UNIVERSIDAD NACIONAL AGRARIA
LA MOLINA

FACULTAD DE ZOOTECNIA

DEPARTAMENTO DE PRODUCCION ANIMAL

“EL LASALOCIDO SODICO EN LA ALIMENTACIÓN
DE OVINOS BLACKBELLY”

TESIS PARA OPTAR EL TÍTULO DE
INGENIERO ZOOTECNISTA

BELISARIO ANTONIO CHIAN VÁSQUEZ

LIMA – PERÚ

2018
UNIVERSIDAD NACIONAL AGRARIA
LA MOLINA

FACULTAD DE ZOOTECNIA

DEPARTAMENTO DE PRODUCCION ANIMAL

“EL LASALOCIDO SODICO EN LA ALIMENTACIÓN DE OVINOS BLACKBELLY”

TESIS PARA OPTAR EL TÍTULO DE INGENIERO ZOOTECNISTA

Presentada por:

BELISARIO ANTONIO CHIAN VÁSQUEZ

Sustentada y aprobada ante el siguiente jurado:

__________________________________ ____________________________________
M.V. Julio Rojas Flores Ing. Jorge Aliaga Gutierrez
Presidente Patrocinador

__________________________________ ____________________________________
Dr. Manuel Rosemberg Barrón Dr. Carlos Gómez Bravo
Miembro Miembro
INDICE GENERAL

Página

I. INTRODUCCIÓN .. 1

II. REVISIÓN DE LITERATURA .. 3

 2.1 Aditivos no nutricionales .. 3
 2.2 El lasalócido sódico ... 4
 2.2.1 Características físicas y químicas ... 4
 2.2.2 Modo de acción ... 5
 A. A nivel celular .. 5
 B. Sobre el metabolismo energético ... 6
 C. Sobre el metabolismo del nitrógeno .. 7
 D. Sobre el metabolismo mineral ... 8
 E. En la sanidad animal ... 8
 2.2.3 Niveles de uso ... 10
 2.2.4 Efectos tóxicos .. 11
 2.2.5 Beneficios de la administración del lasalócido sódico 13
 2.3 Engorde de ganado ovino ... 13

III. MATERIALES Y MÉTODOS ... 15

 3.1 Localización .. 15
 3.2 Animales del experimento ... 15
 3.3 Instalaciones y equipos ... 17
 3.4 Los tratamientos .. 17
 3.5 De los análisis químicos .. 17
 3.6 De la técnica experimental ... 19
 3.7 De las variables evaluadas ... 20
 3.7.1 Consumo de alimentos .. 20
 3.7.2 Ganancia de peso vivo e incremento de talla ... 20
 3.7.3 Conversión alimenticia .. 20
3.7.4 Eficiencia de utilización de los alimentos .. 21
3.7.5 Valor económico de engorde (V.E.) ... 21
3.7.6 Beneficio, calificación y rendimiento de carcasa ... 21
3.8 Análisis estadístico .. 22

IV. RESULTADOS Y DISCUSION ... 25
 4.1 Del consumo de alimento ... 25
 4.2 De la ganancia de peso .. 28
 4.3 De los incrementos de talla .. 31
 4.4 De la conversión alimenticia (CA) y eficiencia de utilización de los alimentos (EUA) .. 33
 4.5 Del valor económico de engorde .. 35
 4.6 Del beneficio, calificación y rendimiento de carcasa 37

V. CONCLUSIONES .. 41

VI. RECOMENDACIONES ... 43

VII. BIBLIOGRAFIA ... 45

VIII. ANEXO ... 53
INDICE DE TABLAS

Tabla 1: Características de los grupos experimentales en la fase inicial 16
Tabla 2: Composición porcentual y costo promedio de las raciones tal como tal ofrecido por tratamiento ... 18
Tabla 3: Valor nutritivo estimado en base seca .. 19
Tabla 4: Consumo de alimento promedio semanal por animal de las raciones de las raciones experimentales por tratamiento ... 26
Tabla 5: Consumo de alimento semanal por tratamiento corregido por manova 26
Tabla 6: Ganancia de peso vivo individual y promedio por tratamiento 29
Tabla 7: Ganancia de peso semanal corregidos por manova .. 29
Tabla 8: Tallas individuales e incrementos de talla reales .. 32
Tabla 9: Incremento de talla por semana .. 33
Tabla 10: Conversión alimenticia (CA) y eficiencia de utilización del alimento (EUA) promedio por animal ... 35
Tabla 11: Conversión alimenticia ... 36
Tabla 12: Valor económico por tratamiento .. 37
Tabla 13: Rendimiento promedio para ambos tratamientos ... 38
Tabla 14: Clasificación de las carcasas por tratamiento .. 39
Tabla 15: Rendimiento promedio para ambos tratamientos ... 38
<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Consumo de alimento ajustado</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Incrementos de peso ajustado</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Incremento de talla</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Conversión alimenticia</td>
<td>36</td>
</tr>
</tbody>
</table>
INDICE DE ANEXOS

<table>
<thead>
<tr>
<th>Anexo</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Informe de laboratorio de análisis parasitológico</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>Análisis proximal del concentrado en base de materia seca</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Composición química del suplemento vitamínico mineral</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Costo de insumos a octubre 1998</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Valor económico actualizado por tratamiento</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Consumo de alimento por semana</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Análisis estadístico del consumo de alimento</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Análisis estadístico del consumo de alimento</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>Incremento de talla por semana</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>Análisis estadístico del incremento de peso</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>Análisis estadístico del incremento de peso</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>Incremento de talla por semana</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>Análisis estadístico del incremento de talla</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>Rendimiento de carcasa</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>Análisis estadístico del rendimiento de carcasa</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>Análisis estadístico del rendimiento de carcasa</td>
<td>69</td>
</tr>
<tr>
<td>17</td>
<td>Conversión alimenticia por semana</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td>Análisis estadístico de la conversión alimenticia</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>Análisis estadístico de la conversión alimenticia</td>
<td>72</td>
</tr>
</tbody>
</table>
RESUMEN

El presente estudio se llevó a cabo en una granja de ovinos ubicada en la provincia de Huaral - departamento de Lima. Se emplearon 11 ovinos machos de la raza blackbelly de aproximadamente 5 meses de edad distribuidos al azar en dos grupos que fueron alimentados con una ración a base de residuos agroindustriales a la cual se le adicionó lasalócido sódico (LS) según el caso. Los tratamientos fueron: T1 (sin LS) y T2 (60mg LS/Kg). Se evaluó el consumo de alimento (Kg), ganancia de peso (Kg), incremento de talla (cm) y rendimiento en carcosa (%), en cada animal. Se utilizó el análisis de variancia multivariado de un diseño completamente al azar con covariancia para las variables consumo de alimento, ganancia de peso, conversión alimenticia e incremento de talla. Para el rendimiento en carcosa se utilizó el diseño completamente al azar con covariancia. Los resultados obtenidos (T1 Vs T2) fueron: consumo de alimento (63.85 Vs 63.97), ganancia de peso (12.91 Vs 13.33), conversión alimenticia (4.94 Vs 4.80), incremento de talla (10.19 Vs 10.09) y rendimiento en carcosa (48.60 Vs 46.66). No existiendo diferencias estadísticas significativas entre tratamientos (P>0.05), en las variables estudiadas. Los resultados sugieren que la adición de 60mg de lasalócido sódico por Kg. de alimento en raciones de engorde para ovinos blackbelly en este estudio no mejoró la performance.

Palabras claves: Ovinos ; Blacbelly ; Lasalócido sódico ; Suplementos ; Ganancia de peso ; Incremento de talla.
I. INTRODUCCION

En la actualidad en el Perú la producción de carnes rojas es cada vez más crítica. La cría del ganado se realiza en condiciones desfavorables y sin mayor tecnificación, lo que determina bajos niveles productivos. Una de las recomendaciones para solucionar en parte este problema es utilizar nuevos métodos de crianza y buscar nuevas técnicas de alimentación en donde el ganado aproveche de manera más eficiente los alimentos y pueda superarse este déficit productivo adecuadamente. El reciente interés por la crianza intensiva de ovinos, especialmente de ovinos tropicales es una alternativa a la situación planteada. Es posible colocar en el mercado en un menor tiempo, una mayor cantidad de carne tierna y magra que es muy bien aceptada por la población.

Sin embargo, las investigaciones en ovinos de pelo a nivel mundial son escasas, especialmente en el campo de la nutrición. El presente estudio tiene por objetivo evaluar la respuesta a la suplementación con lasalócido sódico sobre la ganancia de peso, incremento de talla, así como también sobre la conversión alimenticia, rendimiento de carcosa y aspecto económico en el crecimiento de ovinos Blackbelly.
II. REVISION DE LITERATURA

2.1 Aditivos no nutricionales

El término aditivo no nutricional, incluye drogas y otros compuestos que no aportan nutrientes y que administrados en pequeñas dosis en el alimento de las especies domésticas, incrementan la tasa de crecimiento y reducen el gasto de alimentación al mejorar la salud de los animales. Dentro de este tipo de aditivos se incluyen los antibióticos, nitrofuranos, sulfamidas, arsenicales, hormonas, coccidiostatos, ligantes, oxidantes, antihelminticos, carbón activado, bentonita sódica, compuestos tensoactivos, tampones, yoduros orgánicos, cultivos de levaduras vivas y cultivos desecados de microorganismos del rumen, etc. (Cunha, 1982).

Maynard et al. (1981) de acuerdo al rol que cumplen los aditivos no nutricionales en la producción animal hicieron la siguiente clasificación:

- Promotores de crecimiento que al mejorar el estado de salud del animal incrementa su rendimiento. Se incluyen ciertos antibióticos, arsenicales orgánicos y hormonas.
- Sustancias antiparasitarias y antiinfecciosas que previenen las infestaciones e infecciones. Entre ellos están los antibióticos, coccidiostatos, antihelminticos y plaguicidas.
- Agentes antioxidantes y antifermentantes que preservan las cualidades nutricionales del alimento. En ellos se incluyen los antioxidantes, carbón activado, bentonita, etc.
2.2 El lasalocido sódico

2.2.1 Características físicas y químicas

El lasalocido sódico (LS), es una molécula biológicamente activa de un grupo conocido como ionóforo, término que está en relación a su capacidad para ayudar en el transporte de cationes a través de las membranas (Pressman, 1976; citado por Fuller y Johnson 1981).

El lasalocido sódico es un antibiótico ionóforo bivalente, producido por la fermentación de una variedad de *Streptomices lasaliensis* y pertenece a un grupo de compuestos naturales y sintéticos, capaces de formar cationes lipídicos (Westley *et al*., 1974; Paienter *et al*., 1982). El lasalocido sódico tiene un peso molecular de 612, cuya fórmula empírica es C$_{34}$H$_{53}$O$_8$Na, siendo soluble en agua y en la mayoría de los solventes orgánicos (Bergen y Bates, 1984).

