UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

“DISEÑO Y EJECUCIÓN DEL CANAL - TÚNEL PARA LA EVACUACIÓN DE AGUAS PLUVIALES EN CUTERVO - CAJAMARCA”

Presentado por:

BACH. MADUEÑO AURIS ALCIDES ANIBAL

TRABAJO MONOGRÁFICO PARA OPTAR EL TÍTULO DE INGENIERO AGRICOLA

Lima – Perú
2018
ÍNDICE GENERAL

I. INTRODUCCIÓN ... 1
II. OBJETIVOS .. 2
III. REVISIÓN BIBLIOGRÁFICA ... 3
 3.1 TÚNEL .. 3
 3.1.1 Clasificación RMR de Bieniawski .. 3
 3.1.2 Sostenimiento del túnel .. 4
 3.2 CANAL ... 5
 3.2.1 Diseño de secciones hidráulicas .. 5
 3.2.1.1 Diseño de canal de sección rectangular .. 6
 3.2.1.2 Diseño de canal de sección trapezoidal .. 7
 3.2.1.3 Diseño de Canal de sección circular ... 8
 3.2.2 Criterios de diseño .. 9
 3.2.2.1 Rugosidad .. 9
 3.2.2.2 Talud apropiado según el tipo de material ... 11
 3.2.2.3 Velocidades máxima y mínima permisible ... 11
 3.2.2.4 Borde libre .. 12
 3.2.3 Radios mínimos en canales .. 14
IV. DESARROLLO DEL TEMA ... 15
 4.1 Túnel ... 15
 4.1.1 Estudio de refracción sísmica ... 15
 4.1.2 Determinación de tramos de tipo de roca .. 16
 4.1.3 Proceso de excavación del túnel .. 17
 4.2 Determinación de caudal ... 21
 4.2.1 Efluentes de la ciudad de Cutervo .. 21
 4.2.2 Aguas pluviales .. 22
 4.3 Diseño de secciones hidráulicas de canal .. 23
 4.3.1 Canal circular .. 24
 4.3.2 Canal rectangular ... 25
 4.3.3 Canal trapezoidal ... 26
 4.4 Proceso constructivo de alcantarillas ... 27
 4.4.1 Armado de alcantarilla ... 28
4.4.2 Suelo de fundación

4.4.3 Material de Relleno

4.5 Descripción de tramos de canal para evacuación de aguas pluviales

4.5.1 Canal de entrada al túnel (Tramo progresiva 0+000 al 0+600)

4.5.2 Canal de concreto, entrada al túnel (Tramo progresiva 0+600 al 0+800)

4.5.3 Tramo del Túnel, progresiva 0+800 al 1+570

4.5.4 Canal de salida 1+570 al 1+880

V. CONCLUSIONES

VI. RECOMENDACIONES

VII. REFERENCIAS BIBLIOGRÁFICAS

VIII. ANEXOS

a. Panel Fotográfico

b. Planos
RESUMEN

El proyecto se ha desarrollado en el departamento de Cajamarca provincia y distrito de Cutervo, este proyecto consiste en la construcción de un canal que atraviesa un túnel en la parte central y estructuras complementarias para el mantenimiento y el buen funcionamiento del sistema. El canal está conformado por tres tramos, el canal de entrada es de tubería de acero corrugado, el túnel es un canal de concreto y el canal de salida es de tubería de acero corrugado.

El canal tiene la finalidad de evacuar aguas pluviales que se estancan en la microcuenca endorreica en la época de lluvia, estos problemas de inundación ocurren, ya que el sumidero natural no tiene la capacidad de drenar cuando aumenta el caudal debido a la precipitación en la zona.

