Show simple item record

dc.contributor.authorPolo Lucero, Marco
dc.date.accessioned2018-06-15T16:59:16Z
dc.date.available2018-06-15T16:59:16Z
dc.date.issued2017
dc.identifier.otherU10.P64-T BAN UNALM
dc.identifier.urihttp://repositorio.lamolina.edu.pe/handle/UNALM/3385
dc.descriptionUniversidad Nacional Agraria La Molina. Facultad de Economía y Planificación. Departamento Académico de Estadística e Informáticaes_PE
dc.description.abstractEl propósito de este trabajo es presentar y explicar la metodología de un modelo espacial autorregresivo en el error. Para esto se comenzó explicando la teoría necesaria para comprender la estructura que tiene un modelo espacial autorregresivo en el error. En esta parte se estableció que para este modelo es necesario utilizar variables de tipo de corte transversal, que la unidad espacial es un área geográfica delimitada por un polígono y que el comportamiento de la variable de interés debe ser diferente en cada unidad espacial en el área de estudio, esto para no tener problemas de autocorrelación espacial. Finalmente, este modelo utiliza una matriz de pesos que tiene la función de controlar y capturar la autocorrelación espacial, obteniendo un modelo con parámetros estimados insesgados y consistentes. Para explicar la aplicación del modelo espacial autorregresivo en el error, se utilizaron los resultados de una investigación que se hizo en Argentina acerca de la Fecundidad (promedio de hijos nacidos vivos al nacer por mujer) en mujeres entre 15 y 29 años de edad. Donde primero se obtuvieron estadísticas básicas de las variable dependiente (variable en interés) y de las independientes. Luego se dividió en 531 unidades espaciales (partidos) al territorio Argentino. Después se eligió dos tipos de matrices de pesos (reina y 4-vecinos más cercanos). Posteriormente se probó con la estadística de I Moran, que si existía autocorrelación espacial global utilizando solo la variable fecundidad. Luego se utilizó la variable fecundidad con sus variables explicativas y se concluyó utilizando las pruebas estadísticas LM-ERR y LM-EL que la autocorrelación espacial se encontraba en la estructura del error. Lo anterior sugería que el modelo espacial autorregresivo en el error era el recomendable a utilizar. Finalmente se presentaron y estimaron a los dos modelos espaciales autorregresivos, uno utilizando la matriz de pesos tipo “reina” y el otro modelo utilizando la matriz de pesos tipo “4-vecinos más cercanos”, ambos modelos con variables explicativas significativas y capturando la autocorrelación espacial en la estructura del error, concluyendo que ambos modelos espaciales autorregresivos en el error son igual de óptimos para el estudio de la Fecundidad en Argentina.es_PE
dc.description.uriTrabajo de suficiencia profesionales_PE
dc.formatapplication/pdfen_US
dc.language.isospaes_PE
dc.publisherUniversidad Nacional Agraria La Molinaes_PE
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad Nacional Agraria La Molinaes_PE
dc.sourceRepositorio institucional - UNALMes_PE
dc.subjectFertilidades_PE
dc.subjectMétodos estadísticoses_PE
dc.subjectDatos estadísticoses_PE
dc.subjectAnálisis de datoses_PE
dc.subjectModeloses_PE
dc.subjectEvaluaciónes_PE
dc.subjectArgentinaes_PE
dc.subjectPerúes_PE
dc.subjectModelo especial autorregresivo en el errores_PE
dc.titleDescripción metodológica del modelo espacial autorregresivo en el errores_PE
dc.typeinfo:eu-repo/semantics/bachelorThesisen_US
thesis.degree.disciplineEstadística e Informáticaes_PE
thesis.degree.grantorUniversidad Nacional Agraria La Molina. Facultad de Economía y Planificaciónes_PE
thesis.degree.nameIngeniero Estadístico Informáticoes_PE
thesis.degree.levelTítulo Profesionales_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#4.05.00es_PE


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess