 percent, if cargo preference policy dictated that 50 and 100 percent of government-sponsored traded rice, respectively, were shipped on U.S. flag vessels. If the U.S. flag vessels would ship 75 percent of the total U.S. government-sponsored rice exports, the actual case during 1990, total U.S. rice trade would decreased by

		Optimum E	xport Vol	umes	Percentage Change From Base Solution			
Exporting Countries	Base ¹ (A)	50% ² (B)	75% ² (C)	100% ² (D)	50% (B-A)/A*100	75% (C-A)/A*100	100% (D-A)/A*100	
		(1000 M.T	.)			(%)		
Argentina	33	33	33	33	0.0	0.0	0.0	
Australia	364	364	364	364	0.0	0.0	0.0	
Burma	234	234	234	234	0.0	0.0	0.0	
China	2053	2057	2061	2066	0.2	0.4	0.6	
Italy	414	414	414	414	0.0	0.0	0.0	
Pakistan	876	877	877	877	0.0	0.0	0.0	
Thailand	3996	3998	3999	4000	0.1	0.1	0.1	
U.S.	2135	2119	2109	2100	-0.7	-1.2	-1.6	
Uruguay	243	243	243	243	0.0	0.0	0.0	
Vietnam	1904	1905	1906	1907	0.1	0.1	0.2	
Total	12252	12244	12240	12238	-0.1	-0.1	-0.1	

Table	17.	Effects	of l	Differen	t Levels	s of	the	U.S.	Cargo	Preference	Policy	on	the
		Optimum	Rice	e Trade	Volumes	of	the	World	Market	-			

¹ Base solution.
² Refers to percentages of U.S. Government assisted shipments under cargo preference policies. 75% was the actual percentage for 1990.

1.2 percent, in relation to the optimum results of the base solution. China would be a potential beneficiary of U.S. rice export losses, resulting from U.S. cargo preference policies.

Results shown in Table 17 indicate that the larger increase in the percentage of U.S. flag vessels used for hauling the U.S. government handled rice exports, the larger the decrease in the U.S. rice export volumes in the world rice market. This is the case even if these decreases were proportionally smaller than those changes in the percentages of rice obligated to be shipped on U.S. flag vessels. Without financial support for the U.S. flag vessel users, the U.S. cargo preferences policy would reduce the U.S. export revenues.

U.S. Trade Patterns

The optimum U.S. rice trade patterns resulting from the base solution, along with additional solutions in which U.S. cargo preference policies would be enacted, are showed in Table 18. Rice importing countries of the E.C. and Brazil would be the U.S. partners most affected in their trade under the effect of the U.S. cargo preference policies analyzed. On the contrary, Mexico and other Central American and Caribbean countries would slightly increase their levels of rice imports, resulting from these policies.

	0	ptimum Im	port Volu	umes	Percentage Change From Base Solution			
Countries or Regions ¹	Base ² (A)	50% ³ (B)	75% ³ (C)	100% ³ (D)	50% (B-A)/A*100	75% (C-A)/A*100	100% (D-A)/A*100	
(1000 M.T.)					(%)			
Brazil Guinea Liberia Mauritania Mexico Peru Senegal Sierra Leone E.C.10 Ot.C.Am/Carib.	163 120 128 45 174 258 320 121 421 385	160 120 128 45 175 259 320 120 403 389	158 120 128 45 176 259 320 120 392 391	157 120 128 45 178 260 320 120 380 392	$ \begin{array}{c} -1.8\\ 0.0\\ 0.0\\ 0.0\\ 0.6\\ 0.4\\ 0.0\\ -0.8\\ -4.2\\ 1.0\\ \end{array} $	$ \begin{array}{r} -3.1 \\ 0.0 \\ 0.0 \\ 1.1 \\ 0.4 \\ 0.0 \\ -0.8 \\ -6.8 \\ 1.6 \end{array} $	$ \begin{array}{r} -3.7\\ 0.0\\ 0.0\\ 2.3\\ 0.8\\ 0.0\\ -0.8\\ -9.7\\ 1.8 \end{array} $	
Total	2135	2119	2109	2100	-0.7	-1.2	-1.6	

Table	18.	Comparison	of	U.S.	Trade	e Pat	ttern	Optimum	Solution	and	the	Results
		of Differer	nt L	evels	of	U.S.	Cargo	Prefere	ence Polio	су		

¹ See footnote of Table 9 for regions' shorthand.
² Base solution.
³ Refers to percentages of U.S. Government assisted shipments under cargo preference policies.

International Import Prices

The impact of the U.S. cargo preference policy on the equilibrium prices are shown in Table 19. This table reveals that no major impacts on the world rice trade prices result.

Equilibrium prices would decrease in Mexico and other Central American and Caribbean countries. For the rest of importing countries or regions there would be little change in terms of C.I.F. international price. The total average equilibrium price would be unaffected as a result of this kind of policy.

Scenario III: Effects of Changes in Ocean Freight Rates of Major Rice Exporting Countries

The effects of changes of ocean freight rates in specific rice exporting countries, on volumes of trade, trade patterns, and equilibrium import prices, are evaluated in this section.

Trade Volumes

Tables 20, 21, 22, and 23 show the optimum rice volumes resulting from different levels of change in rice ocean freight rates for major exporting countries, such as the U.S., Thailand, China, and Vietnam.

In general, as expected, decreasing ocean freight rates in a particular rice exporting country would have the effect

Tuur a sat i sa sa	Equ	lilibrium	Trade Pri	ces	% of Change from Base Solution			
Countries	Base	50% ²	75% ²	100% ²	50%	75%	100%	
or Regions ¹	(A)	(B)	(C)	(D)	(B-A)/A*100	(C-A)/A*100	(D-A)/A*100	
	(C	.I.F. \$ p	er M.T.)-			(%)		
Angola	332.7	333.1	333.3	333.5	0.1	0.2	0.2	
Bangladesh	307.4	307.7	307.9	308.1	0.1	0.2	0.2	
Brazil	339.7	340.2	340.4	340.7	0.1	0.2	0.3	
Cameroon	337.9	338.3	338.5	338.7	0.1	0.2	0.2	
Canada	321.4	321.8	322.0	322.2	0.1	0.2	0.2	
Cuba	308.1	304.8	303.1	302.2	-1.1	-1.6	-1.9	
Ghana	336.0	336.4	336.6	336.8	0.1	0.2	0.2	
Guinea	337.3	337.5	337.6	337.7	0.1	0.1	0.1	
Hong Kong	289.8	290.2	290.4	290.6	0.1	0.2	0.3	
Indonesia	286.5	286.5	286.5	286.5	0.0	0.0	0.0	
Iran	320.7	321.0	321.2	321.4	0.1	0.2	0.2	
Irag	320.8	321.1	322.3	323.3	0.1	0.5	0.8	
Kuwait Liberia Madagascar	320.7 338.4 321.2	321.0 339.0 321.5	321.2 339.0 321.7	321.4 339.2 321.9	0.1 0.2	0.2	0.2	
Malaysia Mauritania	297.5	297.8 335.5	298.0 335.4	298.2 335.4	0.1	0.2	0.2	
Mexico	309.6	306.5	304.8	303.1	-1.0	-1.6	-2.1	
Nigeria	338.2	338.5	338.7	338.9	0.1	0.1	0.2	
Peru	326.9	325.9	325.3	324.7	-0.3	-0.5	-0.7	
Philippines	237.0	237.0	237.0	237.0	0.0	0.0	0.0	
Reunion	319.7	320.0	320.2	320.4	0.1	0.2	0.2	
Saudi Arabia	319.8	320.0	320.2	320.4	0.1	0.2	0.2	

Table 19. Effects of Different Levels of U.S. Cargo Preferences Policy on the Equilibrium International Trade Prices

(Continued)

Tuporting	Equ	ilibrium	Trade Pri	ces	% of Change from Base Solution			
Countries or Regions ¹	Base (A)	50% ² (B)	75% ² (C)	100% ² (D)	50% (B-A)/A*100	75% (C-A)/A*100	100% (D-A)/A*100	
	(C	.I.F. \$ p		(%)				
Senegal Sierra Leone Singapore Somalia South Africa Sri Lanka Syria Taiwan Tanzania U.A. Emirates U.S.S.R. Zaire E.C.10 Ot.W. Europe East Europe Ot.C.Am/Carib. Ot.S.S.Africa Ot.S. Asia Ot.E.As./OC.	335.4 337.3 293.9 319.6 328.4 307.7 327.3 286.9 320.2 318.3 297.8 332.7 338.4 332.7 338.4 316.2 314.3 324.2 307.3 295.9	335.5 337.5 294.2 319.9 328.7 308.0 327.6 287.3 320.5 318.6 298.2 333.1 338.7 316.5 311.8 324.5 307.7 296.2	335.4 337.6 294.4 320.1 328.9 308.2 327.8 287.5 320.7 318.8 298.4 333.3 338.9 332.9 316.7 310.4 324.7 307.9 296.4	335.4 337.7 294.6 320.3 329.1 308.4 328.0 287.7 320.9 319.0 298.6 333.5 339.1 333.1 316.9 309.0 324.9 308.1 296.6	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 0.0\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{c} 0.0\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	
Ot.Md.E./N.Af.	326.8	327.1	327.3	327.5	0.1	0.2	0.2	
Average	318.3	318.3	318.4	318.5	0.0	0.0	0.1	

Table 19. (Continued)

¹ See footnote of Table 9 for regions' shorthand.
² Refer to percentages of trade shipped under U.S. cargo preference policies.
75 percent was the actual value for 1990.