El lasalocido sódico es un polvo marrón claro fácilmente deslizable, este producto se ofrece bajo la marca BOVATEC por Laboratorios Roche como una premezcla que contiene 15 por ciento de lasalocido sódico y no es pulverulento ni higroscópico. El producto tiene una excelente estabilidad, tanto en estado puro como en alimentos molidos y peletizados, en suplementos proteicos, mezclas minerales y sal común. Los resultados de pruebas realizadas demuestran que este Ionóforo se mezcla fácilmente con otros ingredientes alimenticios y pueden ser distribuidos uniformemente en la premezcla y en el alimento de los animales. Este producto contiene un número mínimo aproximado de partículas de 43,000 millones/gramo, densidad aproximada de 0.46 Kg/Lt, un tamaño promedio de partículas de 1.95 um. y una gravedad específica de 1.39 g/cc (Roche, 1986).
2.2.2 Modo de acción

Los antibióticos ionóforos intervienen en primer lugar en el metabolismo microbial del rumen para lograr una fermentación más beneficiosa en el huésped. Entre las alteraciones favorables en la fermentación ruminal está aumentar la producción de propionato, decrecer la producción de lactato y metano, al mismo tiempo que hay una reducción de la proteólisis y desaminación (Nagaraja et al., 1985). También se reporta una disminución de acetato (Bartley et al., 1979; citado por Ricke et al., 1984).

A. A Nivel celular

La acción básica y fundamental del lasalócido sódico y de otros ionóforos es sobre el mecanismo de enlazamiento y transporte del movimiento de los iones metales a través de las membranas biológicas. El modo de acción del lasalócido sódico es elevar el sodio celular y promover la salida del potasio. La entrada de sodio a medida que es catalizada por el ionóforo, estimula la bomba de Na+/K+, incrementando la tasa de glicólisis, agota el ATP intracelular e incrementa la carga eléctrica a través de la membrana. Además, el transporte de aminoácidos, dependiendo del mecanismo de enlace, de un modo considerable puede aumentar o disminuir (Pressman 1976; Austic y Smith 1980; Smith y Holoway 1983; citados por Bergen y Bates 1984).

El lasalócido sódico es un antibiótico ionóforo bivalente que aumenta la permeabilidad de las membranas celulares de las bacterias y otros organismos unicelulares a los iones de Na+, K+, Ca++ y Mg++. Por diferencias de presión osmótica, este exceso de iones determina la entrada de agua a la célula, la cual aumenta de volumen produciendo lisis lo que ocasiona la muerte de la bacteria. Los efectos de las gradientes de iones son mayores en las bacterias gram positivas que en las gram negativas y en consecuencia la proporción de éstas últimas aumenta (Chen y Wolin, 1979).
Los cambios en el transporte de iones a través de las membranas celulares, parecen ser los efectos fundamentales de los ionóforos en su actividad anticoccidial (Shanne et al., 1979).

De acuerdo a Bergen y Bates (1984), los ionóforos son empleados para incrementar la productividad en los rumiantes debido a que éstos ejercen varios mecanismos de acción:

- Aumento en la eficiencia de utilización de la energía.
- Incremento de la eficiencia de utilización proteica.
- Alteración del metabolismo mineral, e
- Influencia sobre la sanidad animal.

B. Sobre el metabolismo energético

Como es sabido, la celulosa y hemicelulosa de los forrajes y el almidón de los granos son las principales fuentes de energía para el rumiante. Estos carbohidratos se fermentan por los microorganismos ruminales a ácidos grasos volátiles (AGV): acético, propiónico y butírico, metabolizando finalmente el rumiante estos ácidos como fuente de energía. La concentración de estos tres AGV específicos diferirá según los ingredientes dietarios consumidos (Elanco, 1978).

La producción individual de los patrones de AGV son generalmente cambiados sin afectar la producción total de AGV, aunque en algunas específicas fermentaciones producidas se deprimen. La producción de ácido butírico es usualmente disminuida por la acción de cualquier ionóforo, mientras el ácido propiónico es generalmente incrementado. De la misma forma el lasalócido sódico deprime la producción de ácidos isovaléricos (Fuller y Johnson, 1981).
Los efectos del lasalócido sódico sobre el rumen para modificar la fermentación se debe a la selección de un microbio comúnmente resistente al antibiótico que produce más propionato, pero menos acetato, butirato y lactato e indirectamente menos metano (Chen y Wolin 1979; citados por Dennis et al., 1981). En estudios in vitro se obtiene similares resultados. Se observó una selección de la población microbial a favor de aquellos microorganismos resistentes a los ionóforos quienes son productores de succinato y fermentadores del lactato, capaces de producir más propionato y menos acetato, butirato y metano (Chen y Wolin, 1979; Dennis et al., 1981, citados por Ricke, et al., 1984).

Se ha demostrado que el lasalócido sódico disminuye las concentraciones de acetato e incrementa las de propionato, lo que conduce a la disminución de la relación acetato propionato (A:P) (Bartley et al., 1979, citado por Ricke et al., 1984).

C. Sobre el metabolismo del nitrógeno

En un estudio en corderos suplementados con lasalócido sódico las pérdidas fecales de nitrógeno fueron menores, observándose una mayor retención de nitrógeno que en corderos sin lasalócido sódico. Esto podría ser un reflejo del incremento de la digestibilidad del Nitrógeno (Ricke et al., 1984).

De la misma manera, estudios realizados en vacunos suplementados con ionóforos se concluye que el lasalócido sódico mejora la digestibilidad del nitrógeno (Paterson et al., 1983).
D. Sobre el metabolismo mineral

Se ha reportado que en toros suplementados con lasalócido sódico en dietas altas en energía se incrementa la absorción aparente de sodio, magnesio y fósforo, aumenta la retención de estos dos últimos minerales y también se altera las concentraciones solubles de ciertos minerales en el fluido ruminal (Starnes et al., 1984; citados por Spears y Harvey 1987).

En trabajos con ovinos adicionando lasalócido sódico se encontró que alteraban la absorción, retención y flujo en el tracto digestivo de varios minerales como el Na, K, Fe y Mg (Kirk et al., 1987).

E. En la sanidad animal

La excesiva producción de ácido láctico está involucrada en la etiología y patología de la acidosis láctica en el ganado (Bartley et al., 1979).

Se indica que los ionóforos inhiben el crecimiento de la pared celular de las bacterias gram positivas, siendo estas las mayores productoras de lactato ruminal (Chen y Wolin, 1979).

Los antibióticos ionóforos tienen eficacia en la prevención de coccidiosis, sarcocystosis y abortos causados por infección de toxoplasma. De la misma manera son empleados en la prevención atípica de la neumonía intersticial. (Tyler et al., 1992).
Se ha observado que las cepas de *Streptococcus bovis*, las cuales son las mayores productoras de lactatos, se inhiben por bajas concentraciones de lasalócido (Dennis *et al.*, 1981; citados por Bartley *et al.*, 1983).

En ovinos el empleo de lasalócido sódico en alimentos peletizados protegen a los corderos de la coccidiosis clínica y sub-clínica, disminuye la concentración de oocystos, aumenta la ganancia de peso y mejora la conversión alimenticia. El lasalócido sódico fue altamente efectivo (>99%) para la prevención del Tabla clínico de coccidiosis (Foreyt *et al.*, 1979).

El lasalócido sódico en la sal granulada es un método efectivo para reducir las infecciones por coccidia en corderos bajo condiciones de semiconfinamiento, y también para prevenir efectos adversos asociados con infecciones por coccidia. Por otro lado, el lasalócido sódico en bajas concentraciones utilizadas en el alimento fue altamente efectivo en reducir el número de oocystos encontrados en heces de ovejas y corderos infectados naturalmente (Foreyt *et al.*, 1981-B). Asimismo, Horton y Stockdale (1981), afirman que el lasalócido sódico controla la presentación natural de coccidiosis y mejora la performance en corderos alimentados en lotes y destetados precozmente.

De igual manera se han reportado numerosos efectos biológicos para los ionóforos. El lasalócido sódico estimula la contracción del corazón, incrementa el flujo de la sangre y disminuye la resistencia periférica (Saini *et al.*, 1979; citado por Goodrich *et al.*, 1984; Pressman y Fahim, 1982).
El lasalócido sódico a dosis de 0.66 mg/kg de alimento previene efectivamente contra la presentación del timpanismo en ganado antes de someterlos a dietas altas en granos y del mismo modo dosis de 1.32 mg/kg de alimento es efectivo para el control de ganado ya timpanizado (Bartley et al., 1983).

2.2.3 Niveles de uso
La mejora en el rendimiento en cuanto a ganancia de peso y conversión alimenticia con el empleo del lasalócido sódico depende de muchos factores, tales como: raza, manejo, tipo de ración, condiciones medio ambientales y sanidad animal. En el caso de los vacunos en crecimiento-engorde de cualquier raza, sexo, edad y con un rumen activo, con alimentación a pastoreo, la dosis es de 200 mg. de lasalócido sódico por cabeza. En los animales en engorde a corral, la dosis óptima es de 300 mg. por cabeza al día. En el engorde de ovinos a pastoreo o estabulados la dosis diaria recomendada es de 45 mg. por animal (Roche, 1986).

En un ensayo con carnerillos de un año de edad mantenidos en praderas y con suplementos alimenticios durante 100 días: se observó que al adicionar 50 mg del lasalócido sódico por animal se obtuvo ganancias promedio diarias de 313g Vs. 279g de grupos sin lasalócido sódico lo cual significó un aumento de peso mayor en 12.2 por ciento (Roche, 1988). Foreyt et al. (1979), durante un período de 100 días en corderos en confinamiento tratados con lasalócido sódico a razón de 100 mg/kg de alimento y corderos alimentados sin lasalócido sódico, se obtuvo un promedio de ganancia de peso de 6 kg más por animal que los corderos no tratados y consumieron significativamente menos alimento por cada kilogramo de peso ganado.

Similarmente, Horton y Stockdale (1981), en otro estudio con corderos a los cuales se le adicionó lasalócido sódico (12.5; 25; 50 y 100 mg/kg de alimento) durante
103 días; obtuvo los mejores y similares resultados utilizando niveles de 25 y 50 mg de lasalócido sódico por kilogramo de alimento y las ganancias diarias promedio de peso fueron de 337g Vs. 313g del grupo control; el consumo de alimento diario promedio fue de 1.5 kg para los dos niveles de lasalócido sódico Vs. 1.56 kg para el control y la conversión alimenticia de 4.45 Vs. 4.9 del control.

Por otro lado, Foreyt et al. (1981-B), indica que el lasalócido sódico a razón de 25 mg/kg dio buenos resultados. En corderos tratados con lasalócido sódico durante 91 días obtuvo una ganancia de peso promedio día de 0.34 kg por animal, lo cual significó un 3.02 por ciento más que los animales del grupo control, en cuanto a la conversión alimenticia que se obtuvo fue de 6.1 kg de alimento/kg de peso ganado, lo que representa una mejoría en 1.85 por ciento con respecto al control que fue de 6.215 Kg. de alimento/Kg de peso vivo. El lasalócido a un nivel de 0.75 por ciento en la sal granulada suministrada ad libitum, fue altamente eficaz contra las infecciones por coccidiosis adquiridas naturalmente en corderos bajo semiconfinamiento. Los corderos tratados consumieron 18 g de sal medicada/día, lo que arroja una dosis promedio diaria de lasalócido de 4.3 mg/kg de peso vivo. Los corderos tratados ganaron 5.7 kg más que aquellos sin tratar (P<0.01) durante el experimento de 84 días (representando un 29.6 por ciento de incremento con respecto al control) y una conversión alimenticia de 4.99 kg de alimento/kg de peso vivo (15.5 por ciento mejor que el control), (Foreyt et al., 1981-A).

2.2.4 Efectos tóxicos

Debido a su baja toxicidad del lasalócido sódico este producto es bien aceptado y tolerado por los animales desde el primer día y por lo tanto no requiere de un período de adaptación. Además, se puede administrar a animales muy jóvenes con rumen funcional, si por error en la dosificación se administran dosis 5 veces más a las recomendadas, no se observan efectos tóxicos. Por no dejar residuos ni influir en la calidad de la carne puede administrarse hasta el último día del engorde (Roche 1987).
Se han realizado numerosas investigaciones acerca de la toxicidad del lasalócido sódico en diversas especies, llegando a reportar que en ganado vacuno a los que se les dio una única dósis oral de lasalócido sódico los signos tóxicos iniciales aparecen las primeras 24 horas después de la dosificación, siendo estos: temblores musculares en el flanco, un aumento en la velocidad respiratoria, en la del corazón y anorexia. Estos efectos empezaron con dósis de 50mg/kg de peso vivo (P.V.) y fueron pasajeros, las mayores dósis incrementaron la duración de los efectos tóxicos. A dósis más bajas (10 a 25mg/kg P.V.) los vacunos estuvieron anóxicos durante 2 a 3 días y tuvieron diarrea acuosa desde el segundo día hasta el quinto día (Galitzer et al., 1986).

Nelson y Landblon (1983), realizaron un estudio con vacunos durante 252 días a 30, 60 y 150 ppm de lasalócido sódico y se demostró que con la dósis de 150 ppm (5 veces la dósis recomendada más alta) se observó una ligera diarrea transitoria por 3 días. Los resultados de las investigaciones indican que el vacuno medicado y alimentado con lasalócido tiene un margen de seguridad más amplio que en aves de corral y lo mismo ocurre con caballos y cerdos si han consumido accidentalmente lasalócido sódico.

De acuerdo a los informes de Hanson et al. (1981) sobre la toxicidad del lasalócido sódico en caballos, sostienen que esta es la especie más sensible. La dósis letal oral fue de 21.5 mg/kg P.V. El síndrome clínico-patológico por la toxicidad de lasalócido sódico en caballos, se presentó con depresión, ataxia, paresia, anorexia y cambios en la química de la sangre (Matzuka, 1976; Amend, 1980; citados por Acuña, 1993).

Del mismo modo, ovinos envenenados con ionóforos, desarrollaron lesiones musculares cardiacas y en el esqueleto (Confer et al., 1983). Los signos clínicos se describen como: depresión, anorexia, diarrea y rigidez; aparecen incrementos en la creatinasa del suero, no encontrándose modificaciones en hemoglobina, en
el volumen de células conglomeradas, proteína, fibrinógeno, nitrógeno de la urea o albúmina (Anderson et al., 1984).

2.2.5 Beneficios de la administración del lasalócido sódico

Entre los beneficios observados por Nelson y Landblom (1983), mediante la administración del lasalócido sódico están:

1. Mejorar la eficiencia de la alimentación,
2. Incremento de la ganancia diaria de peso,
3. Rápida adaptación del ganado,
4. Compatibilidad con todos los ingredientes, implantes y aditivos comúnmente empleados en la alimentación del ganado.
5. Uso hasta el día del beneficio sin alterar la calidad de la carcasa.
6. Estabilidad física y química con todo tipo de alimento.
7. Mayor margen de seguridad (hasta 5 veces más de la dosis recomendada).

Por otro lado, la suplementación de lasalócido sódico en ovejas en gestación bajo régimen extensivo mejora el porcentaje de corderos nacidos y pesos de corderos destetados por oveja. (Thomas, 1989).

2.3 Engorde de ganado ovino

Los estudios tienden a indicar que se puede conseguir de una moderada a alta performance en ovinos de pelo, alimentándolos con insumos no convencionales, los cuales pueden jugar un papel muy importante en reducir el costo de alimentación (Lallo et al., 1991).

En el uso de alimentos concentrados en ovinos de pelo se encontraron diferencias altamente significativas en el peso vivo, peso de carcasa, porcentaje de piel y calidad de carcasa (Martínez et al., 1991).
Gonzáles (1983), citado por Martínez et al. (1991), encontró en pruebas realizadas en Venezuela, alimentando ovinos de pelo con dietas a base de concentrados y forrajes por un período de 70 días, incrementos de peso promedio diarios de 172g por animal. Los pesos iniciales promedios de los ovinos fueron de 19.7kg y pesos finales promedios de 31.8kg. De igual modo, Mc Clure et al. (1991), en trabajos efectuados con dos razas de ovinos (Targhee y St. Croix), de pesos iniciales 28 y 17.8kg respectivamente, fueron alimentados con insumos altamente energéticos por períodos de 60 y 82 días obteniendo ganancias de peso de 333 y 200g respectivamente.

Asimismo, en un estudio realizado en ovinos Santa Inés y Morada Nova (pesos iniciales 17.3 y 15.8kg respectivamente), alimentándolos con dietas conteniendo diferentes niveles de energía y proteína por un período de 11 semanas. Se obtuvo los mayores incrementos de pesos diarios (183g/d) en las raciones con niveles energéticos medios (2.75 Mcal/kg) y altos niveles proteicos (12.5% PC), (Kawas et al., 1991).
III. MATERIALES Y METODOS

3.1 Localización
La fase experimental del presente estudio se desarrolló en las instalaciones de una granja particular de ovinos, localizada en la irrigación la Esperanza Baja en el sector Granados, provincia de Huaral, departamento de Lima, entre los meses de Setiembre y noviembre de 1994.

3.2 Animales del experimento
Se seleccionó un lote de 11 ovinos Blackbelly machos provenientes de partos dobles, de aproximadamente 5 meses de edad. Los animales fueron distribuidos al azar en dos tratamientos: 5 ovinos en el grupo Testigo y 6 en el grupo Experimental.

En la tabla 1, se puede observar las características de los ovinos al inicio de la fase experimental.
Tabla 1. Características de los grupos experimentales en la fase inicial

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>OVINOS N° ARETE</th>
<th>PESO Kg</th>
<th>TALLA* Cm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTIGO (TI)</td>
<td>0714</td>
<td>20.000</td>
<td>49.000</td>
</tr>
<tr>
<td></td>
<td>0614</td>
<td>21.500</td>
<td>53.500</td>
</tr>
<tr>
<td></td>
<td>0411</td>
<td>18.500</td>
<td>55.000</td>
</tr>
<tr>
<td></td>
<td>0514</td>
<td>24.000</td>
<td>52.000</td>
</tr>
<tr>
<td></td>
<td>0814</td>
<td>19.200</td>
<td>51.500</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>20.640</td>
<td>52.400</td>
<td></td>
</tr>
<tr>
<td>DS.**</td>
<td>2.154</td>
<td>2.152</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTAL (T2)</td>
<td>0430</td>
<td>22.500</td>
<td>55.500</td>
</tr>
<tr>
<td></td>
<td>0490</td>
<td>19.500</td>
<td>51.500</td>
</tr>
<tr>
<td></td>
<td>0914</td>
<td>22.500</td>
<td>51.500</td>
</tr>
<tr>
<td></td>
<td>0450</td>
<td>22.000</td>
<td>53.500</td>
</tr>
<tr>
<td></td>
<td>1514</td>
<td>19.500</td>
<td>48.000</td>
</tr>
<tr>
<td></td>
<td>0414</td>
<td>24.000</td>
<td>56.500</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>21.667</td>
<td>52.750</td>
<td></td>
</tr>
<tr>
<td>DS.**</td>
<td>1.807</td>
<td>3.094</td>
<td></td>
</tr>
</tbody>
</table>

* : Altura de la cruz

Fuente: Elaboración propia.
3.3 Instalaciones y equipos
Los corderos se alojaron en corrales individuales de un área de 1.5 m² por animal. Estos corrales se construyeron a base de palos de eucalipto y fueron techados con calaminas en su totalidad.

Los equipos empleados fueron: comederos y bebederos individuales galvanizados, balanzas de plataforma y de reloj, así como también de un hipómetro, para efectuar las medidas de talla semanales (hipómetro, herramienta con la cual se mide la altura de los caballos del suelo hasta la cruz).

3.4 Los tratamientos
El estudio se efectuó con 2 tratamientos: T1 y T2

T1: Ración Testigo, ración total a base de residuos agroindustriales comunes de la zona.

T2: Ración Experimental, ración total, similar a la anterior, a la cual se adicionó lasalócido sódico (60 mg Lasalócido Sódico/Kg (LS) de alimento en base seca).

El lasalócido sódico (Bovatec) fue proporcionado por el Laboratorio ROCHE.

La ración fue formulada considerando los requerimientos nutricionales de los corderos de acuerdo a su categoría recomendado por el NRC (1975), para ello se empleo el Programa Mixit-2 al mínimo costo (Tabla 2).

3.5 Los análisis químicos
El análisis proximal del concentrado se realizó en el Laboratorio de Análisis de Alimentos del Departamento de Nutrición de la UNA - La Molina como se observan en las tablas 2 y 3.
Tabla 2. **Composición porcentual y costo promedio de las raciones tal como ofrecido por tratamiento**

<table>
<thead>
<tr>
<th>INSUMOS*</th>
<th>COSTO S./Kg</th>
<th>TRATAMIENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TESTIGO (T1)</td>
</tr>
<tr>
<td>Maíz grano</td>
<td>0.55</td>
<td>38.877</td>
</tr>
<tr>
<td>Subproducto de Trigo</td>
<td>0.25</td>
<td>22.142</td>
</tr>
<tr>
<td>Maíz Panca</td>
<td>0.15</td>
<td>13.094</td>
</tr>
<tr>
<td>Pasta de Algodón 36%</td>
<td>0.43</td>
<td>12.000</td>
</tr>
<tr>
<td>Harina de Pescado 60%</td>
<td>0.85</td>
<td>8.121</td>
</tr>
<tr>
<td>Melaza de Caña</td>
<td>0.30</td>
<td>3.000</td>
</tr>
<tr>
<td>Carbonato de Calcio</td>
<td>0.22</td>
<td>2.167</td>
</tr>
<tr>
<td>Sal Común</td>
<td>0.12</td>
<td>0.500</td>
</tr>
<tr>
<td>Zoodry VM-9P**</td>
<td>7.40</td>
<td>0.100</td>
</tr>
<tr>
<td>Bovatec (15% Lasalócido Sódico)</td>
<td>21.65</td>
<td>0.000</td>
</tr>
<tr>
<td>Costo/Kg (S/.)</td>
<td></td>
<td>0.430</td>
</tr>
</tbody>
</table>

* Precios a Setiembre de 1994 (1 U.S.$ = S/ 2.25)

* Suplemento vitamínico mineral - Composición Tabla 7 del Anexo

Fuente: Elaboración propia.
Tabla 3. Valor nutritivo estimado en base a materia seca

<table>
<thead>
<tr>
<th>NUTRIENTES</th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Seca</td>
<td>87.00</td>
<td>87.00</td>
</tr>
<tr>
<td>Proteína Cruda</td>
<td>20.67</td>
<td>20.67</td>
</tr>
<tr>
<td>Fibra Cruda</td>
<td>8.97</td>
<td>8.97</td>
</tr>
<tr>
<td>Extracto Etéreo</td>
<td>3.83</td>
<td>3.83</td>
</tr>
<tr>
<td>NDT*</td>
<td>66.56</td>
<td>66.56</td>
</tr>
</tbody>
</table>

* Según Bath et al. 1987

NDT (%) = 1.15 (% PC) + 1.75 (% EE) + 0.45 (% FC) + 0.0085 (ELN2 %) + 0.25 (ELN %) - 3.4

Fuente: Elaboración propia.

3.6 De la técnica experimental

Antes del inicio del experimento, los animales fueron sometidos a una etapa de adaptación, la cual tuvo una duración de 21 días, tiempo suficiente para que los corderos se acondicionen a los corrales individuales y a la ración. Esto se realizó debido a que los animales procedían de una crianza al pastoreo. Durante esta etapa los animales fueron desparasitados dosificándolos con ivermectina al 1 por ciento mediante aplicación subcutánea y también, se tomaron muestras de heces de todos los animales para realizar en laboratorio el despistaje de coccidia.

Las raciones se prepararon semanalmente en forma manual utilizando palas para el mezclado, el LS se adicionó a la ración uniformizándolo previamente con un 10 por ciento del subproducto de trigo hasta obtener una mezcla homogénea, para luego agregarlo al total de la ración, la cual se depositó en sacos de polipropileno para su almacenamiento y protección del medio ambiente.
El alimento se proporcionó a los corderos una vez al día, a las siete de la mañana, regulándose el suministro del alimento en función al consumo mostrado por los animales, agregándose un 10 por ciento más de alimento con respecto al consumo mostrado la semana anterior.

Los animales fueron pesados y medidos semanalmente durante las ocho semanas de duración del experimento. Este control se hizo antes del suministro de alimento.

3.7 De las variables evaluadas

3.7.1. Consumo de alimento
El consumo promedio individual por semana y por tratamiento, se determinó en base a los datos registrados del alimento ofrecido y de los residuos diarios por animal, para luego obtener el consumo total del período experimental.

3.7.2. Ganancia de peso vivo e incremento de talla
Se efectuaron semanalmente pesadas y medidas de talla a la cruz en forma individual para determinar los incrementos de pesos y tallas de los animales por cada tratamiento.

3.7.3 Conversión alimenticia (CA)
Para calcular la Conversión Alimenticia (CA), se dividió el consumo promedio total de alimento por animal, entre la ganancia promedio por animal.

\[
CA = \frac{\text{Alimento Consumido (Kg)}}{\text{Ganancia de Peso (Kg)}}
\]
3.7.4 Eficiencia de utilización de los alimentos (EUA)

Con el fin de determinar esta medida se relacionó los kilos de ganancia de peso y los kilos de nutrientes digestibles totales consumidos por el animal, para luego llevarlo a porcentaje. Esta relación está dada por la siguiente fórmula:

\[
EUA = \frac{\text{Ganancia de Peso (Kg)}}{\text{Kg NDT Consumido}} \times 100
\]

3.7.5 Valor económico (VE)

El valor económico nos permite establecer los soles necesarios para ganar un kilogramo de peso vivo; de tal manera que es posible determinar cuál de las raciones es la más eficiente en términos económicos. Esto se da por la siguiente relación:

\[
VE = \frac{\text{Consumo de la Ración (Kg)}}{\text{Ganancia de Peso (Kg)}} \times \text{Precio de la Ración}
\]

3.7.6 Beneficio, calificación y rendimiento en carcasa

Al finalizar el período de engorde, los animales fueron pesados y trasladados al Camal de Beneficio de Animales del Programa de Investigación en Carnes de la Universidad Nacional Agraria La Molina. Durante el beneficio se efectuaron controles de cada uno de los corderos, obteniendo datos sobre el peso vivo, peso de carcasa, inspección sanitaria y calificación, en donde se tomó en cuenta los factores para la clasificación de carnes como son: edad, conformación, sexo, acabado, peso y sanidad (Ministerio de Agricultura, 1995). También se determinó el rendimiento del ganado en base a la relación entre el peso de carcasa y el peso vivo expresado en porcentaje.

\[
\text{RENDIMIENTO} = \frac{\text{Peso de Carcasa (Kg)}}{\text{Peso Vivo (Kg)}} \times 100
\]
3.8 Análisis estadístico

Se utilizó el Análisis de Variancia Multivariado (MANOVA), que es una metodología que se ha utilizado tradicionalmente en el estudio de datos de medidas repetidas, provenientes de ensayos desarrollados en el sector agropecuario.

Se trabajó el Análisis de Variancia Multivariado de un Diseño Completamente al Azar con una covariable. El modelo aditivo lineal fue el siguiente:

\[Y_{ij} = \up + I_j + \beta (X_{ij} - X) + \epsilon_{ij} \]

Donde:
- \(i = 1,2,...,r\) (repeticiones)
- \(j = 1,2,...,t\) (tratamientos)

\(Y, \up, I, \beta, \epsilon\) son vectores de p-componentes

- **Y** vector observación (respuesta)
- **\(\up\)** vector promedio general
- **\(I_j\)** vector efecto de tratamiento
- **\(\beta\)** vector coeficiente de covariable
- **\(\epsilon_{ij}\)** vector error de medida
- **\((X_{ij} - X)\)** efecto de covariable

Los vectores son independientes y tienen una distribución normal p-variada, con vector de medias \(O\) y matriz de variancias y covariancias \(\square\).

Este modelo se utilizó para cada una de las variables que se evaluaron: ganancia de peso y talla, consumo de alimento y conversión alimenticia. Siendo la covariable el peso inicial para todas las variables en estudio excepto para la talla cuya covariable fue la talla inicial.
Para la variable rendimiento en carcasa (%) se utilizó el Diseño Completamente al Azar con covariancia. Siendo la covariable el peso inicial. La descripción matemática del modelo aditivo lineal este dado por la ecuación:

\[Y_{ij} = \mu + \tau_j + \beta (X_{ij} - \bar{X}) + \varepsilon_{ij} \]

Donde:

- \(i \): 1,2,... (Tratamientos)
- \(j \): 1,2,...5 (Repeticiones)

\(Y \) = Valor observado de rendimiento en carcasa correspondiente a la j-ésima repetición a la cual se le aplicó el i-ésimo tratamiento.

\(\mu \) = Media

\(\tau_j \) = Efecto del k tratamiento i-ésimo

\(\beta \) = Coeficiente de regresión lineal de los rendimientos en carcasas correspondientes a la j-ésima repetición.

\(X_{ij} \) = Valor observado del peso inicial correspondiente a la j-ésima repetición a la cual se le aplicó el i-ésimo tratamiento.

\(\bar{X} \) = Promedio de rendimiento en carcasa.

\(\varepsilon_{ij} \) = Efecto del error experimental correspondiente a la j-ésima observación.
IV. RESULTADOS Y DISCUSION

4.1 Del consumo de alimento

En el Tabla 4, se muestran los consumos promedio de alimento diario individual, expresados "Tal Como Ofrecido" y en base seca por tratamiento durante la fase experimental de 56 días. Siendo los consumos en base fresca de 63.49 Kg/ovino para el Tratamiento Testigo (T1) y 64.26 Kg/ovino para el Tratamiento Experimental (T2). Se observa que el mayor consumo acumulado en base seca de la ración experimental (T2) fue de 56.49 Kg/ovino en comparación con la ración testigo (T1) que fue de 55.81 Kg/ovino.

Por otro lado, se tiene como referencia que el consumo promedio para la ración testigo representa el 4.06 por ciento del peso vivo y para la ración experimental el 3.99 por ciento del peso vivo. Estos datos se obtuvieron promediando los consumos con respecto a los incrementos del peso durante las 8 semanas del experimento.

En la Figura 1, se aprecia que el consumo en ambos tratamientos se incrementa de acuerdo al transcurso de las semanas, tal como lo indica Maynard, et al. (1981), quienes afirman que el consumo de materia seca de los animales en crecimiento se incrementa en relación a la edad del animal, debido a que los animales en crecimiento requieren cada vez, más nutrientes para cubrir sus diversas necesidades. Del mismo modo Castellanos (1989), indica que el consumo de materia seca en ovinos de pelo está influenciado por el peso vivo del animal, así como por la energía metabolizable de la ración.
Tabla 4. Consumo de alimento promedio semanal por animal de las raciones experimentales por tratamiento (Kg)

<table>
<thead>
<tr>
<th>SEMANAS</th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2 con LS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tal como ofrecido</td>
<td>En base seca</td>
</tr>
<tr>
<td>1ra.</td>
<td>6.080</td>
<td>5.344</td>
</tr>
<tr>
<td>2da.</td>
<td>6.773</td>
<td>5.955</td>
</tr>
<tr>
<td>3ra.</td>
<td>7.245</td>
<td>6.368</td>
</tr>
<tr>
<td>4ta.</td>
<td>8.022</td>
<td>7.051</td>
</tr>
<tr>
<td>5ta.</td>
<td>8.800</td>
<td>7.735</td>
</tr>
<tr>
<td>6ta.</td>
<td>8.710</td>
<td>7.656</td>
</tr>
<tr>
<td>7ma.</td>
<td>8.870</td>
<td>7.796</td>
</tr>
<tr>
<td>8va.</td>
<td>8.995</td>
<td>7.906</td>
</tr>
</tbody>
</table>

Total Periodo

<table>
<thead>
<tr>
<th></th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2 con LS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>317.485</td>
<td>279.055</td>
</tr>
<tr>
<td>Prom/Animal/Periodo</td>
<td>63.497</td>
<td>55.811</td>
</tr>
<tr>
<td>Prom/Animal/Día</td>
<td>1.058</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Tabla 5. Consumo de alimento (Kg)

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>PARAMETROS</th>
<th>TESTIGO (T)</th>
<th>EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número de Animales</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Consumo de Alimento Total (Kg)</td>
<td>63.849*</td>
<td>63.975*</td>
</tr>
<tr>
<td></td>
<td>Consumo de Alimento Día (Kg)</td>
<td>1.140</td>
<td>1.142</td>
</tr>
</tbody>
</table>

* Letras similares indican que no hay diferencia estadística significativa (P>0.05).

Fuente: Elaboración propia.
Al análisis estadístico del consumo total de alimento se encontró que no existen diferencias estadísticas significativas entre el tratamiento testigo con respecto al tratamiento experimental cuyos valores ajustados de consumo acumulado son 63.84 Kg y 63.97 Kg, respectivamente (Tabla 5). Estos resultados coinciden con los obtenidos por Foreyt et al., (1979) y Huston et al., (1990), quienes suplementando ovinos con lasalócido sódico, no encontraron diferencias significativas entre tratamientos. Al efectuar el análisis estadístico por semanas se encontró diferencias altamente significativas sólo en la primera semana (6.09 Kg Vs 6.28 Kg) no así en las siguientes semanas de evaluación. Una menor concentración de lasalócido sódico en la ración durante la primera semana no tiene un efecto en la reducción del consumo de alimento, similar a lo reportado por Horton y Stockdale (1981).

4.2 De la ganancia de peso

Del análisis de los pesos vivos individuales y promedio por tratamiento al inicio y final del experimento; así como los incrementos por animal y promedio por tratamiento (Tabla 6), se observa que el incremento de peso del tratamiento testigo (13.21 Kg), es ligeramente superior al tratamiento experimental (13.08 Kg). Sin embargo, de acuerdo al análisis estadístico, los incrementos de peso totales ajustados no presentan diferencias significativas (P>0.05) entre tratamientos (Tabla 7). Estos resultados coinciden con los obtenidos por Foreyt et al., (1981); Mosad y Ross, (1987) y Thomas et al., (1990), quienes también emplearon diferentes dosis de lasalócido sódico en ovinos.

Asimismo, Foreyt et al. (1986) y Jacques et al. (1987), en experimentos realizados en ganado vacuno, tampoco encontraron diferencias significativas en el incremento de peso.

Los valores de incremento de peso fueron de 12.91 Kg para el tratamiento testigo y 13.33 Kg para el tratamiento experimental (0.23 Kg/día y 0.24 Kg/día de incremento de peso, respectivamente). Al análisis estadístico por semana se observó que sólo en la tercera y quinta semana hubo diferencias estadísticas significativas entre tratamientos 3ra semana (X3: 0.84 Vs. 1.83; 5ta. semana X5: 1.29 Vs. 2.05).
Tabla 6. Ganancia de peso vivo individual y promedio por tratamiento

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>OVINOS N° Arete</th>
<th>PESO INICIAL Kg.</th>
<th>PESO FINAL Kg.</th>
<th>INCREMENTO DE PESO Kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTIGO (T1)</td>
<td>0714</td>
<td>20.000</td>
<td>33.000</td>
<td>13.000</td>
</tr>
<tr>
<td></td>
<td>0614</td>
<td>21.500</td>
<td>33.500</td>
<td>12.000</td>
</tr>
<tr>
<td></td>
<td>0411</td>
<td>18.500</td>
<td>33.500</td>
<td>15.000</td>
</tr>
<tr>
<td></td>
<td>0514</td>
<td>24.000</td>
<td>36.250</td>
<td>12.250</td>
</tr>
<tr>
<td></td>
<td>0814</td>
<td>19.200</td>
<td>33.000</td>
<td>13.800</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td>20.640</td>
<td>33.850</td>
<td>13.210</td>
</tr>
<tr>
<td>DS. **</td>
<td></td>
<td>2.179</td>
<td>1.364</td>
<td>1.221</td>
</tr>
<tr>
<td>EXPERIMENTAL (T2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0430</td>
<td>22.500</td>
<td>34.500</td>
<td>12.000</td>
</tr>
<tr>
<td></td>
<td>0490</td>
<td>19.500</td>
<td>34.500</td>
<td>15.000</td>
</tr>
<tr>
<td></td>
<td>0914</td>
<td>22.500</td>
<td>35.500</td>
<td>13.000</td>
</tr>
<tr>
<td></td>
<td>0450</td>
<td>22.000</td>
<td>33.500</td>
<td>11.500</td>
</tr>
<tr>
<td></td>
<td>1514</td>
<td>19.500</td>
<td>34.000</td>
<td>14.500</td>
</tr>
<tr>
<td></td>
<td>0414</td>
<td>24.000</td>
<td>36.500</td>
<td>12.500</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td>21.667</td>
<td>34.750</td>
<td>13.083</td>
</tr>
<tr>
<td>DS. **</td>
<td></td>
<td>1.807</td>
<td>1.000</td>
<td>1.393</td>
</tr>
</tbody>
</table>

* . Incremento de peso total (8 semanas)
** : Desviación estándar

Fuente: Elaboración propia.

Tabla 7. Ganancia de peso (Kg)

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>TRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TESTIGO (T1)</td>
</tr>
<tr>
<td>Número de Animales</td>
<td>5</td>
</tr>
<tr>
<td>Ganancia de Peso Total</td>
<td>12.911*</td>
</tr>
<tr>
<td>Ganancia de Peso Total por día</td>
<td>0.231</td>
</tr>
</tbody>
</table>

*Letras similares indican que no hay diferencia estadística significativa (P>0.05).

Fuente: Elaboración propia.
Lo hallado en este estudio difiere de lo reportado por Horton y Stockdale. (1981); Foreyt *et al.* (1979); Foreyt *et al.* (1981-A y B); sin embargo, es similar a lo reportado por Huston *et al.* (1990); Ricke *et al.* (1984).

La edad de los animales podría ser un factor que influye en el resultado, tal como se aprecia en el experimento utilizando corderos destetados precozmente (35 días) siendo evaluados con diferentes niveles de monensina y lasalócido sódico por un período de 103 días, en donde se obtienen los mejores resultados con dósis de 25 y 50mg de LS por kg de alimento (Horton y Stockdale. 1981). En el presente estudio la edad de los animales debido a la raza y exigencia de mercado fue de 5-6 meses para ser beneficiado a los 6-7 meses, lo cual pudo haber influenciado negativamente en los resultados. Además, diferencias en el concentrado, nivel de forraje y número de animales son factores que también podrían alterar los resultados de la prueba.
En experimentos realizados con corderos recién nacidos o destetados hubo un efecto significativo en la ganancia de peso (Horton y Stockdale 1981; Foreyt et al., 1979; Foreyt et al., 1981-A); mientras que en ovinos de más edad no se encontró diferencias significativas (Huston et al., 1990), aunque sí se reportó una mayor retención de nitrógeno (Ricke et al., 1984).

Horton y Stockdale (1981), sostienen que las respuestas a la alimentación con lasalócido sódico, en corderos podrían deberse a sus efectos terapéuticos de este sobre la coccidiosis clínica, debido a que la coccidia puede reducir el consumo de alimento y la ganancia de peso.

4.3 De los incrementos de talla

Las tallas individuales de los ovinos al inicio y final del experimento, así como también los incrementos de tallas reales se presentan en el Tabla 8.

Las variantes de los incrementos de talla semanales, se muestran en el Tabla 10, donde se aprecia en ambos tratamientos, un crecimiento regular de los ovinos durante toda la etapa experimental.

Los incrementos de talla real promedio fueron de 10.3 cm. para el tratamiento testigo (T1) y 10.0cm para el tratamiento experimental (T2).

De acuerdo al análisis estadístico (Tabla 9), no se encontró diferencias estadísticas significativas entre tratamientos (P>0.05). Siendo los incrementos de talla finales ajustados para el tratamiento testigo de 10.19cm. y para el tratamiento experimental 10.09cm. Entre semanas tampoco se halló diferencias estadísticas. Una menor talla final del tratamiento experimental se ve compensada por un mayor peso final que nos sugiere un efecto benéfico del lasalócido sódico, aunque no significativo estadísticamente.
Según Avila (1984), citado por Acuña (1991), indica que en los animales que están en la etapa de crecimiento hay una alta correlación positiva entre peso y talla. En tal sentido, debido a que no hubo diferencia estadística entre las tallas de ambos tratamientos tampoco hubo diferencias entre los pesos de ambos tratamientos.

Tabla 8. Tallas individuales e incrementos de tallas reales.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>OVINOS N°ARETE</th>
<th>CONTROL DE TALLA</th>
<th>INCREMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INICIAL Cm.</td>
<td>FINAL Cm.</td>
</tr>
<tr>
<td>TESTIGO (T1)</td>
<td>0714</td>
<td>49.00</td>
<td>33.00</td>
</tr>
<tr>
<td></td>
<td>0614</td>
<td>53.50</td>
<td>33.50</td>
</tr>
<tr>
<td></td>
<td>0411</td>
<td>55.00</td>
<td>33.50</td>
</tr>
<tr>
<td></td>
<td>0514</td>
<td>53.00</td>
<td>36.25</td>
</tr>
<tr>
<td></td>
<td>0814</td>
<td>51.50</td>
<td>33.00</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td>52.40</td>
<td>33.85</td>
</tr>
<tr>
<td>DS.**</td>
<td></td>
<td>2.274</td>
<td>1.364</td>
</tr>
<tr>
<td>EXPERIMENTAL (T2)</td>
<td>0430</td>
<td>55.50</td>
<td>62.00</td>
</tr>
<tr>
<td></td>
<td>0490</td>
<td>51.50</td>
<td>61.00</td>
</tr>
<tr>
<td></td>
<td>0914</td>
<td>51.50</td>
<td>61.50</td>
</tr>
<tr>
<td></td>
<td>0450</td>
<td>53.50</td>
<td>63.00</td>
</tr>
<tr>
<td></td>
<td>1514</td>
<td>48.00</td>
<td>62.00</td>
</tr>
<tr>
<td></td>
<td>0414</td>
<td>56.50</td>
<td>67.00</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td>52.580</td>
<td>62.750</td>
</tr>
<tr>
<td>DS.**</td>
<td></td>
<td>3.091</td>
<td>2.183</td>
</tr>
</tbody>
</table>

* : Incremento de peso vivo total (8 semanas)
**: Desviación standard

Fuente: Elaboración propia.
Tabla 9. Incremento de talla (cm)

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>TRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TESTIGO (T1)</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL (T2)</td>
</tr>
<tr>
<td>Nº de Animales</td>
<td>5</td>
</tr>
<tr>
<td>Incremento de talla total</td>
<td>10.093 a</td>
</tr>
<tr>
<td>Incremento de talla por día</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10.090 a</td>
</tr>
<tr>
<td></td>
<td>0.180</td>
</tr>
</tbody>
</table>

a Letras similares indican que no hay diferencia estadística significativa (*P*>0.05).

Fuente: Elaboración propia.

Figura 3. Incremento de talla semanal

Fuente: Elaboración propia.

4.4 De la conversión alimenticia (CA) y eficiencia de utilización de alimentos (E.U.A.)

La conversión alimenticia (CA) y la eficiencia de la utilización de los alimentos (E.U.A.) obtenidos en el presente estudio para cada tratamiento, se muestran en el Tabla 10.

Al efectuar el análisis estadístico de la conversión alimenticia (Tabla 11), se observó que no existe diferencias estadísticas significativas entre tratamientos (*P*>0.05).
Siendo los valores de conversión alimenticia acumulado de 4.94 para el tratamiento testigo y 4.80 para el tratamiento experimental, lo que representa una mejora en 3.03 por ciento. Estos resultados fueron similares a lo obtenido por (Ricke et al., 1984; Foreyt et al., 1981; Foreyt et al., 1986). Al análisis de variancia por semana se encontró que en la tercera y quinta semana se obtuvo las mejores conversiones alimenticias. Tercera semana: 11.77 (T1) Vs 4.26 (T2) (P<0.01). Quinta semana: 7.07 (T1) Vs 4.50 (T2) (P<0.05). Esto coincide con los mayores incrementos de peso en esas semanas.

Por otro lado, Jacques et al. (1987), en ganado de carne, tampoco encontró mejoras significativas en la conversión alimenticia.

De acuerdo a los resultados sobre el consumo diario de nutrientes digestibles totales por tratamiento (Tabla 11), se aprecia que es muy poca la diferencia entre tratamientos, siendo ligeramente mayor el tratamiento experimental con 37.04 Kg de NDT consumidos por animal/promedio sobre el tratamiento testigo con 36.97 Kg de NDT por animal/promedio.

Por lo tanto, estos valores de NDT consumidos por los animales en cada tratamiento, nos permiten calcular la eficiencia de utilización de los alimentos, en donde se observa que el tratamiento experimental (32.92%), es más eficiente que el tratamiento testigo (31.94%) desde el punto de vista nutricional. Estos resultados coinciden con los obtenidos por Berger et al. (1981); Owens y Gill, (1982); Bergen y Bates, (1984) y Goodrich et al, (1984), quienes afirman que la suplementación con lasalócido sódico aumenta la eficiencia alimenticia, debido a que no afecta la digestibilidad del alimento.
Tabla 10. Conversión alimeníticia (CA) y eficiencia de utilización del alimento (EUA) promedio por animal.

<table>
<thead>
<tr>
<th>PARÁMETROS INDIVIDUALES</th>
<th>TRAMIENTOS (PROMEDIOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TESTIGO (T1)</td>
</tr>
<tr>
<td>Ganancia de Peso Total (Kg)*</td>
<td>12.911</td>
</tr>
<tr>
<td>Consumo Total de Alimento Tal Como Ofrecido (Kg)*</td>
<td>63.849</td>
</tr>
<tr>
<td>Consumo Total de Alimento en Base a Materia Seca (Kg)</td>
<td>55.549</td>
</tr>
<tr>
<td>Total de NDT consumido (Kg)</td>
<td>36.974</td>
</tr>
<tr>
<td>EUA (%)</td>
<td>34.919</td>
</tr>
<tr>
<td>CA (Base Fresca)</td>
<td>4.945</td>
</tr>
<tr>
<td>CA (Base Seca)</td>
<td>4.302</td>
</tr>
</tbody>
</table>

*: Valores corregidos por MANOVA

Fuente: Elaboración propia.

4.5 Del valor económico de engorde

Los resultados del valor económico de engorde de los tratamientos testigo y experimental, se presentan en el Tabla 13.

Al analizar los tres factores que determinan la eficiencia económica, se observa que el factor consumo de alimento y la ganancia de peso total favorecen ligeramente a la ración experimental. Sin embargo, el precio de la ración es el factor determinante de la ración más eficiente.
Tabla 11. Conversión alimenticia.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PARAMETROS</th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de Animales</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Conversión alimenticia</td>
<td>4.945 *</td>
<td>4.799 *</td>
<td></td>
</tr>
</tbody>
</table>

* Letras similares indican que no hay diferencia estadística significativa (P>0.05).

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Se observa en el Tabla 12 que la ración experimental (T2), es más eficiente que la ración testigo (T1), necesitándose menos soles (2.12 Vs. 2.06), para ganar un kilo de peso vivo por animal.
Tabla 12. Valor económico por tratamiento.

<table>
<thead>
<tr>
<th>PARÁMETROS INDIVIDUALES</th>
<th>TRATAMIENTOS (PROMEDIOS)</th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total de Alimento Tal Como Ofrecido (Kg)*</td>
<td>63.849</td>
<td>63.975</td>
<td></td>
</tr>
<tr>
<td>Ganancia de Pesos Total (Kg)*</td>
<td>12.911</td>
<td>13.332</td>
<td></td>
</tr>
<tr>
<td>Conversión Alimenticia</td>
<td>4.945</td>
<td>4.799</td>
<td></td>
</tr>
<tr>
<td>Costo de Ración (Nuevos Soles/Kg) a setiembre de 1994 (1 US. $ = S/. 2.25)</td>
<td>0.430</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.945</td>
<td>4.799</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.302</td>
<td>4.175</td>
<td></td>
</tr>
<tr>
<td>Nuevos Soles necesarios para ganar un kilo de P.V. a de 1994 (1 US. $ = S/. 2.25)</td>
<td>2.126</td>
<td>2.068</td>
<td></td>
</tr>
</tbody>
</table>

* : Valores ajustados por MANOVA

Fuente: Elaboración propia.

4.6 Del beneficio, calificación y rendimiento de carcosa

El análisis del rendimiento promedio obtenido en el beneficio de los animales y los rendimientos de carcosa de cada uno de los animales, se observan en el Tabla 13. Siendo los rendimientos promedio reales de 48.67 por ciento para el tratamiento testigo y 46.60 por ciento para el tratamiento experimental.

Al análisis estadístico de rendimiento de carcosa se observó que no existen diferencias estadísticas significativas entre tratamientos (P>0.05). Siendo los rendimientos de carcosa ajustados de 48.60 por ciento para el tratamiento testigo y 46.66 por ciento para el tratamiento experimental.
Estos resultados coinciden a los reportados por Owens et al. (1982) y Nelson et al. (1983) citados por López (1992); aún cuando estos autores no determinaron diferencias significativas entre tratamientos para el parámetro rendimiento de carcosa.

En cuanto al análisis de los resultados sobre la clasificación de las carcasas (Tabla 14), no existieron diferencias entre tratamientos. Todas las carcasas de ambos tratamientos se clasificaron como extras, por cumplir con los requisitos necesarios en cuanto a buena conformación de masa muscular y buena distribución de la misma; buen acabado. Asimismo, la grasa de cobertura apropiada con una buena distribución sobre los músculos superficiales de la paleta, dorso y costillares, así como también grasa de infiltración adecuada (Ministerio de Agricultura, 1995).

Tabla 13. Rendimiento promedio para ambos tratamientos.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TESTIGO (TI)</th>
<th>EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARÁMETROS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° de Animales</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Peso Vivo Promedio (Kg)</td>
<td>32.050</td>
<td>33.500</td>
</tr>
<tr>
<td>Peso de Carcasa Promedio (Kg)</td>
<td>15.600</td>
<td>15.610</td>
</tr>
<tr>
<td>Rendimiento Promedio (%)</td>
<td>48.674</td>
<td>46.597</td>
</tr>
<tr>
<td>Rendimiento Promedio Ajustado (%)</td>
<td>48.599 a</td>
<td>46.658 a</td>
</tr>
</tbody>
</table>

Letras similares indican que no hay diferencia estadística significativa (P>0.05). Fuente: Elaboración propia.
Tabla 14. Clasificación de las carcasas por tratamiento.

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número Total de Carcasas</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Número de Carcasas Extra</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Porcentaje de Extra (%)</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
V. CONCLUSIONES

De acuerdo a los resultados experimentales del presente estudio se llegó a las siguientes conclusiones:

1. Las variables consumo de alimento, ganancia de peso, conversión alimenticia, incremento de talla y rendimiento de carcosa no fueron influenciados significativamente por la adición del lasalócido sódico en raciones de ovinos de pelo de la raza Blackbelly en engorde.

2. Al análisis del valor económico, la ración del tratamiento experimental fue más eficiente que la ración del tratamiento testigo; necesitándose menos soles ($2.0126 vs $2.068) para ganar un kilo de peso vivo.
VI. RECOMENDACIONES

- Determinar el efecto de la adición del lasalócido sódico en el alimento de inicio en corderos Blackbelly.

- Efectuar comparaciones del uso del lasalócido sódico con otros ionóforos en raciones de engorde en ovinos.

- Utilizar un mayor número de animales experimentales ya que el reducido número empleado para este experimento pudo haber influenciado en los resultados.
VIII. BIBLIOGRAFÍA

2. ANDERSON, TD; VAN ALSTINE, WG; FICKEN, MD; MISKIMINSED, W; CARSON, TL; OSWEILER, GD. 1984. Acute monensin in sheep and electron microscopics changes. Amer. J. Vet Res. 45: 1142.

3. BARTLEY, EE; HEROD, EL; BECHTLE, RM; SAPIENZE, DL; YBRENT, BE. 1979. Effect of monensin or lasalocid, with and without niacin or amicloral, on rumen fermentation and feed efficiency. J. Anim. Sci. 49:1066.

4. BARTLEY, EE; NAGARAJA, TG; PRESSMAN, ES; DAYTON, AD; KATZ, MP; FINA, LR. 1983. Effects of lasalocid or momensin on legume or grain (feedlot) bloat. J. Anim. Sci. 56:1401.

30. KAWAS, JR; GUIMARAES, W; SHELTON, JM; LU, CD. 1991. Effect of varying concentrations of energy and protein in pelleted diets of Santa Ines and morada nova hair. Sheep on intake, digestion and growth.

VIII. ANEXO
Anexo 1. Resultados de análisis parasitológico.

INFORME DE LABORATORIO

A: Belsario Chiam Vásquez
De: Dra. Carmen Alarcon
Asunto: Resultados de Análisis Parasitológico (despistaje de Eimeria y Metodología usada).
Fecha: 01/11/94

A continuación hago llegar el trabajo realizado:

Se seleccionaron heces de 11 ovinos en forma seriada por 3 días, las cuales se procesaron usando la técnica de Mac-Master para identificar y cuantificar Eimeria de la siguiente manera:

Se pesaron 2 gr. de heces y se colocaron en un frasco graduado con 28 ml. de solución saturada de azúcar y cloruro de sodio, se homogeneiza bien (si es necesario se filtra para eliminar residuos de azúcar) y con un globo o pipeta Pasteur se retira un poco de la suspensión y se coloca en la cámara de Mac-Master hasta que se deja reposar por 2 a 5 minutos para dar tiempo a que los oocistos floten y poder hacer la lectura. Si se encontraron oocistos se suma la lectura de los 2 compartimientos y se divide entre 2 y esto se multiplica por 100, este resultado es oocistos por gramo de heces.

En estos once casos, los resultados obtenidos fueron negativos a Eimeria, observados en microscopio con un aumento bajo (100x) en forma seriada.

Preparación de la solución saturada de azúcar (SSA)

- Azúcar rubia: 1280 gr.
- Agua destilada: 1000 ml.
- Fenol: 10 ml. (5%)

Se puede usar en vez del Fenol, formal 20 ml.
Se disuelve el azúcar en agua tibia sin llegar a calentar mucho, luego se frie y se adiciona el Fenol o formal.