El área de la microcuenca endorreica y los efluentes que emite la población definen un caudal que se debe transportar, con el cual se realiza el diseño hidráulico para determinar la dimensión, la forma geométrica del canal y las características técnicas finales para la construcción del túnel y las excavaciones del canal según el tipo de suelo.
I. INTRODUCCIÓN

La construcción de canales hidráulicos tiene distintas finalidades, así como irrigar campos de cultivo, conducir agua para la generación eléctrica, sistema de drenaje, etc. en el presente estudio el canal tiene por finalidad evacuar aguas pluviales, la necesidad de conducir estas aguas productos de la lluvia se da porque la ciudad de Cutervo se encuentra ubicado dentro de una microcuenca sin salida, existe un drenaje de estas aguas por un sumidero natural, el cual se obstruye en la época de lluvia, ya que el sumidero no tiene la capacidad para drenar mayores caudales, de modo que se inunda tierras de pastoreo, tierra de uso agrícola y carreteras, generando efectos de contaminación ambiental, corte de vías de comunicación, perdidas de cultivos y pastos naturales.

El proyecto de “Mejoramiento y ampliación de los sistemas de agua potable y alcantarillado” incluye el sistema de conducción. Está conformado por tuberías y canal abovedado dentro del túnel, el primer tramo de entrada de 800m conducirá agua por tuberías metálicas corrugadas de 72” de diámetro, el segundo tramo es un túnel de 770m de longitud por un canal abovedado de concreto, y un tramo final de 310m de salida por una alcantarilla de 60” de diámetro, también se incluyen estructuras complementarias tales para el buen funcionamiento del sistema, como transiciones, cámaras en cambios de dirección y pendiente, poza disipadora, buzones de inspección, estructuras de ingreso y salida del canal y cámaras de transición para la conexión de tubería y canal.
II. OBJETIVOS

Objetivos generales

- Diseñar el canal - túnel Cutervo para la evacuación de aguas pluviales con la ejecución del proyecto “Mejoramiento y ampliación de los sistemas de agua potable y alcantarillado”

Objetivos específicos

- Evaluar el caudal de aguas pluviales que se estanca en la microcuenca endorreica al superar la capacidad del sumidero natural debido a las altas precipitaciones en las épocas de lluvia.

- Diseñar el canal – túnel, para determinar la pendiente, secciones transversales y la forma geométrica del canal en función al caudal que transporta y las características del suelo.
III. REVISIÓN BIBLIOGRÁFICA

3.1 TÚNEL

3.1.1 Clasificación RMR de Bieniawski

Rock Mass Rating, Proporciona un índice RMR, indicador de la calidad de la masa rocosa, entre 0 y 100. El cálculo del RMR se basa en cinco conceptos:
– Resistencia de la roca matriz.
– Integridad de un testigo perforado (RQD).
– Existencia de agua.
– Separación de juntas y fisuras.
– Características de las juntas.

El RMR se obtiene como suma de unas puntuaciones que corresponden a los valores de cada uno de los cinco parámetros mencionados. El valor del RMR oscila entre 0 y 100, y es mayor cuanto mejor es la calidad de la roca. Bieniawski distingue cinco tipos o clases de roca según el valor del RMR: (Gonzales de Vallejo, 2002)

Cuadro de clasificación de calidad de roca

<table>
<thead>
<tr>
<th>CLASE DE ROCA</th>
<th>Calidad de roca</th>
<th>Puntuación RMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Muy buna</td>
<td>100 a 81</td>
</tr>
<tr>
<td>II</td>
<td>Buena</td>
<td>80 a 61</td>
</tr>
<tr>
<td>III</td>
<td>Media</td>
<td>60 a 41</td>
</tr>
<tr>
<td>IV</td>
<td>Mala</td>
<td>40 a 21</td>
</tr>
<tr>
<td>V</td>
<td>Muy mala</td>
<td>0 a 21</td>
</tr>
</tbody>
</table>

Fuente: (Gonzales de Vallejo, 2002)
Una vez obtenido la puntuación se utiliza este valor en lugar del RMR para el cálculo de las propiedades del macizo y los sostenimientos.

Tiempo máximo de estabilidad de la excavación sin soporte, en función de la calidad de la roca (RMR) y la longitud del vano (pase) existente (generalmente el ancho del túnel) (Gonzales de Vallejo, 2002).

3.1.2 Sostenimiento del túnel

Cimbras
Las cimbras son construidas con perfiles de acero, según los requerimientos de la forma de la sección de la excavación, es decir, en forma de baúl, herradura o incluso circulares, siendo recomendable que éstos sean de alma llena. Hay dos tipos de cimbras, las denominadas “rígidas” y las “deslizantes o fluyentes”. Las primeras usan comúnmente perfiles como la W, H, e I, conformadas por dos o tres segmentos que son unidos por platinas y pernos con tuerca. Las segundas usan perfiles como las V y U, conformadas usualmente por dos o tres segmentos que se deslizan entre sí, sujetados y ajustados con uniones de tornillo. (Carhuamaca Guerrero, 2009)
3.2 CANAL

Los canales son acueductos en los cuales el agua circula debido a la acción de la gravedad y sin ninguna presión, pues la superficie libre del líquido está en contacto con la atmósfera. Los canales pueden ser naturales (ríos o arroyos) o artificiales (construidos por el hombre). Dentro de estos últimos, pueden incluirse aquellos conductos cerrados que trabajan parcialmente llenos (alcantarillas y tuberías) (Villón Béjar, 2007, pág. 15)

La fórmula empírica que rige para el flujo permanente y uniforme, turbulento, en tuberías y canales. Se obtiene a partir de la fórmula de Chezy reemplazando:

\[C = \frac{R^{1/6}}{n} \]

En unidades métricas se obtiene:

\[V = \frac{S^{1/2} \cdot R^{1/6}}{n} \]

(n: coeficiente de rugosidad de Manning) (Chereque Moran, 1987, pág. 10)

3.2.1 Diseño de secciones hidráulicas

Se debe tener en cuenta ciertos factores, tales como: tipo de material del cuerpo del canal, coeficiente de rugosidad, velocidad máxima y mínima permitida, pendiente del canal, taludes, etc.

La ecuación más utilizada es la de Manning o Strickler, y su expresión es:

\[Q = \frac{1}{n} A R^{2/3} S^{1/2} \]

Donde:
Q = Caudal (m3 /s)
n = Rugosidad
A = Área (m2)
R = Radio hidráulico = Área de la sección húmeda / Perímetro húmedo
3.2.1.1 Diseño de canal de sección rectangular

Chereque Moran (1987), menciona en el diseño de canales rectangulares.

Para un canal rectangular el talud tiene el valor de cero

\[Z = 0 \]

Área

\[A = bY \]

Tirante

\[P = 2Y + b \]

Tirante

\[T = b \]

Caudal

\[Q = \frac{S^{1/2}}{n} \cdot \frac{A}{P^{2/3}} \]

\[Q = \frac{S^{1/2}}{n} \cdot \frac{A^{5/3}}{P^{2/3}} \]

\[Q = \frac{S^{1/2}}{n} \cdot \frac{(bY)^{5/3}}{(2Y + b)^{2/3}} \]
3.2.1.2 Diseño de canal de sección trapezoidal

Chereque Moran (1987), menciona en el diseño de canales trapezoidales.

Área

\[A = ZY^2 + bY \]

Tirante

\[P = 2\sqrt{z^2 + 1}Y + b \]

Tirante

\[T = b + 2ZY \]

Caudal

\[Q = \frac{S^{1/2}}{n} \cdot A \cdot \left(\frac{A}{P} \right)^{2/3} \]

\[Q = \frac{S^{1/2}}{n} \cdot \frac{A^{5/3}}{P^{2/3}} \]

\[Q = \frac{S^{1/2}}{n} \cdot \frac{(ZY^2 + bY)^{5/3}}{(2\sqrt{z^2 + 1}Y + b)^{2/3}} \]
3.2.1.3 Diseño de Canal de sección circular

Chereque Moran (1987), señala en el flujo en conductos circulares parcialmente llenos.