Deres a set à se se		Optimum	Export V	/olumes	
Countries	- 50%	- 25%	Base ¹	+ 25%	+ 50%
		(1000 M.T.	.)	
Argentina Australia Burma China Italy Pakistan Thailand U.S.	32 361 230 1960 414 875 3968 2323 242	33 362 233 2006 414 875 3982 2230	33 364 234 2053 414 876 3996 2135 242	33 365 235 2102 414 877 4010 2040 242	34 367 237 2145 415 878 4024 1946 242
Vietnam	1880	1892	1904	1915	1927
Total	12285	12269 -(% Change	12252 from Bas	12234 se)	12216
Argentina Australia Burma China Italy Pakistan Thailand U.S. Uruguay Vietnam	-3.0 -0.8 -1.7 -4.5 0.0 -0.1 -0.7 8.8 -0.4 -1.3	$\begin{array}{c} 0.0 \\ -0.5 \\ -0.4 \\ -2.3 \\ 0.0 \\ -0.1 \\ -0.4 \\ 4.4 \\ -0.4 \\ -0.6 \end{array}$	$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 0 \end{array}$	$ \begin{array}{c} 0.0\\ 0.3\\ 0.4\\ 2.4\\ 0.0\\ 0.1\\ 0.4\\ -4.4\\ 0.0\\ 0.6\end{array} $	3.0 0.8 1.3 4.5 0.2 0.2 0.7 -8.9 0.0 1.2
Total	0.3	0.1	0.0	-0.1	-0.3

Table 20. Effects of Percent Changes in U.S.'s Ocean Freight Rates on the Optimum International Trade Volumes

Exporting		Optimum	Export V	Volumes	
Countries	- 50%	- 25%	Base ¹	+ 25%	+ 50%
		(1000 M.T.	.)	
Argentina Australia Burma China Italy Pakistan Thailand U.S. Uruguay	23 343 212 3216 410 865 3829 2001 239	28 354 223 2652 412 870 3911 2072 241	33 364 234 2053 414 876 3996 2135 243	37 370 246 1533 416 883 4091 2176 243	38 373 251 1203 417 886 4132 2198 244
Vietnam	1792	1835	1904	1985	2031
Total	12930	12598 -(% Change	12252 from Bas	11980 se)	11773
Argentina Australia Burma China Italy Pakistan Thailand U.S. Uruguay Vietnam	-30.3 -5.8 -9.4 56.6 -1.0 -1.3 -4.2 -6.3 -1.6 -5.9	-15.2 -2.7 -4.7 29.2 -0.5 -0.7 -2.1 -3.0 -0.8 -3.6	$\begin{array}{c} 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \\ 0 . 0 \end{array}$	$12.1 \\ 1.6 \\ 5.1 \\ -25.3 \\ 0.5 \\ 0.8 \\ 2.4 \\ 1.9 \\ 0.0 \\ 4.3$	$ \begin{array}{r} 15.2 \\ 2.5 \\ 7.3 \\ -41.4 \\ 0.7 \\ 1.1 \\ 3.4 \\ 3.0 \\ 0.4 \\ 6.6 \\ \end{array} $
Total	5.5	2.8	0.0	-2.2	-3.9

Table 21. Effects of Percent Changes in China's Ocean Freight Rates on the Optimum International Trade Volumes

Funeration		Optimum	Export V	/olumes	
Countries	- 50%	- 25%	Base ¹	+ 25%	+ 50%
		(1000 M.T.	.)	
Argentina Australia Burma China Italy Pakistan Thailand U.S.	27 352 237 1913 412 877 4438 2063	30 358 236 1951 413 877 4220 2098	33 364 234 2053 414 876 3996 2135	34 366 228 2175 415 878 3793 2149	36 368 224 2281 416 879 3603 2166
Uruguay Vietnam	241 1925	242 1925	243 1904	243 1930	243 1966
Total	12485	12350 -(% Change	12252 from Bas	12211 se)	12182
Argentina Australia Burma China Italy Pakistan Thailand U.S. Uruguay Vietnam	-18.2 -3.3 1.3 -6.8 -0.5 0.1 11.1 -3.4 -0.8 1.1	-9.1 -1.6 0.9 -5.0 -0.2 0.1 5.6 -1.7 -0.4 1.1		3.0 0.5 -2.6 5.9 0.2 0.2 -5.1 0.7 0.0 1.4	9.1 1.1 -4.3 11.1 0.5 0.3 -9.8 1.5 0.0 3.3
Total	1.9	0.8	0.0	-0.3	-0.6

Table 22. Effects of Percent Changes in Thailand's Ocean Freight Rates on the Optimum International Trade Volumes

Evporting		Optimum Export Volumes							
Countries	- 50%	- 25%	Base ¹	+ 25%	+ 50%				
		(1000 M.T.	.)					
Argentina	28	31	33	34	34				
Australia	355	360	364	365	366				
Burma	232	233	234	235	236				
China	1948	1976	2053	2109	2172				
Italy	413	414	414	415	415				
Pakistan	876	876	876	877	879				
Thailand	3984	3991	3996	4012	4031				
U.S.	2079	2106	2135	2143	2150				
Uruguay	241	242	243	243	243				
Vietnam	2296	2101	1904	1784	1646				
Total	12452	12330	12252	12217	12172				
		-(% Change	from Bas	se)					
Argentina	-15.2	-6.1	0.0	3.0	3.0				
Australia	-2.5	-1.1	0.0	0.3	0.5				
Burma	-0.9	-0.4	0.0	0.4	0.9				
China	-5.1	-3.8	0.0	2.7	5.8				
Italy	-0.2	0.0	0.0	0.2	0.2				
Pakistan	0.0	0.0	0.0	0.1	0.3				
Thailand	-0.3	-0.1	0.0	0.4	0.9				
U.S.	-2.6	-1.4	0.0	0.4	0.7				
Uruguay	-0.8	-0.4	0.0	0.0	0.0				
Vietnam	20.6	10.4	0.0	-6.3	-13.5				
Total	1.6	0.6	0.0	-0.3	-0.7				

Table	23.	Effects	of 1	Perc	cen	t Ch	nanges	in	Vietnam'	s	Oce	ean
		Freight	Rate	es c	n	the	Optimu	ım I	Internati	on	al	Trade
		Volumes										

increasing the volume of exports for this particular country. On the contrary, increasing freight rates for one particular rice exporting country would lead to reductions of rice exports in this country, in favor of the world market share for other exporting countries.

The particular effect of decreasing ocean freight rates would be different from one country to other. Results indicate that the effect of U.S. changing ocean freight rates would have a minor impact on export volumes, as compared to the same effects on export volumes resulting from decreasing ocean freight rates in countries like China, Thailand, and Vietnam. For example, a 25 percent decrease of U.S. ocean freight rate would raise U.S. rice exports in 4.4 percent. The same reduction would raise its rice exports by 5.6 percent for Thailand, 10.4 for Vietnam, and 29.2 for China. Likewise, a 50 percent decrease of U.S. ocean transportation rates would increase U.S. rice exports by 8.8 percent. Exports would increase 11.1 percent for Thailand, 20.6 percent for Vietnam, and 56.6 percent for China.

Notice that related to the aforementioned results, changes in the total level of rice world trade would be more responsive to changes in ocean freight rates in China than to the some changes in the U.S.. Thailand and Vietnam would stay in a intermediate position.

Trade Patterns

Rice trade patterns resulting from changes in ocean freight are shown in Tables 24 to 27. In general, the U.S. rice trade patterns did not vary much when U.S. ocean freight rates change between 25 and 50 percent, except for Brazil and the European Community countries. The partnership between the U.S. and Brazil, and between the U.S. and rice importing countries of the European Community, would be the most affected by changes in ocean freight rates. For instance, if U.S. ocean freight rates were reduced by 50 percent, the U.S. exports to Brazil and the European Community would increase from 163 M.T. to 205 M.T., and from 421 M.T. to 621 M.T., respectively. In these some circumstances, decreased exports to Mexico, Peru, and other Central American and Caribbean countries would result (Table 24). The rest of U.S. rice importing countries or regions slightly would increase their import volumes from the U.S. if ocean freight rates would decrease, and would slightly decrease their import volumes if those rates were increased.

Unlike the U.S., changes in China's ocean freight rates would have not only important effects on the rice export levels of this country, but also notable effects on its rice trade pattern (Table 25). In the base solution, China would trade with nine countries and regions. This number would increase to 12 and 14 if ocean freight rates would decrease by 25 and 50 percent, respectively. Likewise, the number of

Importing	Optimum Import Volumes							
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%			
	(1000 M.T.)							
Brazil	205	183	163	143	130			
Guinea	121	120	120	120	120			
Liberia	128	128	128	128	127			
Mauritania	45	45	45	45	45			
Mexico	161	168	174	182	188			
Peru	255	257	258	260	261			
Senegal	320	320	320	320	319			
Sierra Leone	121	121	121	120	120			
E.C.10	621	523	421	318	212			
Ot.C.Am/Caribb.	346	365	385	404	424			
Total	2323	2230	2135	2040	1946			

Table 24. Effects of Percent Changes in U.S.'s Ocean Freight Rates on its Optimum Trade Pattern

¹ See footnote of Table 9 for regions' shorthand.
² Base solution.