Atentamente,

[Signature]

Carmen Alarcón

PARASITOLOGÍA

54
Anexo 2. Análisis proximal del concentrado en base a materia seca

<table>
<thead>
<tr>
<th>NUTRIENTE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Seca</td>
<td>87.00</td>
</tr>
<tr>
<td>Proteína</td>
<td>20.67</td>
</tr>
<tr>
<td>Grasa</td>
<td>3.83</td>
</tr>
<tr>
<td>Fibra</td>
<td>8.97</td>
</tr>
<tr>
<td>Ceniza</td>
<td>9.00</td>
</tr>
<tr>
<td>Nifex</td>
<td>44.53</td>
</tr>
<tr>
<td>NDT (2)</td>
<td>66.56</td>
</tr>
</tbody>
</table>

(1) Laboratorio de Análisis de Alimentos del Dpto. de Nutrición de la UNALM.

$NDT \% = 1.15\% P.C. + 1.75\% EE. + 0.45\% FC. + 0.0085 ELN^2\% + 0.25 ELN\% - 3.4$
Anexo 3. Composición química del suplemento vitamínico mineral "Polimix"
(Laboratorio revesa).

<table>
<thead>
<tr>
<th></th>
<th>Cada kilogramo contiene :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcio</td>
<td>200g</td>
</tr>
<tr>
<td>Fósforo</td>
<td>160g</td>
</tr>
<tr>
<td>Magnesio</td>
<td>28g</td>
</tr>
<tr>
<td>Azufre</td>
<td>12g</td>
</tr>
<tr>
<td>Potasio</td>
<td>10g</td>
</tr>
<tr>
<td>Yodo</td>
<td>100g</td>
</tr>
<tr>
<td>Fierro</td>
<td>3,450mg</td>
</tr>
<tr>
<td>Cobre</td>
<td>800mg</td>
</tr>
<tr>
<td>Cobalto</td>
<td>60mg</td>
</tr>
<tr>
<td>Manganesco</td>
<td>1,300mg</td>
</tr>
<tr>
<td>Zinc</td>
<td>2,600mg</td>
</tr>
<tr>
<td>Selenio</td>
<td>15mg</td>
</tr>
<tr>
<td>Vitamina A</td>
<td>850,000U.I.</td>
</tr>
<tr>
<td>Vitamina D3</td>
<td>170,000U.I.</td>
</tr>
<tr>
<td>Vitamina E</td>
<td>170U.I.</td>
</tr>
<tr>
<td>Excipiente c.s.p.</td>
<td>1,000g</td>
</tr>
</tbody>
</table>
Anexo 4. Costo de insumos a octubre de 1998

<table>
<thead>
<tr>
<th>INSUMOS</th>
<th>COSTO S/Kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maíz partido</td>
<td>0.70</td>
</tr>
<tr>
<td>Subproducto de trigo</td>
<td>0.45</td>
</tr>
<tr>
<td>Maíz panca</td>
<td>0.18</td>
</tr>
<tr>
<td>Pasta de algodón 36%</td>
<td>0.60</td>
</tr>
<tr>
<td>Harina de pescado 60%</td>
<td>1.40</td>
</tr>
<tr>
<td>Melaza de caña</td>
<td>0.45</td>
</tr>
<tr>
<td>Carbonato de calcio</td>
<td>0.25</td>
</tr>
<tr>
<td>Sal común</td>
<td>0.30</td>
</tr>
<tr>
<td>Polymix (*)</td>
<td>9.50</td>
</tr>
<tr>
<td>Lasalócido sódico 15%</td>
<td>22.79</td>
</tr>
</tbody>
</table>

* Suplemento vitamínico mineral
Anexo 5. Valor económico actualizado por tratamiento.

<table>
<thead>
<tr>
<th>PROMEDIO/ANIMAL</th>
<th>TESTIGO (T1)</th>
<th>EXPERIMENTAL (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Consumo de Alimento Tal como Ofrecido (Kg)*</td>
<td>63.85</td>
<td>63.97</td>
</tr>
<tr>
<td>Ganancia de Peso Total (Kg)*</td>
<td>12.91</td>
<td>13.33</td>
</tr>
<tr>
<td>Conversión Alimenticia</td>
<td>4.94</td>
<td>4.80</td>
</tr>
<tr>
<td>Costo de Ración (Nuevos Soles/Kg)</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>(1 U.S. $ = S/3.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuevos soles necesarios para ganar un kilo de P.V. a Octubre de 1998</td>
<td>3.02</td>
<td>2.93</td>
</tr>
<tr>
<td>(1 U.S. $ = S/3.08)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 6. Consumo de alimento por semana

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CONTROL</th>
<th>ANIMAL 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>22.500</td>
<td>6.075</td>
<td>7.075</td>
<td>7.025</td>
<td>8.350</td>
<td>8.800</td>
<td>8.925</td>
<td>8.725</td>
<td>9.175</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19.500</td>
<td>6.275</td>
<td>6.600</td>
<td>7.275</td>
<td>7.075</td>
<td>8.776</td>
<td>8.750</td>
<td>0.775</td>
<td>9.075</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 7. Análisis estadístico del consumo de alimento.
Anexo 8. Análisis estadístico del consumos de alimentos.

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03187822</td>
<td>0.0001</td>
<td>0.0030</td>
</tr>
<tr>
<td>2</td>
<td>0.0299773</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17580094</td>
<td>0.0001</td>
<td>0.7027</td>
</tr>
<tr>
<td>2</td>
<td>0.1591570</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.13915454</td>
<td>0.0001</td>
<td>0.9292</td>
</tr>
<tr>
<td>2</td>
<td>0.12658085</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06772828</td>
<td>0.0001</td>
<td>0.7755</td>
</tr>
<tr>
<td>2</td>
<td>0.06160841</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09983766</td>
<td>0.0001</td>
<td>0.4495</td>
</tr>
<tr>
<td>2</td>
<td>0.09014041</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05696671</td>
<td>0.0001</td>
<td>0.2172</td>
</tr>
<tr>
<td>2</td>
<td>0.05181925</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10196233</td>
<td>0.0001</td>
<td>0.6110</td>
</tr>
<tr>
<td>2</td>
<td>0.0974910</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.16174959</td>
<td>0.0001</td>
<td>0.8517</td>
</tr>
<tr>
<td>2</td>
<td>0.14713403</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 9. Incremento de peso por semana.

<table>
<thead>
<tr>
<th>CONTROL ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.000</td>
<td>1.250</td>
<td>1.750</td>
<td>0.500</td>
<td>2.000</td>
<td>1.000</td>
<td>2.500</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>2</td>
<td>21.600</td>
<td>2.250</td>
<td>2.750</td>
<td>0.500</td>
<td>2.000</td>
<td>1.500</td>
<td>1.500</td>
<td>2.000</td>
<td>1.000</td>
</tr>
<tr>
<td>3</td>
<td>18.500</td>
<td>1.750</td>
<td>1.750</td>
<td>2.500</td>
<td>2.000</td>
<td>1.500</td>
<td>2.000</td>
<td>2.500</td>
<td>1.000</td>
</tr>
<tr>
<td>4</td>
<td>24.000</td>
<td>0.000</td>
<td>2.250</td>
<td>0.500</td>
<td>1.000</td>
<td>1.000</td>
<td>2.000</td>
<td>2.500</td>
<td>2.000</td>
</tr>
<tr>
<td>5</td>
<td>19.200</td>
<td>1.500</td>
<td>2.450</td>
<td>1.000</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
<td>2.500</td>
<td>1.500</td>
</tr>
<tr>
<td>PROM.</td>
<td>20.840</td>
<td>1.300</td>
<td>2.300</td>
<td>1.000</td>
<td>1.400</td>
<td>1.300</td>
<td>1.900</td>
<td>2.000</td>
<td>1.500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.500</td>
<td>0.250</td>
<td>2.250</td>
<td>2.000</td>
<td>0.500</td>
<td>1.500</td>
<td>1.500</td>
<td>1.000</td>
<td>3.000</td>
</tr>
<tr>
<td>2</td>
<td>19.500</td>
<td>2.000</td>
<td>0.000</td>
<td>3.000</td>
<td>1.200</td>
<td>1.500</td>
<td>1.500</td>
<td>2.500</td>
<td>2.500</td>
</tr>
<tr>
<td>3</td>
<td>22.500</td>
<td>0.750</td>
<td>1.750</td>
<td>1.500</td>
<td>1.500</td>
<td>2.000</td>
<td>1.500</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>4</td>
<td>22.000</td>
<td>1.250</td>
<td>1.750</td>
<td>1.000</td>
<td>1.000</td>
<td>2.500</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>5</td>
<td>19.500</td>
<td>1.250</td>
<td>2.750</td>
<td>2.000</td>
<td>0.500</td>
<td>3.000</td>
<td>1.000</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>6</td>
<td>24.000</td>
<td>1.500</td>
<td>2.450</td>
<td>1.000</td>
<td>1.000</td>
<td>1.500</td>
<td>1.500</td>
<td>3.000</td>
<td>0.500</td>
</tr>
<tr>
<td>PROM.</td>
<td>21.867</td>
<td>1.308</td>
<td>1.825</td>
<td>1.750</td>
<td>0.950</td>
<td>2.000</td>
<td>1.500</td>
<td>2.080</td>
<td>1.667</td>
</tr>
</tbody>
</table>
Anexo 10. Análisis estadístico del incremento de peso.
Anexo 11. Análisis estadístico del incremento de peso.

<table>
<thead>
<tr>
<th>A</th>
<th>X1</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>1.22167984</td>
<td>0.33902636</td>
<td>0.0069</td>
<td>0.6769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.42306364</td>
<td>0.30392621</td>
<td>0.0017</td>
<td>0.0017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X2</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>2.52592625</td>
<td>0.3389798</td>
<td>0.0001</td>
<td>0.1193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.71214479</td>
<td>0.30791157</td>
<td>0.0005</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X3</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>0.839796906</td>
<td>0.29359141</td>
<td>0.0160</td>
<td>0.0246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.88502578</td>
<td>0.25068919</td>
<td>0.0001</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X4</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>1.34815010</td>
<td>0.23888687</td>
<td>0.0005</td>
<td>0.3107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.99320925</td>
<td>0.2165354</td>
<td>0.0018</td>
<td>0.0018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X5</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>1.29215251</td>
<td>0.22689657</td>
<td>0.0005</td>
<td>0.0402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.05693958</td>
<td>0.2069438</td>
<td>0.0001</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X6</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>1.91925563</td>
<td>0.17387062</td>
<td>0.0001</td>
<td>0.1057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.48392864</td>
<td>0.15815981</td>
<td>0.0001</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X7</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>2.30498775</td>
<td>0.25576284</td>
<td>0.0001</td>
<td>0.5400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.07929354</td>
<td>0.23265232</td>
<td>0.0001</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X8</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSMEAN</td>
<td>LSMEAN</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>1.61797585</td>
<td>0.44743420</td>
<td>0.0114</td>
<td>0.7110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.69850201</td>
<td>0.40700440</td>
<td>0.0031</td>
<td>0.0031</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 12. Incremento de talla por semana.