Tirante (y)

\[y = \frac{d_0}{2} + \frac{d_0}{2} \cdot \cos \left(180 - \frac{\theta}{2} \right) \]

Área (A)

\[A = \frac{d_0^2}{8} \cdot (\theta \cdot \sen(\theta)) \]

Radio Hidráulico (R)

\[R = \left(\frac{d_0}{4} \cdot \left(1 - \frac{\sen(\theta)}{\theta} \right) \right)^{2/3} \]

Perímetro mojado (P)

\[P = \frac{d_0}{2} \cdot \theta \]

Caudal (Q)
\[Q = \frac{S^{1/2}}{n} \cdot A \cdot R^{2/3} \]

\[Q = \frac{S^{1/2}}{n} \cdot \frac{d_0^2}{8} \cdot (\theta - \text{sen}(\theta)) \cdot \left(\frac{d_0}{4} \left(1 - \frac{\text{sen}(\theta)}{\theta}\right)^{2/3}\right) \]

\[Q = \frac{1}{2^{13/3}} \cdot \frac{S^{1/2}}{n} \cdot \left(\frac{(\theta - \text{sen}(\theta))^{5/3}}{\theta^{2/3}}\right) \cdot d_0^{8/3} \]

3.2.2 Criterios de diseño

Se tienen diferentes factores que se consideran en el diseño de canales, los cuales tendrán en cuenta: el caudal a conducir, factores geométricos e hidráulicos de la sección, materiales de revestimiento, la topografía existente, la geología y geotecnia de la zona, los materiales disponibles en la zona o en el mercado más cercano, costos de materiales, disponibilidad de mano de obra calificada, tecnología actual, optimización económica, socioeconomía de los beneficiarios, climatología, altitud, etc. Si se tiene en cuenta todos estos factores, se llegará a una solución técnica y económica más conveniente. Adaptado de (Chereque Moran, 1987).

3.2.2.1 Rugosidad

Esta depende del cauce y el talud, dado a las paredes laterales del mismo, vegetación, irregularidad y trazado del canal, radio hidráulico y obstrucciones en el canal, generalmente cuando se diseña canales en tierra se supone que el canal está recientemente abierto, limpio y con un trazado uniforme, sin embargo el valor de rugosidad inicialmente asumido difícilmente se conservará con el tiempo, lo que quiere decir que en la práctica constantemente se hará frente a un continuo cambio de la rugosidad (Te Chow, 2004)

En canales proyectados con revestimiento, la rugosidad es función del material usado, que puede ser de concreto, geomanta, tubería PVC ó HDP ó metálica, o si van a trabajar a presión atmosférica o presurizados. La siguiente tabla nos da valores de “n” estimados, estos valores pueden ser refutados con investigaciones y manuales, sin embargo, no dejan de ser una referencia para el diseño:
Cuadro de valores de rugosidad “n” de Manning