Importing		Optimum Import Volumes							
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%				
			(1000 M.T.	.)					
Angola	46	45	45						
Brazil	464	20							
Cameroon	46	45							
Cuba	168	165	163	160					
Canada	40	136	136	135	53				
Ghana	71	69	67						
Hong Kong			408	408	408				
Nigeria	98	82							
Somalia	293			92					
Syria	142								
Taiwan		125	134	143	145				
Ex-U.S.S.R.	224	585	591	595	597				
Zaire	116	114	113						
E.C.10	1136	1177	396						
O.W.Europe	95	89							
O.Md.E./N.Af.	277								
Total	3216	2652	2053	1533	1203				

Table 25. Effects of Percent Changes in China's Ocean Freight Rates on its Optimum Trade Pattern

 1 See footnote of Table 9 for regions' shorthand. 2 Base solution.
Importing		Optimum	Import V	/olumes	
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%
		(1000 M.T.	.)	
Angola	45				
Brazil	384				
Bangladesh			128	139	146
Cameroon	46	45	45		
Cuba	164				
Ghana	69	68			
Hong Kong					407
Iran		72	73	69	63
Iraq	260	395	395	394	393
Kuwait		101	101	101	101
Madagascar				136	136
Malaysia				401	416
Nigeria	86	77	69		
Reunion				53	53
Singapore			222	222	222
Somalia				93	93
South Africa	291	290	290		
Sri Lanka			117	122	126
Syria	141	141	141	141	
U.A.Emirates		232	232	232	231
E.C.10	1018	1047	506		
Zaire	114				
O.W.Europe	89	87	85		
O.S.S.Africa	783	720	543	302	517
O.S.Asia			106	123	362
O.E.As./Ocean.				327	337
O.Md.E./N.Af.	948	945	943	938	
Total	4438	4220	3996	3793	3603

Table 26. Effects of Percent Changes in Thailand's Ocean Freight Rates on its Optimum Trade Pattern

Importing	Optimum Import Volumes								
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%				
		(1000 M.T.)					
Angola	45								
Cameroon	45	45							
Ghana	68								
Madagascar			136						
Malaysia			386	393	401				
Nigeria	81	74							
Reunion			53						
Saudi Arabia	111	593	593	593					
Singapore				222	222				
Somalia	142	118	93						
South Africa	290	122							
Sri Lanka				16	109				
Tanzania			78						
Zaire	113								
E.C.10	1314	1063							
O.W.Europe	87	86							
O.S.S. Africa			236						
O.S. Asia				224	570				
O.E.As./Oceania			329	336	344				
Total	2296	2101	1904	1784	1646				

Table 27. Effects of Percent Changes in Vietnam's Ocean Freight Rates on its Optimum Trade Pattern

its rice partner countries would decrease to six and four countries if ocean freight rates were increased by 25 and 50 percent respectively. Countries or regions increasing Chinese imports would be Brazil, Cuba, the E.C., Nigeria, Syria, non-E.C. countries of Western Europe and countries of the Middle East. The affected countries, as consequence of increasing freight rates would be Angola, Cameroon, Ghana, Zaire, and those importing countries of the European Community.

Rice trade patterns for Thailand were initially more diversified (15 countries and regions traded with this exporting country in the base solution) than those from other exporting countries. This diversification would be maintained as a result of variations in freight rates. New countries or regions trading with Thailand if ocean freight rates were diminished, would include Angola, Brazil, Cuba, Ghana, the E.C., and Zaire. Countries that would stop importing from Thailand, as a result of the aforementioned decreased levels of freight rates, would be Iran, Kuwait, Singapore, Sri Lanka, and U.A. Emirates (Table 26). New countries trading with Thailand as a result of increasing freight rates would include Bangladesh, Madagascar, Malaysia, Reunion, Somalia, and others countries from Asia and Oceania. Also as a result of increasing ocean freight rates, countries like Nigeria, South Africa, those of the European Community, and other Western Europe countries would

stop importing rice from Thailand. In short, there is a rice trade pattern for low ocean freight rates in Thailand, and another for higher ocean freight rates. Both are diversified.

For Vietnam, the impact of decreasing ocean freight rates would change trade patterns more than was the case for the United States. Vietnam would increase diversification if freight rates were diminished. Trade with countries or regions such as Angola, Brazil, Ghana, South Africa, Zaire, the E. C., and other Western Europe countries would be included. Madagascar, Malaysia, Reunion, Tanzania, and some other countries of South Asia would be excluded (Table 27). If freight rates were increased, as compared to the base optimum solution, new Vietnam's partners would be Hong Kong, Singapore, Sri Lanka, and others from Asia and Oceania. On the contrary, countries such as Madagascar, Reunion, Somalia, Tanzania, and other African countries, would stop importing rice from this exporting country.

International Import Prices

If ocean freight rates were diminished by 50 percent in China, Thailand, and Vietnam, equilibrium import prices would decrease, at average, at levels of 3.1, 1.0 and 0.8 percent respectively (Table 28). Average prices would remain almost constant if U.S. ocean freight rates were

	Percenta	age of Cha	ange in Ocean	freight	Rates						
Down a web i w w	Deci	reases	Dese	Incre	ases						
Countries	50 %	25 %	- Base — Solution	25 %	50 %						
	(C.I.F.\$/ M.T.)										
China	308.3	313.4	318.3	322.6	324.9						
Thailand	315.1	316.9	318.2	319.4	320.6						
U.S.	317.9	318.1	318.3	318.5	318.8						
Vietnam	315.8	317.2	318.3	319.1	320.8						
		(% Chane	ge from Base S	Solution)							
China	-3.1	-1.5	0.0	1.4	2.1						
Thailand	-1.0	-0.4	0.0	0.4	0.8						
U.S.	-0.1	-0.1	0.0	0.1	0.2						
Vietnam	-0.8	-0.3	0.0	0.3	0.8						

Table 28. Effects of Changes in Ocean Freight Rates of Major Exporting Countries on the Average¹ International Trade Prices

¹ Average weighted by import volumes.

decreased in 25, and 50 percent, respectively. Similarly, equilibrium import prices would increase, on average, if ocean freight rates were increased in China, Thailand, and Vietnam. Results from increasing U.S. freight rates would have little effect on import prices.

Also Table 28 show that changes of 50 percent in U.S. ocean freight rates would lead to changes in average import prices ranging between 317.9 and 318.8 dollars per M.T. The same price variation range in China would be between 308.3 and 324.9 dollars per M.T. For Thailand it would be between 315.1 and 320.6 dollars per M.T., while these values would be 315.8 and 320.8 for Vietnam.

These findings are consistent with the aforementioned results which indicated that changes in ocean freight rates in major rice exporting countries like China, Thailand, and Vietnam would tend to have a greater effect than that produced due to changes in U.S. ocean freight rates, in terms of rice trade volumes and trade patterns.

Scenario IV: Effects of Simultaneous Changes in all Ocean Freight Rates

Trade Volumes

The optimum flows from changing ocean freight rates in all the rice exporting countries and regions, as compared to the optimum results of the base solution, are shown in Table 29. As expected, these results indicated that simultaneous decreases of 25 and 50 percent in all ocean transportation costs would lead to increases of 3.7 and 7.5 percent in world volumes trade, respectively. Increases of 25 and 50 percent in ocean freight rates would lead to 3.4 and 6.7 percent decreased volumes of total rice traded in the international market.

It should be noted that countries with greater market shares in the international rice market, except the U.S., would be relatively more responsive to changes in ocean freight rates. Countries such as China, for instance, would decrease its rice exports by 28.5 percent if ocean freight rates were increased by 50 percent, and would increase its rice exports by 31.5 percent if ocean freight rates were decreased in 50 percent. Thailand, Vietnam, and Australia also showed important changes in their rice exports due to ocean freight rate variations. Small rice exporting countries like Argentina, Uruguay, Italy, and Pakistan, would slightly change their world market shares under this new ocean freight rates structure. The market shares of other big rice exporting countries, such as the U.S. and Burma, would be neutral, in the sense that they basically would not change their level of exports if ocean freight rates were varied simultaneously for all the world rice trade routes (Table 29).

Free east i nor		Optimum 1	Export Vol	umes		
Countries	- 50%	- 25%	Base ¹	+ 25%	+ 50%	
			(1000 M.T.)		
Argentina Australia Burma China Italy Pakistan Thailand U.S. Uruguay Vietnam	25 371 234 2700 411 869 4162 2138 240 2024	29 368 233 2372 413 872 4073 2137 241 1963	33 364 234 2053 414 876 3996 2135 243 1904	36 357 234 1743 416 881 3936 2137 243 1847	36 345 234 1467 417 884 3841 2137 243 1783	
Total	13174	12701	12252	11830	11387	
		(% Chai	nge from E	Base)		i.
Argentina Australia Burma China Italy Pakistan Thailand U.S. Uruguay Vietnam	-24.2 1.9 0.0 31.5 -0.7 -0.8 4.2 0.1 -1.2 6.3	-12.1 1.1 -0.4 15.5 -0.2 -0.5 1.9 0.1 -0.8 3.1		9.1 -1.9 0.0 -15.1 0.5 0.6 -1.5 0.1 0.0 -2.9	9.1 -5.2 0.0 -28.5 0.7 0.9 -3.9 0.1 0.0 -6.4	
Total	7.5	3.7	0.0	-3.4	-7.1	

Table 29. Effects of Simultaneous Changes in all Ocean Freight Rates on the Optimum International Trade Volumes

¹ Base solution.

Trade Patterns

Tables 30 to 33 show changes in the international trade patterns of the major rice exporting countries, associated with simultaneous changes in freight rates of all the Notice from these tables that changing ocean routes. freight rates would alter optimum volumes of U.S. rice exports in a minor way. Except for the E.C., other countries would decrease their levels of rice imports from the U.S., if ocean freight rates were increased. These decreases would be relatively low, as is the case for Canada, Mexico, Peru and Liberia. In other cases, these changes would be relatively high, such as that in Brazil. Brazil would stop importing U.S. rice at 25 percent level of increase in ocean freight rates. Guinea, Sierra Leone, and Central American and Caribbean countries would decrease imports but would remain as importers (Table 30).