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.000</td>
<td>2.000</td>
<td>3.500</td>
<td>1.000</td>
<td>0.000</td>
<td>2.500</td>
<td>1.000</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52.500</td>
<td>4.000</td>
<td>2.500</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.500</td>
<td>0.500</td>
<td>1.000</td>
<td>2.000</td>
<td>1.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53.000</td>
<td>1.500</td>
<td>5.500</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>51.500</td>
<td>0.000</td>
<td>1.000</td>
<td>0.500</td>
<td>0.000</td>
<td>3.000</td>
<td>2.000</td>
<td>1.500</td>
<td>2.500</td>
<td></td>
</tr>
<tr>
<td>PROM.</td>
<td>52.400</td>
<td>1.000</td>
<td>2.700</td>
<td>0.600</td>
<td>0.200</td>
<td>1.700</td>
<td>1.400</td>
<td>1.000</td>
<td>0.700</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55.500</td>
<td>0.000</td>
<td>0.500</td>
<td>0.000</td>
<td>2.000</td>
<td>2.000</td>
<td>0.500</td>
<td>1.000</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>51.500</td>
<td>0.500</td>
<td>3.000</td>
<td>2.000</td>
<td>0.000</td>
<td>2.000</td>
<td>1.000</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51.500</td>
<td>0.000</td>
<td>0.500</td>
<td>0.000</td>
<td>3.000</td>
<td>4.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53.500</td>
<td>0.000</td>
<td>4.500</td>
<td>0.000</td>
<td>1.000</td>
<td>3.500</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48.000</td>
<td>4.000</td>
<td>3.000</td>
<td>1.000</td>
<td>1.000</td>
<td>2.000</td>
<td>1.500</td>
<td>0.500</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>56.500</td>
<td>2.000</td>
<td>4.500</td>
<td>1.000</td>
<td>0.000</td>
<td>2.000</td>
<td>0.500</td>
<td>0.500</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>PROM.</td>
<td>52.750</td>
<td>1.093</td>
<td>2.667</td>
<td>0.667</td>
<td>1.167</td>
<td>2.563</td>
<td>0.750</td>
<td>0.667</td>
<td>0.417</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 13. Análisis estadístico del incremento de talla.

<table>
<thead>
<tr>
<th>TESTIGO</th>
<th>PESO HUARAL</th>
<th>PESO LIMA</th>
<th>PESO CARCASA</th>
<th>RENDIMIENTO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33.000</td>
<td>31.000</td>
<td>15.000</td>
<td>48.390</td>
</tr>
<tr>
<td></td>
<td>33.500</td>
<td>31.750</td>
<td>15.700</td>
<td>49.450</td>
</tr>
<tr>
<td></td>
<td>33.500</td>
<td>31.500</td>
<td>15.200</td>
<td>48.250</td>
</tr>
<tr>
<td></td>
<td>36.000</td>
<td>35.000</td>
<td>17.000</td>
<td>48.570</td>
</tr>
<tr>
<td></td>
<td>33.000</td>
<td>31.000</td>
<td>15.100</td>
<td>48.710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rend.Prom 48.670</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>PESO HUARAL</th>
<th>PESO LIMA</th>
<th>PESO CARCASA</th>
<th>RENDIMIENTO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.500</td>
<td>34.000</td>
<td>15.700</td>
<td>46.180</td>
</tr>
<tr>
<td></td>
<td>34.500</td>
<td>31.000</td>
<td>15.100</td>
<td>48.700</td>
</tr>
<tr>
<td></td>
<td>35.500</td>
<td>34.000</td>
<td>14.700</td>
<td>43.240</td>
</tr>
<tr>
<td></td>
<td>33.500</td>
<td>33.000</td>
<td>15.700</td>
<td>47.580</td>
</tr>
<tr>
<td></td>
<td>34.000</td>
<td>33.000</td>
<td>15.500</td>
<td>46.970</td>
</tr>
<tr>
<td></td>
<td>36.000</td>
<td>36.000</td>
<td>17.000</td>
<td>47.220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rend.Prom 46.600</td>
</tr>
</tbody>
</table>
Anexo 15. Análisis estadístico del rendimiento de carcosa.

Análisis estadístico del rendimiento de carcosa

DCA CON COVARIANCIA

General Linear Models Procedure

Least Squares Means

| TRAT | REND LSMEAN | Std Err | Pr > |T| | Pr > |T| HO: LSMEAN=0 | Pr > |T| HO: LSMEAN1=LSMEAN2 |
|------|-------------|---------|------|---|--------------|------------------------|
| C | 48.6996797 | 0.6543796 | 0.0001 | 0.0635 |
| T | 46.6586002 | 0.5992504 | 0.0001 | |

Correlation Analysis

2 'VAR' Variables: REND INICIAL

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>REND</td>
<td>5</td>
<td>48.6940</td>
<td>0.4676</td>
<td>243.4</td>
<td>48.2500</td>
<td>49.4500</td>
</tr>
<tr>
<td>INICIAL</td>
<td>5</td>
<td>20.6400</td>
<td>2.1847</td>
<td>103.2</td>
<td>18.5000</td>
<td>24.0000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients / Prob > |r| under HO: Rho=0 / N = 5

<table>
<thead>
<tr>
<th></th>
<th>REND</th>
<th>INICIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REND</td>
<td>1.00000</td>
<td>0.33162</td>
</tr>
<tr>
<td>N</td>
<td>0.0</td>
<td>0.5856</td>
</tr>
<tr>
<td>INICIAL</td>
<td>0.33162</td>
<td>1.00000</td>
</tr>
<tr>
<td>N</td>
<td>0.0</td>
<td>0.5856</td>
</tr>
</tbody>
</table>

68
Anexo 16. Análisis estadístico de rendimiento de carcasa.

<table>
<thead>
<tr>
<th>A</th>
<th>X1 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.13443863</td>
<td>3.06086424</td>
<td>0.3358</td>
<td>0.2687</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.14697196</td>
<td>2.78428700</td>
<td>0.0191</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X2 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.04190000</td>
<td>0.53012019</td>
<td>0.0005</td>
<td>0.6353</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.00844007</td>
<td>0.48498088</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X3 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11.7717583</td>
<td>1.3578207</td>
<td>0.0001</td>
<td>0.0039</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.8977015</td>
<td>1.2351291</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X4 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.71203214</td>
<td>2.30849183</td>
<td>0.0102</td>
<td>0.5082</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.91463986</td>
<td>2.09989840</td>
<td>0.0015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X5 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.07552238</td>
<td>0.64913116</td>
<td>0.0001</td>
<td>0.0207</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.50539002</td>
<td>0.59047619</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X6 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.66245512</td>
<td>0.58472714</td>
<td>0.0001</td>
<td>0.0872</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.23212240</td>
<td>0.53109166</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X7 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.99456300</td>
<td>0.77425052</td>
<td>0.0009</td>
<td>0.4506</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.80078003</td>
<td>0.70428986</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X8 LSMEAN</th>
<th>Std Err</th>
<th>Pr ></th>
<th>Pr ></th>
<th>Pr ></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.90059100</td>
<td>2.32244355</td>
<td>0.0173</td>
<td>0.6181</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.2902417</td>
<td>2.11258941</td>
<td>0.0367</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 17. Conversión alimenticia por semana.

<table>
<thead>
<tr>
<th>CONTROL ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21.500</td>
<td>2.722</td>
<td>2.382</td>
<td>15.200</td>
<td>15.900</td>
<td>5.867</td>
<td>5.750</td>
<td>4.450</td>
</tr>
<tr>
<td>3</td>
<td>18.500</td>
<td>3.386</td>
<td>3.286</td>
<td>2.819</td>
<td>3.955</td>
<td>6.100</td>
<td>4.275</td>
<td>3.530</td>
</tr>
<tr>
<td>4</td>
<td>24.000</td>
<td>0.000</td>
<td>2.582</td>
<td>15.200</td>
<td>8.175</td>
<td>9.005</td>
<td>4.513</td>
<td>3.550</td>
</tr>
<tr>
<td>5</td>
<td>18.390</td>
<td>3.393</td>
<td>2.894</td>
<td>7.425</td>
<td>5.433</td>
<td>4.861</td>
<td>5.833</td>
<td>3.530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO ANIMAL</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.500</td>
<td>24.300</td>
<td>2.167</td>
<td>3.575</td>
<td>18.230</td>
<td>5.900</td>
<td>6.003</td>
<td>8.975</td>
</tr>
<tr>
<td>2</td>
<td>19.500</td>
<td>2.245</td>
<td>0.000</td>
<td>2.300</td>
<td>8.500</td>
<td>5.850</td>
<td>5.950</td>
<td>3.500</td>
</tr>
<tr>
<td>3</td>
<td>22.500</td>
<td>5.033</td>
<td>4.040</td>
<td>5.217</td>
<td>5.567</td>
<td>4.400</td>
<td>5.683</td>
<td>4.363</td>
</tr>
<tr>
<td>4</td>
<td>22.000</td>
<td>5.000</td>
<td>3.957</td>
<td>7.250</td>
<td>8.300</td>
<td>3.490</td>
<td>4.089</td>
<td>4.668</td>
</tr>
<tr>
<td>5</td>
<td>19.500</td>
<td>5.020</td>
<td>2.400</td>
<td>3.639</td>
<td>15.750</td>
<td>2.892</td>
<td>8.769</td>
<td>4.388</td>
</tr>
<tr>
<td>6</td>
<td>24.000</td>
<td>4.145</td>
<td>3.000</td>
<td>7.840</td>
<td>3.275</td>
<td>5.850</td>
<td>5.929</td>
<td>3.142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic Root</th>
<th>Percent</th>
<th>Characteristic Vector V'EV=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.00</td>
<td>-0.32334610</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.09202469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.40363100</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.00</td>
<td>0.046533085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.26400730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.134420996</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.00</td>
<td>-1.54003784</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00141498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.09614391</td>
</tr>
</tbody>
</table>

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall A Effect

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>F</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks' Lambda</td>
<td>0.00670910</td>
<td>18.5175</td>
<td>8</td>
<td>1</td>
<td>0.1779</td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>0.99329490</td>
<td>18.5175</td>
<td>8</td>
<td>1</td>
<td>0.1779</td>
</tr>
<tr>
<td>Hotelling-Lawley Trace</td>
<td>14.0152924</td>
<td>18.5175</td>
<td>8</td>
<td>1</td>
<td>0.1779</td>
</tr>
<tr>
<td>Roy's Greatest Root</td>
<td>14.0152924</td>
<td>18.5175</td>
<td>8</td>
<td>1</td>
<td>0.1779</td>
</tr>
</tbody>
</table>
Anexo 19. Análisis estadístico de la conversión alimenticia.