<table>
<thead>
<tr>
<th>TIPO DE CANAL Y DESCRIPCIÓN</th>
<th>MINÍMO</th>
<th>NORMAL</th>
<th>MÁXIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. NO METAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficie pulida</td>
<td>0.010</td>
<td>0.011</td>
<td>0.013</td>
</tr>
<tr>
<td>Pintada</td>
<td>0.011</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>Madera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cepillada, sin tratar</td>
<td>0.010</td>
<td>0.012</td>
<td>0.014</td>
</tr>
<tr>
<td>Cepillada, creosolada</td>
<td>0.011</td>
<td>0.012</td>
<td>0.015</td>
</tr>
<tr>
<td>Sin cepillar</td>
<td>0.011</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>Laminas con listones</td>
<td>0.012</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>Forrada con papel impermeabilizante</td>
<td>0.010</td>
<td>0.014</td>
<td>0.017</td>
</tr>
<tr>
<td>Concreto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminado con llana metálica (palustre)</td>
<td>0.011</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>Terminado con llana de madera</td>
<td>0.013</td>
<td>0.015</td>
<td>0.016</td>
</tr>
<tr>
<td>Pulido, con gravas en el fondo</td>
<td>0.015</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>Sin pulir</td>
<td>0.014</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>Lanzado, Sección buena</td>
<td>0.016</td>
<td>0.019</td>
<td>0.023</td>
</tr>
<tr>
<td>Lanzado, Sección ondulada</td>
<td>0.018</td>
<td>0.022</td>
<td>0.025</td>
</tr>
<tr>
<td>Sobre roca bien excavada</td>
<td>0.017</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Sobre roca irregularmente excavada</td>
<td>0.022</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>Fondo de concreto terminado con llana de madera y con lados de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra labrada, en mortero</td>
<td>0.015</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>Piedra sin seleccionar, sobre mortero</td>
<td>0.017</td>
<td>0.020</td>
<td>0.024</td>
</tr>
<tr>
<td>Mampostería de piedra cementada recubierta</td>
<td>0.016</td>
<td>0.020</td>
<td>0.024</td>
</tr>
<tr>
<td>Mampostería de piedra cementada</td>
<td>0.020</td>
<td>0.025</td>
<td>0.030</td>
</tr>
<tr>
<td>Piedra suelta o rip rap</td>
<td>0.020</td>
<td>0.030</td>
<td>0.035</td>
</tr>
<tr>
<td>Fondo de gravas con lados de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concreto encofrado</td>
<td>0.017</td>
<td>0.020</td>
<td>0.025</td>
</tr>
<tr>
<td>Piedra sin seleccionar, sobre mortero</td>
<td>0.020</td>
<td>0.023</td>
<td>0.026</td>
</tr>
<tr>
<td>Piedra suelta o rip rap</td>
<td>0.023</td>
<td>0.033</td>
<td>0.036</td>
</tr>
<tr>
<td>Ladrillo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnizado o lacado</td>
<td>0.011</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>En mortero de cemento</td>
<td>0.012</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>Mampostería</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra partida cementada</td>
<td>0.017</td>
<td>0.025</td>
<td>0.030</td>
</tr>
<tr>
<td>Piedra suelta</td>
<td>0.023</td>
<td>0.032</td>
<td>0.035</td>
</tr>
<tr>
<td>Bloques de piedra labrados</td>
<td>0.013</td>
<td>0.015</td>
<td>0.017</td>
</tr>
<tr>
<td>Asfalto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liso</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Rugoso</td>
<td>0.016</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Revestimiento Vegetal</td>
<td>0.030</td>
<td>0.500</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Hidráulica de canales (Te Chow, 2004)
3.2.2.2 Talud apropiado según el tipo de material

La inclinación de las paredes laterales de un canal depende de varios factores, pero en especial de la clase de terreno donde están alojados, la U.S. BUREAU OF RECLAMATION recomienda un talud único de 1,5:1 para sus canales, a continuación, se presenta un cuadro de taludes apropiados para distintos tipos de material:

Cuadro de taludes apropiados para distintos tipos de material

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>TALUD (h:v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roca</td>
<td>Prácticamente vertical</td>
</tr>
<tr>
<td>Suelos de turba y detritos</td>
<td>0.25:1</td>
</tr>
<tr>
<td>Arcilla compacta o tierra con recubrimiento de concreto</td>
<td>0.5:1 hasta 1:1</td>
</tr>
<tr>
<td>Tierra con recubrimiento de piedra o tierra en grandes canales</td>
<td>1:1</td>
</tr>
<tr>
<td>Arcilla firme o tierra en canales pequeños</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Tierra arenosa suelta</td>
<td>2:1</td>
</tr>
<tr>
<td>Greda arenosa o arcilla porosa</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Fuente: (Aguirre Pe, 1974)

Cuadro de pendientes laterales en canales según tipo de suelo

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CANALES POCO PROFUNDOS</th>
<th>CANALES PROFUNDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roca en buenas condiciones</td>
<td>Vertical</td>
<td>0.25:1</td>
</tr>
<tr>
<td>Arcillas compactas o conglomerados</td>
<td>0.5:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Limos arcillosos</td>
<td>1:1</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Limos arenosos</td>
<td>1.5:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Arenas sueltas</td>
<td>2:1</td>
<td>3:1</td>
</tr>
<tr>
<td>Concreto</td>
<td>1:1</td>
<td>1.5:1</td>
</tr>
</tbody>
</table>

Fuente: (Aguirre Pe, 1974)