Simultaneous changes in ocean freight rates of all rice exporting countries and regions would have a greater impact in the base optimum solution for China than in the U.S., in terms of both volumes of total rice traded and trade patterns. If freight rates were decreased by 50 percent, E.C. rice imports from China would increase 91 percent (from 396 thousand M.T. to 913 thousand M.T.). If freight rates were increased by 50 percent, the E.C. countries would stop importing rice from China. Similar results were obtained for rice imported by Cuba.

Importing	Optimum Import Volumes								
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%				
		(1	L000 M.T.)						
Brazil	468	373	163						
Guinea	136	128	120	112	103				
Liberia	134	131	128	125	121				
Mauritania	48	46	45	44	42				
Mexico	184	179	174	169	162				
Peru	270	264	258	252	245				
Senegal	334	327	320	312	304				
Sierra Leone	135	127	121	113	106				
E.C.10		155	421	648	717				
O.C.Am./Carib.	429	407	385	362	337				
Total	2138	2137	2135	2137	2137				

Table 30. Effects of Simultaneous Changes in all Ocean Freight Rates on the Optimum Trade Pattern of the U.S.

¹ See footnote of Table 9 for regions' shorthand. ¹ Base solution.

Importing	Optimum Import Volumes								
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%				
		(10	000 M.T.)-						
Angola	47	46	45	40	32				
Brazil	108								
Cuba	171	167	163	159	13				
Canada	137	136	136	135	134				
Ghana	72	70	67	65	62				
Hong Kong	400	404	408	410	417				
Taiwan	131	133	134	136	136				
Ex-U.S.S.R.	602	596	591	586	570				
Zaire	119	116	113	109	103				
E.C.10	913	704	396	103					
Total	2700	2372	2053	1743	1467				

Table 31. Effects of Simultaneous Changes in all Ocean Freight Rates on the Optimum Trade Pattern of China

Importing	Optimum Import Volumes								
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%				
		(1	000 M.T.)						
Brazil	16								
Bangladesh	163	147	128	111					
Caameron	48	34	45	43	41				
Iran	125	102	73	58	15				
Iraq	406	401	395	389	382				
Kuwait	102	101	101	101	100				
Nigeria	116	95	69	45	31				
Singapore	222	222	222	222	222				
South Africa	296	293	290	287	280				
Sri Lanka	135	126	117	107	98				
Syria	143	142	141	140	139				
U.A.Emirates	234	233	232	231	229				
E.C.10	422	471	506	560	594				
O.W.Europe	95	90	85	79	74				
O.S.S.Africa	511	528	543	550	575				
O.S. Asia	151	128	106	88	152				
O.Md.E./N.Afr.	977	960	943	925	909				
Total	4162	4073	3996	3936	3841				

Table 32. Effects of Simultaneous Changes in all Ocean Freight Rates on the Optimum Trade Pattern of Thailand

Importing	Optimum Import Volumes								
or Regions ¹	- 50%	- 25%	Base ²	+ 25%	+ 50%				
		(1000 M.T.)					
Madagascar	140	138	136	135	133				
Malaysia	398	392	386	378	370				
Reunion	53	53	53	52	52				
Saudi Arabia	598	595	593	591	589				
Somalia	94	93	93	92	91				
Tanzania	91	85	78	71	65				
O.S.S.Africa	314	275	236	205	165				
O.E.As/Oceania	336	332	329	323	318				
Total	2024	1963	1904	1847	1783				

Table 33. Effects of Simultaneous Changes in all Ocean Freight Rates on the Optimum Trade Pattern of Vietnam

Variations in volumes of rice, and rice trade patterns for Thailand and Vietnam would be relatively smaller than those for China, but larger than those for the U.S. (Tables 32 and 33).

International Import Prices

As trade theory suggests, lower levels of ocean freight rates would cause the international trade prices to decrease. The effects of decreasing ocean freight rates of rice would cause prices to be lower than those of the base solution, and increasing ocean freight rates would lead to increasing equilibrium prices, as compared to base solution prices (Table 34).

The average equilibrium world price would decrease from 318.3 in the base solution to 310.9, and 303.6, as a result of decreased ocean freight rates of 25 and 50 percent, respectively. This average price would increase from 318.3 to 325.8 and 333.7 if ocean freight rates were increased in 25 and 50 percent, respectively.

On a country basis, it can be noted in Table 34 that in the majority of importing countries the prices would vary notably due to changes in ocean freight rates. Countries in which these equilibrium prices would be relatively more responsive to changes in ocean freight rates would be Cuba, and most of African countries. International rice prices

Importing -		Equilibriu	um Trade Pr	ices		% Change Range
Countries or Regions ¹	- 25% (A)	- 50% (B)	Base Solution	+ 25% (C)	+ 50% (D)	(D-A)/A
		(C.I.F.	. \$ per M.T	.)		(%)
Angola	311.6	322.0	332.7	343.6	355.0	13.9
Bangladesh	298.9	303.1	307.4	311.9	316.9	6.0
Brazil	315.5	327.9	339.7	349.5	355.3	12.6
Cameroon	314.2	325.9	337.9	350.1	362.3	15.3
Canada	305.9	313.6	321.4	329.5	338.0	10.5
Cuba	299.7	304.2	308.1	312.7	317.9	60.7
Gnana	313.2	324.5	336.0	347.7	359.9	14.9
Guinea	314.3	326.1	337.3	349.2	361.7	47.4
Hong Kong	290.1	289.9	289.8	290.0	290.6	0.2
Indonesia	200.5	200.5	280.5	200.5	280.5	10.0
Iran	305.6	212 1	320.7	328.5	330.9	10.2
II aq Kuwait	305.6	313 0	320.0	328.5	336 9	10.3
Liboria	31/ 8	327 9	338 /	350 6	363 /	10.2
Madagaagar	305 8	313 4	321 2	329.2	337 5	10 4
Malaysia	293.9	295.7	297.5	299.6	301.9	2.7
Mauritania	313.4	324.7	335.4	346.8	358.9	14.5
Mexico	300.5	305.3	309.6	314.6	320.1	6.5
Nigeria	314.3	326.2	338.2	350.4	362.9	15.5
Peru	309.1	318.3	326.9	336.2	346.1	12.0
Philippines	237.0	237.0	237.0	237.0	237.0	0.0
Reunion	305.0	312.3	319.7	327.3	335.2	9.9
Saudi Arabia	305.0	312.3	319.8	327.3	335.2	9.9
Senegal	313.4	324.7	335.4	346.8	358.9	14.5
Sierra Leone	314.3	326.1	337.3	349.2	361.7	15.1
Singapore	292.2	292.9	293.9	295.0	296.7	1.5
Somalia	305.0	312.2	319.6	327.2	335.1	9.9
South Africa	309.4	318.8	328.4	338.1	348.4	12.6
Sri Lanka	299.1	303.3	307.7	312.2	317.4	6.1
Syria	308.9	318.0	327.3	336.7	346.8	12.3
Taiwan	288.7	287.8	286.9	286.3	286.3	-0.8
Tanzania	305.3	312.7	320.2	327.9	336.0	19.9
U.A. Emirates	304.4	311.2	318.3	325.5	333.3	9.5
U.S.S.R.	294.1	295.9	297.8	300.0	302.6	8.5
Zaire	311.6	322.1	332.7	343.6	355.0	13.9
E.C.10	314.4	326.3	338.4	350.6	363.4	15.6
O.W. Europe	311.4	321.8	332.7	343.1	354.4	13.8
East. Europe	303.3	309.7	316.2	322.9	330.1	8.8
O.C.Am.& Ca.	302.8	308.9	314.3	320.5	327.1	8.0
Ot.S.S.Airica	307.3	315.7	324.2	332.9	342.1	11.3
O.S. Asia	298.9	303.1	307.4	311.9	316.9	0.0
O Midd Fact	293.1	274.0	273.7	23/.0	233.5	2.2
O.MIUU. East	308.0	31/.0	320.8	330.I	340.0	12.1
Average ²	303.6	310.9	318.3	325.8	333.7	9.9

Table 34. Effects of Simultaneous Changes in all Ocean Freight Rates on the Equilibrium International Trade Prices

1 See footnote of Table 9 for regions' shorthand.
2 Weighted by import volumes.

would remain stable in Hong Kong, Taiwan, Indonesia, and the Philippines.

Summary

A reactive programming model was developed to estimate the effects of changes in ocean freight rates on rice exports, rice patterns, and equilibrium prices of 13 exporting and 43 importing countries and regions. The model was structured to account for 1990 rice trade flows and prices. Four different scenarios were utilized, in which different variations of ocean freight rates were compared to an optimum base solution of minimum transportation cost.

The primary findings were as follows: (1) The U.S.'s competitive position would be notably diminished under the optimum base solution as compared to its actual value in 1990. On the contrary, the competitive positions of China, Vietnam, and Thailand would be enhanced. (2) Different levels of U.S. cargo preference policies (50, 75, and 100 percent) would reduce the U.S. export volumes of rice slightly. (3) Effects of changes in ocean freight rates for individual rice exporting countries would have a greater impact on export levels, rice trade patterns, and import prices, for countries like China, Vietnam, and Thailand, than on the same variables measured for the United States. (4) Simultaneous changes in ocean freight rates of all the 13 exporting countries or regions, as compared to results of the base solution, show that only countries with large shares in the international rice market, such as China, Thailand, and Vietnam, would significantly change their export volumes. The competitive position of the U.S. would be neutral, in the sense that it basically would not change rice exports if ocean freight rates were simultaneously modified.

CHAPTER V

SUMMARY AND CONCLUSIONS

Although many studies have been conducted to analyze the international rice trade, the effects of ocean freight rates have received little attention. In this research, countries engaged in trade depended on the "trade resistant factors" such as transportation costs, tariffs, and other restrictions, as well as supply and demand.

The main objective of this study was to analyze the competitive position of the U.S., and other major rice exporting countries, under selected alternative levels of ocean freight rates in the world rice market. Specific objectives of the study were: (1) to describe international rice trade flows and to describe the major characteristics of the transportation rice industry around the world; (2) to develop a spatial equilibrium model to estimate equilibrium trade volumes of rice, trade prices, and international trade patterns; and (3) to analyze the effects of changes in different levels of ocean freight rates on rice trade.

A reactive programming model was used in order to solve the aforementioned spatial equilibrium problem, and to obtain equilibrium trade volumes, optimum trade prices, and international trade patterns. Then, comparisons were made between a base solution of minimum transportation cost (in

which no cargo would be obligated to be shipped on specific flag vessels conditions), and results for the same year 1990, using four different scenarios: (1) the actual world trade as compared to the optimum rice trade obtained from the base solution, (2) different levels of U.S. cargo preference policies, (3) changes in ocean freight rates of major exporting countries: U.S., Thailand, China, and Vietnam, and (4) simultaneous changes in all ocean freight rates of the exporting countries and regions studied.

Results included the following:

- In the first scenario, the export volumes of the base solution for the U.S. would decrease, as compared to the actual U.S. exports, by 11.9 percent, from 2,424,000 M.T. to 2,135,000 M.T. The export volumes for China, however, would increase by 584.3 percent; those from Vietnam and Burma would increase by 26.9 and 25.3 percent, respectively. Results from the base solution also revealed that rice exports from Thailand would increase slightly by 1.8 percent, as compared to its respective actual exports.

The U.S., under the base solution, would ship to a smaller number of countries and regions than it actually did in 1990. This reduction would be from 30 actual different countries and regions to only 10 countries and regions in the base solution.

Likewise, the total export volumes of rice under the base solution would be 8.8 percent higher than those

corresponding to the actual volumes exported for all the countries and regions in 1990. World average import prices would decrease notably from 380.0 to 318.3 C.I.F. dollars per metric ton.

- In order to evaluate the effects of cargo preference policy, a comparison was made between the base solution and three different levels of application of this policy: 50, 75, and 100 percent of the total U.S. government-assisted rice cargoes transported on U.S. flag vessels. This was called Scenario II. Results indicated that different levels of U.S. cargo preference policy would slightly reduce the U.S. export volumes, ranging between 0.7 and 1.6 percent export reduction as a result of using U.S. flag vessels to transport between 50 and 100 percent of the total U.S. government-assisted rice exports. Major exporting countries such as China, Vietnam, and Thailand, would benefit from the aforementioned losses of U.S. rice exports.

Likewise, Brazil and the E.C. are those rice partners of the U.S. whose imports would decrease as a result of U.S. cargo preference policies. International import prices would be affected very little because of the application of this policy.

- In the third scenario, the effects of changes in ocean freight rates for individual rice exporting countries were evaluated. Results suggest a greater impact of changes in ocean freight rates on export levels, rice trade patterns, and equilibrium prices, for countries like China, Vietnam, and Thailand, in this respective order, than on the same variables measured for the U.S. For example, an ocean freight rate decrease of 50 percent in each country would lead to increased levels of rice exports of 56.6 percent for China, 20.6 percent for Vietnam, 11.1 percent for Thailand, and 8.8 percent for the United States.

The U.S. rice trade pattern would be almost invariable if U.S. ocean freight rates were changed between 25 and 50 percent, except for the cases of Brazil and the European Community as a region. Changes in China and Vietnam, on the contrary, show not only important effects on their rice export levels, but also on their rice trade patterns. For instance, if ocean freight rates were increased, the number of rice import countries and regions would be reduced at 55 percent in China, and 40 percent in Vietnam, respectively.

- Simultaneous changes in ocean freight rates of all the 13 exporting countries and regions, as compared to those results obtained from the base solution, were evaluated in scenario IV. Only countries with large market shares in the international rice market, such as China, Thailand, and Vietnam, would change notably their export volumes as a consequence of decreasing ocean freight rates. The position of the U.S. would be neutral, in the sense that they basically would not change their level of exports if ocean freight rates were simultaneously modified.

In terms of trade patterns of major exporting countries, changes in simultaneous ocean freight rates would have less important effects than those changes in individual exporting countries (Scenario III). The most important effects were found for imports of Brazil and the E.C. in the U.S. trade patterns; Cameroon, Brazil, Hong Kong, and the E.C. in China trade patterns; Sub Sahara African countries in Vietnam trade patterns; and Bangladesh, Nigeria, South Africa, and other Southern Asian countries, in the case of Thailand trade patterns.

In Scenario IV, import prices, as expected, would move in the same direction of ocean freight rates. For instance, the average import prices would decrease from 318.3 to 303.6 \$/M.T. if ocean freight rates were decreased at 50 percent, and the average raised from 318.3 to 333.7 if ocean freight rates were increased in the same proportion.

The general results of this study have shown that the competitive position of the U.S. rice industry would be reduced from its current level in the world rice market, if the use of U.S. flag vessels were encouraged. The results also indicated that even when ocean freight rates have an important influence on the international rice trade, its effect is different in each major exporting country. China is the most sensitive to changes in ocean freight rates, not only in terms of its level of exports, but also in terms of its rice trade patterns. Also Vietnam and Thailand's rice

exports and trade patterns would respond markedly to changes in ocean freight rates, while the response of the U.S., in the same terms, could be considered of relatively minor importance.

To enhance the competitive position for the U.S. rice industry, domestic production, increase exports, and trade liberalization, should be encouraged.

Limitations and Recommendations

This study is limited in several respects. Its limitations are basically related to the assumptions which were made for the analysis, and the lack of available data at the moment in which this study was carried out. Thus, limitations and areas for potential improvements are as follows:

1. There is a need to develop a spatial equilibrium model to analyze the effects of ocean transportation costs considering rice as a nonhomogeneous product. In fact, two primary types of rice in the world market are indica and japonica; and of secondary importance are aromatic, or fragrant, and glutinous rices. Therefore, differentiation of rice in the world market may give interesting and more concrete results.

2. A second limitation of the study is that only major exporting and importing countries or regions were included for the analysis. It was assumed that other countries did not have any influence on the international rice trade. While the inclusion of all the trading countries and regions could have provided a more comprehensive analysis of the international rice trade, it could have made the study more complex and unmanageable and, in turn, obscured the original objectives.

3. The study was limited by lack of data related to ocean freight rates for all the exporting and importing areas considered. In fact, this has been one of the primary reasons for the absence of transportation cost evaluations in international trade studies. Since such data were simply unavailable, the needed shipping rates in the model, were estimated as a function of the distance between the ports of exporting and importing countries or regions. While this was a reasonably assumption for the purposes in hand, the fact remains that the shipping costs are also influenced by other factors, such as the efficiency of port facilities, the size of the shipments, and so on. Certainly, if such information were available, it would have provided a more accurate estimate of ocean freight rates, which would have permitted a better analysis of the transportation costs, and their effects on international rice trade.

APPENDIX

Distance (D)	Ln ¹ (D)	Freight Rates (UOFR)	Ln(UOFR)	Flag Vessels
(miles)		(\$ per M.T.)		
(miles) 1,155 5,603 6,235 1,155 2,807 5,603 5,603 5,603 2,807 1,155 1,155 1,155 1,155 1,155 1,155 1,155 1,155 1,155 1,155 5,603 6,050 4,879 4,064 1,155 5,603 6,050 4,879 4,064 1,155 5,603	7.05 8.63 8.74 7.05 7.94 8.63 8.63 8.63 7.94 7.05 7.05 7.05 7.05 9.16 8.78 8.60 7.97 8.63 8.71 8.49 8.31 7.05 8.49 8.74 8.44 8.974 8.63	<pre>(\$ per M.T.) 21.00 100.00 41.34 25.00 20.39 84.00 32.50 100.00 26.46 25.13 29.46 22.49 29.21 66.50 39.68 26.45 100.00 33.07 79.00 20.94 21.00 90.00 59.50 66.96 109.75 99.75 45.61 88.23 101.99 112.99 36.57 102.50 103.99 88.99 68.27</pre>	3.04 4.61 3.72 3.22 3.02 4.43 3.48 4.61 3.28 3.22 3.38 3.11 3.37 4.20 3.68 3.28 4.61 3.50 4.37 3.04 4.50 4.50 4.50 4.50 4.60 3.82 4.48 4.62 4.62 4.63 4.64 4.49 4.22	Foreign Foreig
7,884 4,636 7,884 1,155	8.97 8.44 8.97 7.05	102.50 72.15 109.75 57.49	4.63 4.28 4.70 4.05	U.S. U.S. U.S. U.S.
1,155	7.05	48.83	3.89	U.S.

Table 35. Observations of Unit Ocean Freight Rates (UOFR), Distances, and Type of Flag Vessels in the World Rice Trade, 1990

¹ Ln refers to natural logarithms.

Source: Maritime Research Inc., Chartering Annual 1990.

					E	xporting C	ountrie	s or Reg	ions				
Importing Countries or Regions	U.S.	Thailand	China	Pakistan	Burma	Australia	Italy	Uruguay	Argentina	India	Vietnam	Spain	Ot.South America
							autical	milog)-					
						(aucrour	milleo,					
Angola	6526	8022	8529	6262	7016	7696	4250	3350	3400	6186	7810	4250	6638
Bangladesh	11324	2375	3745	1880	600	5741	6115	9139	9251	2160	2180	6535	11956
Brazil	5136	9634	10877	7905	8765	7635	5910	1045	1142	7863	9422	4605	5157
Cameroon	6125	8927	10069	7036	7850	8915	5184	4404	4501	6960	8572	4474	6272
Canada	5405	7843	5710	9886	8134	7276	8740	8316	8281	9445	6597	8740	4264
Cuba	621	11768	9693	8833	10667	8720	5785	5610	5725	9019	11064	5090	1905
Ghana	5603	8977	9492	7348	8005	8691	3315	3063	3036	7206	8765	3315	5767
Guinea	4636	9607	10122	6709	8487	9290	2329	3645	3742	6897	9395	2329	4819
Hong Kong	10630	1489	824	4336	2565	4480	7770	10475	10587	3900	927	8200	9505
Indonesia	11703	1486	2553	3875	1880	3562	6990	9118	9230	3080	1486	7420	10445
Iran	9814	4696	6057	643	3063	7444	4618	9087	9184	1500	4511	4976	10486
Iraq	9870	4708	6086	2732	3577	7525	4684	8787	8899	1587	4565	5042	10500
Kuwait	9793	4676	6037	2563	3527	7424	4605	8732	8829	1537	4491	4963	10450
Liberia	4879	9367	10614	6958	8405	9470	3982	3119	2614	7515	9155	2678	5097
Madagascar	9724	4817	5959	2515	3295	5687	4553	5879	5976	2440	4462	4179	9605
Malaysia	11221	1199	2580	2596	766	4652	6050	8884	8996	2144	1005	6470	11093
Mauritania	4268	9487	10665	6296	8130	10044	3205	2761	2761	6482	9104	1900	4562
Mexico	733	12250	10178	9663	11497	9202	6615	6430	6439	9849	11546	5330	2369
Nigeria	5749	8959	10202	7230	8090	9026	4815	3268	3260	7188	8747	4105	5918
Peru	2767	11155	9557	10508	11786	7000	7415	3978	4043	10694	10781	6110	706
Philippines	10780	1465	1128	4212	2435	3950	7669	10246	10358	3770	907	8030	9615
Reunion	9400	4507	5649	2820	3261	4730	4775	5521	5521	2600	4153	5387	9458

Table 36. Marine Distances from Exporting Countries or Regions to Importing Countries or Regions, Used to Estimate Ocean Freight Rates

(Continued)

Table 36. (Continued)

Tenenting	Exporting Countries or Regions												
Countries or Regions	U.S.	Thailand	China	Pakistan	Burma	Australia	Italy	Uruguay	Argentina	India	Vietnam	Spain	Ot.South America
							(nautic	al miles)				
Saudi Arabia Senegal Sierra Leone Singapore Somalia South Africa Sri Lanka Syria Taiwan Tanzania U.A.Emirates Ex-U.S.S.R. Zaire E.C.10 Ot.W.Europe East Europe Ot.C.Am/Carib.	7204 4268 4636 11514 6707 7290 9980 6635 10383 9676 9328 6260 6526 4855 5300 6260 1155	5155 9487 9607 831 4534 6402 2415 6135 1685 5423 4212 3066 8022 9015 7395 7125 11316	6525 10665 10122 2192 5396 7649 3785 7565 600 6565 5573 1639 8529 10190 8825 8555 9244	2166 6296 6709 2885 1863 4675 1341 3135 2785 2405 643 4024 6262 5820 4395 4120 8727 2405	4003 8130 8487 1100 3250 5540 1276 5020 5281 3700 3063 4164 7016 7655 6280 5905 10541	7605 10044 9290 4275 5972 6470 5165 8550 4852 5977 6960 5691 7696 11275 9845 9590 8522 5977	2038 3205 6340 5135 6675 1383 7724 4206 4141 2940 4250 2682 1220 129 4865	8223 2761 3645 9189 6126 3621 7956 7235 10481 5931 8267 11447 3350 5932 5905 6855 4967 2350	8335 2761 3742 9301 6126 3718 8068 7335 10593 6028 8364 11512 3400 6050 6055 6955 5224 2400	2353 6482 2435 1915 4630 889 3330 1073 4230 6186 6005 4590 4315 8913	4160 9104 9395 831 4129 6190 2220 5950 1312 5068 4027 2422 7810 8630 7210 6940 10612 5068	2400 1900 2329 6765 5135 5495 5195 1760 8336 4813 4499 2445 4250 1395 345 1260 4355	7845 4562 4819 10726 10188 7333 10612 7220 9267 9657 9657 9986 8044 6638 5890 6845 1438 8044
Ot.S.S.Africa Ot.S.Asia Ot.E.Asia/Oc. Ot.Md.E./N.Af.	6526 11324 11703 6410	5423 2375 1486 6020	6565 3745 2553 7450	2405 1880 3875 3014	600 1880 4899	5977 5741 3562 8485	4206 6115 6990 1001	9139 9118 7015	9251 9118 7115	2330 2160 9230 3209	2180 856 5835	4250 6535 7420 1554	11956 10071 7000

¹ See Table 9 for regions' shorthand.

Source: Caney, R.W. and J.E. Reynolds, Reed's Marine Distance Table, Thomas Reed Publications Limited, London, 1978.

		Exporting Countries or Regions											
Importing													
Countries			-1.1		-								Ot.South
or Regions	U.S.	Thailand	China	Pakistan	Burma	Australia	Italy	Uruguay	Argentina	India	Vietnam	Spain	America
							(* P						
Angola	55.32	61.18	63.03	54.22	57.31	59.95	44.89	39.98	40.27	53.90	60.38	44.89	55.78
Bangladesh	72.37	33.81	42.21	30.17	17.30	51.98	53.60	65.19	65.58	32.28	32.43	55.36	74.31
Brazil	49.23	66.89	70.96	60.74	63.87	59.72	52.72	22.66	23.67	60.58	66.16	46.68	49.33
Cameroon	53.64	64.45	68.34	57.39	60.53	64.41	49.45	45.68	46.16	57.09	63.19	46.03	54.26
Canada	50.47	60.51	51.84	67.73	61.59	58.34	63.79	62.26	62.13	66.24	55.62	63.79	44.96
Cuba	17.59	73.73	67.08	64.12	70.29	63.71	52.17	51.39	51.90	64.77	71.55	49.02	30.37
Ghana	51.36	64.62	66.40	58.62	61.11	63.61	39.77	38.27	38.11	58.06	63.87	39.77	52.09
Guinea	46.83	66.79	68.52	56.07	62.88	65.71	33.49	41.66	42.19	56.83	66.07	33.49	47.73
Hong Kong	70.17	26.93	20.19	45.33	35.10	46.06	60.23	69.67	70.03	43.05	21.38	61.83	66.45
Indonesia	73.54	26.90	35.02	42.92	30.17	41.19	57.21	65.12	65.50	38.37	26.90	58.90	69.57
Iran	67.49	47.13	53.35	17.89	38.27	58.99	46.75	65.01	65.34	27.03	46.21	48.48	69.70
Iraq	67.68	47.19	53.47	36.20	41.28	59.30	47.07	63.95	64.35	27.78	46.48	48.79	69.75
Japan	65.23	37.17	26.88	51.95	43.66	47.90	66.69	70.13	70.34	49.97	33.37	67.31	61.15
Kuwait	67.42	47.03	53.26	35.09	40.99	58.91	46.68	63.76	64.10	27.35	46.11	48.42	69.59
Liberia	48.01	65.98	70.12	57.08	62.58	66.33	43.49	38.61	35.43	59.26	65.24	35.85	49.05
Madagascar	67.19	47.72	52.93	34.77	39.66	51.74	46.42	52.58	53.00	34.26	45.97	44.53	66.79
Malaysia	72.04	24.23	35.20	35.31	19.48	46.91	53.32	64.30	64.69	32.17	22.24	55.09	71.64
Mauritania	44.98	66.39	70.28	54.37	61.58	68.26	39.13	36.38	36.38	55.14	65.07	30.33	46.47
Mexico	19.07	75.19	68.70	66.98	72.90	65.41	55.69	54.93	54.96	67.61	73.05	50.13	33.77
Nigeria	52.01	64.56	68.78	58.16	61.43	64.79	47.71	39.50	39.45	57.99	63.81	44.14	52.75
Peru	36.42	71.84	66.62	69.78	73.79	57.25	58.88	43.47	43.81	70.38	70.65	53.58	18.72
Philippines	70.65	26.72	23.52	44.70	34.22	43.32	59.85	68.92	69.29	42.35	21.15	61.21	66.82
Reunion	66.09	46.19	51.57	36.76	39.46	47.29	47.51	51.00	51.00	35.33	44.39	50.39	66.29

Table 37. Ocean Freight Rates Estimated from Exporting Countries or Regions to Importing Countries or Regions, Used by the Reactive Programming Model

(Continued)

Importing Countries or Regions	Exporting Countries or Regions												
	U.S.	Thailand	China	Pakistan	Burma	Australia	Italy	Uruguay	Argentina	India	Vietnam	Spain	Ot.South America
	(\$ per M.T.)												
Saudi Arabia Senegal Sierra Leone Singapore Somalia South Africa Sri Lanka Syria Taiwan Tanzania U.A.Emirates Ex-U.S.S.R. Zaire E.C.10 Ot.W.Europe East Europe Ot.C.A.(Carib.	58.05 44.98 46.83 72.95 56.07 58.39 68.05 55.77 69.37 67.03 65.84 54.21 55.32 47.90 49.99 54.21 23.80	49.32 66.39 66.79 20.27 46.33 54.81 34.09 53.68 28.60 50.55 44.70 38.29 61.18 64.76 58.80 57.74 72.34	55.32 70.28 68.52 32.51 50.43 59.77 42.43 59.45 17.30 55.49 51.23 28.22 63.03 68.74 64.09 63.12	32.33 54.37 56.07 37.17 30.04 47.03 25.59 38.71 36.54 34.02 17.89 43.71 54.22 52.32 45.63 44.22 63.74	43.60 61.58 62.88 23.24 39.39 51.08 24.98 48.69 49.90 41.96 38.27 44.45 57.31 59.80 54.30 52.69	59.61 68.26 65.71 45.02 52.98 55.09 49.37 63.11 47.89 53.01 57.09 51.75 59.95 72.21 67.60 66.74 63.01	31.38 39.13 33.49 54.55 49.23 55.94 47.51 25.98 60.06 44.67 44.33 37.51 44.89 35.87 24.44 8.18 47.95	61.92 36.38 41.66 53.65 41.52 60.93 58.18 69.69 52.81 62.08 72.75 39.98 52.81 52.69 56.67 48.43	62.33 36.38 42.19 65.75 53.65 42.06 61.35 58.57 70.05 53.23 62.43 72.95 40.27 53.32 53.13 57.07 49.64	33.66 55.14 56.83 34.22 30.44 46.80 20.95 39.86 43.96 33.50 22.96 43.96 33.50 22.96 53.90 53.13 46.61 45.23 64.40	44.43 65.07 66.07 20.27 44.26 53.92 32.72 52.89 25.32 48.91 43.73 34.13 60.38 63.39 58.08 57.01	33.98 30.33 33.49 56.30 49.23 50.88 49.51 29.22 62.33 47.70 46.15 34.29 44.89 26.09 13.21 24.83	60.52 46.47 47.73 70.48 68.73 58.56 70.11 58.12 65.63 66.96 66.96 68.07 61.26 55.78 52.63 56.63 26.48
Ot.S.S. Africa Ot.S.Asia Ot.E.As/Ocean. Ot.Md.E./N.Af.	55.32 72.37 73.54 54.84	50.55 33.81 26.90 53.19	55.49 42.21 35.02 59.01	34.02 30.17 42.92 37.97	41.96 17.30 30.17 48.11	53.01 51.98 41.19 62.87	44.67 53.60 57.21 22.19	39.98 65.19 65.12 57.31	40.27 65.58 65.12 57.70	33.50 32.28 65.50 39.15	48.91 32.43 20.56 52.39	44.89 55.36 58.90 27.50	61.26 74.31 68.35 57.25

¹ See Table 9 for shorthand names of countries or regions.

. . . .

Fiscal	Food Aid Programs	C.C.C. Credit Programs	C.C.C. African Relief Exports	F. F. P.	Export ² Programs	Exports Outside Specified Exp. Prog.	Total U.S Rice Exports	Rate of Change A/B*100
	(11)	11091umb		(10		LAP. 1109.	(2)	(%)
				(10	00 M.T.)			(6)
1980	540	168	0	0	708	2,247	2,955	18.0
1981	360	452	0	0	812	2,360	3,172	11.3
1982	374	14	0	0	388	2,523	2,911	12.9
1983	475	328	0	0	803	1,473	2,276	20.9
1984	464	571	49	0	1,084	1,209	2,293	20.2
1985	577	359	180	0	1,116	856	1,972	29.3
1986	313	477	0	23	813	1,569	2,382	13.1
1987	486	636	0	28	1,150	1,304	2,454	19.8
1988	350	443	0	120	913	1,220	2,173	16.1
1989	408	826	0	20	1,254	1,787	3,041	13.4
1990	350	663	0	0	1,013	1,484	2,497	14.0
1991	411	183	0	76	670	1,748	2,418	17.0
Average ³	390	557	0	32	979	1,673	2,652	14.7

Table 38. U.S. Rice Exports by Export Program, 1980-1991

¹ Include P.L.480 Programs, and Section 416 Overseas Donations.
² Export Enhancement Programs.
³ Average 1989-1991.

Source: U.S.D.A., 1992.

BIBLIOGRAPHY

- Adelman, I., and S. Robinson, "U.S. Agriculture in a General Equilibrium Framework: Analysis with a Social Accounting Matrix. " <u>American Journal of Ag. Economics</u>, 68(1986): 1196-1207.
- Angel, A.L., and C.P. Rosson, III, "Multilateral Trade Liberalization and the 1990 Farm Bill: Impacts on U.S. nd Southern Agriculture." Manuscript presented at the Southern Agricultural Economics Association annual meeting, Forth Worth, Texas, February 6, 1991.
- Bawden, D.L. "A Spatial Equilibrium Model of International Trade." Journal of Farm Economics, 48(1966): 862-74.
- Beckman, M.J., and T. Marschak. <u>An Activity Analysis</u> <u>Approach to Location Theory</u>. Proc. Symp. Linear Programming, Washington, D.C., pp. 357-377.
- Binkley, J.K., and B. Harrer, "Major Determinants of Ocean Freight Rates for Grains: An Econometric Analysis." <u>American Journal of Ag. Economics</u>, 63(1981): 47-57.
- Bredahl, M.E., W.H. Meyers, and K.J. Collins. "The Elasticity of Foreign Demand for U.S. Agricultural Products: The Importance of the Price Transmission Elasticity." <u>American Journal of Ag. Economics</u>, 61(1979): 58-63.
- Caney, R.W., and J.E. Reynolds. <u>Reed's Marine Distance</u> <u>Tables</u>. Thomas Reed Publications Limited, London, 1978.
- Chacholiodes, M. <u>Principles of International Economics</u>. New York, McGraw-Hill Book Company, 1990.
- Chaitip, P. "A Spatial Equilibrium Analysis of the Effects of Trade Liberalization on the Asian and United States Rice Markets." Unpublished Dissertation, Mississippi State University, 1989.
- Childs, N.W., and W. Lin. "Rice-Background for 1990 Farm Legislation." U.S.D.A., E.R.S., Staff Report AGES8949, Washington, D.C., 1989.

- Chang, T., and B.S. Luh. "Overview and Prospects of Rice Production." in B.S. Luh (Ed.), <u>Rice, Production</u>, Volume I, Second Edition, An AVI Book Published by Van Nostrand Reinhold, New York, 1991.
- Cramer, G.L., E.J. Wailes, J. Goroski, and S.Phillips. <u>The Impact of Liberalizing Trade on the World Rice</u> <u>Market: A Spatial Model Including Rice Quality</u>. University of Arkansas, Agricultural Expt. Station, Special Report 153, 1991.
- Cramer, G.L., E.J. Wailes, and S. Shui. "Impacts of Liberalizing Trade in the World Rice Market." <u>American</u> <u>Journal of Aq. Economics</u>, 75(1993): 219-226.
- Davis, M. L. "Cost of Shipping United States Grain Exports to Principal World Markets." Unpublished Master Thesis, Department of Agricultural Economics, Iowa State University, 1968.
- Dean, R. D., W.H. Leahy, and D. McKee, <u>Spatial Economic</u> <u>Theory</u>. The Free Press, New York, 1970.
- Enke, S. "Equilibrium Among Spatially Separated Markets: Solution by Electric Analogue." <u>Econometrica</u>, 19(1951): 40-47.
- Finger, J.M., and A.J. Yeats, "Effective Protection by Transportation Costs and Tariffs: A Comparison of Magnitudes."<u>Quarterly Journal of Economics</u>, February 1976, pp. 169-176.
- Food and Agriculture Organization of the United Nations (FAO). <u>FAO Yearbook of Trade</u>. Vol. 45, 1991, FAO Statistics Series No. 109, Rome, Italy, 1992.
- Gardiner, W.H., V.O. Roningen, and K. Liu, <u>Elasticities</u> <u>in the Trade Liberalization Database</u>. U.S.D.A., E.R.S., National Economic Division, Staff Report AGES8920, Washington, D.C., 1989.
- Geraci, V.J., and W. Prewo, "Bilateral Trade Flows and Transport Costs." <u>The Review of Economics and</u> <u>Statistics</u>, March 1976, pp.67-74.
- Goodwin, B.K. "Multivariate Cointegration Tests and the Law of one Price in International Wheat Markets." <u>Review of</u> <u>Agricultural Economics</u>, Vol.14, No.1, January 1992, pp. 117-124.

- Glaser, L.K. <u>Provision of the Food Security Act of 1985</u>. Agriculture Information Bulletin No. 498, U.S.D.A., E.R.S., April 1986.
- Grant, W.R. and G.W. Williams. "Trade Distorting Policies in the World Rice Market: Some Factors for Consideration in Trade Negotiations." Texas Agric. Market Research Center, Dept. of Ag. Economics, Texas A&M University, Staff Report No. SR-1-90, October 1990.
- Haley, S.L. "Partial Reform of World Rice Trade: Implications for the U.S. Rice Sector." International Agricultural Trade Research Consortium, Working Paper No. 91-9, October 1991.
- Harrer, B. John. "Ocean Freight Rates and Agricultural Trade." Unpublished Thesis, Purdue University, 1979.
- Hagen, J.W., B.O. Mason, and R.E. Neenan, "The Impact of Ocean freight Rates on Export Competitiveness: A Case Study of the California Cotton Industry." California Ag. Technology Institute, Center for Agricultural Business, Fresno, California, July 1991.
- Hawks, W.T. "Optimum Assembly, Processing, and Distribution Patterns for Fluid Milk in Mississippi." Unpublished M.S. Thesis, Mississippi State University, 1970.
- Hertel, T.W. and M.E. Tsigas. "Tax Policy and U.S. Agriculture: A General Equilibrium Analysis." <u>American</u> Journal of Aq. Economics, 70(1988): 289-302.
- Huang, J., C.C. David, and B. Duff. "Rice in Asia: Is it Becoming an Inferior Good?" Comment, <u>American Journal</u> of Aq. Economics, 73(1991):515-521.
- Ito, S., E.J. Wailes, and W.R. Grant, "Rice in Asia: Is it Becoming an Inferior Good?" <u>American Journal of Ag.</u> <u>Economics</u>, 71(1989):32-42.
- Joerger P. J. "A Quadratic Programming Model Applied to the U.S. Spring Wheat Marketing System." Unpublished Master Thesis, North Dakota State University, 1984.
- King R. A., and J. Gunn. <u>Reactive Programming User Manual: A</u> <u>Market Simulating Spatial Equilibrium Algorithm</u>. Economics Research Report No. 43, Department of Economics and Business, North Carolina State University, Raleigh, North Carolina, December 1981.

- King R. A., and F. Ho. <u>Reactive Programming: A Market</u> <u>Simulating Spatial Equilibrium Algorithm</u>. Economics Research Report No. 21, Department of Economics and Business, North Carolina State University, Raleigh, North Carolina, April 1972.
- Liu, K., and V.O. Roningen. <u>The World Grain Oilseeds</u> <u>Livestock</u>, <u>(GOL) Model, A Simplified Version.</u> U.S.D.A., E.R.S., IED, Staff Report AGES850128, Washington, D.C., 1985.
- Luh, B.S. "Introduction, Rice Utilization." in B.S. Luh
 (Ed.), <u>Rice, Utilization</u>. Volume II, Second Edition, An
 AVI Book Published by Van Nostrand Reinhold, New York,
 1991.
- Maritime Research Inc. <u>Chartering Annual 1990.</u> Parlin, New Jersey, Copyright 1990.
- Maritime Research Inc. <u>Chartering Annual 1991.</u> Parlin, New Jersey, Copyright 1991.
- McKenzie, L.W. "Specialization and Efficiency in World Production." <u>Review and Economic Studies</u>, 21(1954): 165-180.
- Moneta, C. "The Estimation of Transportation Costs in International Trade." Journal of Political Economy, Volume 67 (February 1959), pp. 41-58.
- Mundell, R.A. "A Geometry of Transport Costs in International Trade Theory." <u>Canadian Journal of</u> <u>Economics and Political Science</u>, August 1952, pp.331-348.
- Nesa W., and R. Coppins. <u>Linear Programming and Extensions</u> Mc Graw-Hill Book Company, 1981.
- Norton, R.D., and P.B.R. Hazell. <u>Agricultural Policy</u> <u>Analysis, Methods and Case Studies: A Model for</u> <u>Evaluating the Economic Impact of Food Aid.</u> USAID-Oklahoma State University, Report B-7, October 1985.
- Paris, Q. <u>An Economic Interpretation of Linear Programming</u>. Iowa State University Press, Ames, Iowa, 1991.
- Pinar, M. <u>Analysis of Ocean Transportation Costs and</u> <u>Tariff Barriers in International Cotton Trade.</u> Unpublished Dissertation, Mississippi State University, 1983.

- Riley, J.B. <u>A Reactive Programming Model for the Fluid</u> <u>Milk Industry</u>. Research Report P-697, Ag. Exp. Station, Oklahoma State University, July 1974.
- Rojko, A., Regier, D., P.O'Brien, A. Coffing, and L. Bailey. <u>Alternative Futures for World Food in 1985</u>. World GOL Model Analytical Report, Vol. 1, U.S.D.A., E.R.S., F.A.E., Report 146, 1978.
- Sadoulet E., and A. de Janvry. "Agricultural Trade Liberalization and Low Income Countries: A General Equilibrium-Multimarket Approach." <u>American Journal of</u> <u>Agricultural economics</u>, 74(1992): 268-280.
- Sampson, G.P., and A.J. Yeats. "The Incidence of Transport Costs on Exports from the United Kingdom." <u>Journal of</u> <u>Transport Economics and Policy</u>, May 1978, pp.196-201.
- Sampson, G.P., and A.J. Yeats."Tariff and Transport Barriers Facing Australian Exports." <u>Journal of Transport</u> <u>Economics and Policy</u>, May 1977, pp. 141-154.
- Samuelson, P.A. <u>Foundations of Economic Analysis</u>. Harvard University Press, Cambridge, 1947.
- Samuelson, P.A. "Prices of Factors and Goods in General Equilibrium." <u>Rev. Economic Studies</u>, 21(1953):1-20.
- Samuelson, P.A. "Spatial Price Equilibrium and Linear Programming." <u>Am. Economic Review</u>, 42(1952):283-303.
- Sharp, J.W., and H.J. Mc Donald. "The Impact of Vessel Size on an Optimal System of U.S. Grain Export Facilities." Ohio Agricultural Research and Development Center, Research Bulletin No. 1048, October 1971.
- Sullivan J., J. Wainio, and V. Roningen. <u>A Database for</u> <u>Trade Liberalization Studies</u>. U.S.D.A., E.R.S., Staff Report AGES8912, March 1989.
- Takayama, T., and G.G. Judge. "Spatial Equilibrium and Quadratic Programming." Journal of Farm Economics 46(1964):67-93.
- Takayama, T., and G.G. Judge. <u>Spatial and Temporal Price and</u> <u>Allocation Models</u>. North-Holland Publishing Company, Amsterdam, 1971.
- Takayama, T., and G.G. Judge. "Equilibrium Among Spatially Separated markets, A Reformulation," <u>Econometrica</u>, 32(1964):510-524.
- Tomek, W.G., and K.L. Robinson. <u>Agricultural Product Prices</u>. Third Edition, Cornell University Press, 1990.
- Tweeten, L.G. <u>Agricultural trade: Principles and Policies</u>. Westview Press Inc., Boulder, Colorado, 1992.
- Tramel, T.E., and A.D. Seale, Jr. "Reactive Programming of Supply and Demand Relations-An Application for Fresh Vegetables." Journal of Farm Economics, Vol. XLI(1959).
- Tramel, T.E., and A.D. Seale, Jr. "Reactive Programming Models." and "Reactive Programming, Recent Development." In: <u>Interregional Competition Research</u> <u>Methods.</u> Richard A. King (Ed.) The Agricultural Policy Institute, School of Agriculture and Life Sciences, North Carolina State University, Raleigh, 1963.
- Tyers, R., and K. Anderson. <u>Distortions in World Food</u> <u>Markets: A Quantitative Assessment</u>. World Bank, World Development Report, January 1986.
- U.S. Congress, Office of Technology Assessment. <u>An</u> <u>Assessment of Maritime Trade and Technology</u>. October 1983.
- U.S. Congress. <u>U.S. Code Congressional and Adm. News</u>. Vol.7, 101 st. Congress Second Session 1990. St. Paul, Minnesota, West Publish Co., 1990.
- U.S. Department of Agriculture. <u>Dictionary of International</u> <u>Agricultural Trade</u>. Foreign Agricultural Service, Agricultural Handbook No. 411, June 1988.
- U.S. Department of Agriculture. <u>World Grain Situation and</u> <u>Outlook: Reference Guide on Rice Supply and</u> <u>Distribution for Individual countries</u>. Foreign Agricultural Service Circular series, supplement 4-91, May 1991.
- U.S. Department of Agriculture. <u>Rice: Situation and Outlook</u> <u>Report</u>. Economic Research Service, RS-65, October 1992.
- U.S. Department of Commerce. <u>Unpublished Foreign Trade</u> <u>Statistics</u>. Bureau of the Census, SA705/705IT, Washington, D.C., 1986.
- U.S. Department of Transportation. "Maritime Subsidies." Publication of the Maritime Administration, June, 1988.

- Wisner, R.N., and W. Wang. <u>World Food Trade and U.S.</u> <u>Agriculture, 1960-1990</u>. Midwest Agribusiness Trade Research and Information Center. Iowa State University, 1990.
- <u>Webster's Third New International Dictionary of the English</u> <u>Language</u>. Merriam-Webster Inc., Publishers, Massachusetts, U.S.A., 1986.
- Wolfe, J.N. "Transportation Costs and Comparative Advantage." <u>Journal of Political Economy</u>, November 1959, pp. 392-397.
- Wood, D.F., and J.C. Johnson, <u>Contemporary Transportation</u>. 3rd. Edition, Macmillan Publishing Co., New York, 1989.
- Yoon, S. "A Spatial Equilibrium Analysis of the Competitive Position of the Southern U.S. Rice Industry in the International Market." Unpublished Dissertation, Mississippi State University, 1988.
- Zhang, M. "Impact of Transportation Service Rates on Shipping Rice from the Southern Region of The United States to International Markets." Unpublished Dissertation, Mississippi State University, 1990a.
- Zhang, B. "An Econometric Model of the World Rice Market." Unpublished M.S. Thesis, University of Arkansas, Fayetteville, 1990b.