3.2.2.3 Velocidades máxima y mínima permisible

La velocidad mínima permisible es aquella velocidad que no permite sedimentación, este valor es muy variable y no puede ser determinado con exactitud, cuando el agua fluye sin limo este valor carece de importancia, pero la baja velocidad favorece el crecimiento de las plantas, en canales de tierra. El valor de 0.8 m/seg se considera como la velocidad apropiada que no permite sedimentación y además impide el crecimiento de plantas en el canal. La velocidad máxima permisible, algo bastante complejo y generalmente se estima empleando la experiencia local o el juicio del ingeniero; las siguientes tablas nos dan valores sugeridos (Krochin Sviatoslav, 1987).
Cuadro de máxima velocidad permitida en canales no recubiertos de vegetación

<table>
<thead>
<tr>
<th>MATERIAL DE LA CAJA DEL CANAL</th>
<th>n</th>
<th>Manning</th>
<th>Velocidad (m/s)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>agua limpia</td>
<td>agua con partículas coloidales</td>
<td>agua transportando arena, grava o fragmentos</td>
</tr>
<tr>
<td>Arena fina coloidal</td>
<td>0.02</td>
<td>1.45</td>
<td>0.75</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Franco arenoso no coloidal</td>
<td>0.02</td>
<td>0.53</td>
<td>0.75</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Franco limoso no coloidal</td>
<td>0.02</td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Limos aluviales no coloidales</td>
<td>0.02</td>
<td>0.6</td>
<td>1.05</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Franco consistente normal</td>
<td>0.02</td>
<td>0.75</td>
<td>1.05</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Ceniza volcánica</td>
<td>0.02</td>
<td>0.75</td>
<td>1.05</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Arcilla consistente muy coloidal</td>
<td>0.025</td>
<td>1.13</td>
<td>1.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Limos aluviales coloidal</td>
<td>0.025</td>
<td>1.13</td>
<td>1.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Pizarra y capas duras</td>
<td>0.025</td>
<td>1.8</td>
<td>1.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Grava fina</td>
<td>0.02</td>
<td>0.75</td>
<td>1.5</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Suelo franco clasificado no coloidal</td>
<td>0.03</td>
<td>1.13</td>
<td>1.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Suelo franco clasificado coloidal</td>
<td>0.03</td>
<td>1.2</td>
<td>1.65</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Grava gruesa no coloidal</td>
<td>0.025</td>
<td>1.2</td>
<td>1.8</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>Gravas y guijarros</td>
<td>0.035</td>
<td>1.8</td>
<td>1.8</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: (Krochin Sviatoslav, 1987)

Para velocidades máximas, en general, los canales viejos soportan mayores velocidades que los nuevos; además un canal profundo conducirá el agua a mayores velocidades sin erosión, que otros menos profundos.

La U.S. BUREAU OF RECLAMATION, recomienda que, para el caso de revestimiento de canales de hormigón no armado, las velocidades no deben exceder de 2.5 – 3.0 m/seg. Para evitar la posibilidad de que el revestimiento se levante. Cuando se tenga que proyectar tomas laterales u obras de alivio lateral, se debe tener en cuenta que las velocidades tienen que ser previamente controladas (pozas de regulación), con la finalidad que no se produzca turbulencias que originen perturbaciones y no puedan cumplir con su objetivo.

3.2.2.4 Borde libre

Es el espacio entre la cota de la corona y la superficie del agua, no existe ninguna regla fija que se pueda aceptar universalmente para el cálculo del borde libre, debido a que las fluctuaciones de la superficie del agua en un canal, se puede originar por causas incontrolables. (Cosideraciones Generales sobre Canales, 1978).
La U.S. BUREAU OF RECLAMATION recomienda estimar el borde libre con la siguiente fórmula:

Donde:

\[\text{Borde libre} = \sqrt{CY} \]

Borde libre: en pies
C = 1.5 para caudales menores a 20 pies³ / seg. y hasta 2.5 para caudales del orden de los 3000 pies³/seg.
Y = Tirante del canal en pies.

La secretaría de Recursos Hidráulicos de México, recomienda los siguientes valores en función del caudal:

Cuadro de borde libre en función del caudal

<table>
<thead>
<tr>
<th>Caudal (m³/seg)</th>
<th>Revestido (cm)</th>
<th>Sin revestir (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.05</td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>0.05 – 0.25</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0.25 – 0.50</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>0.50 – 1.00</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>> 1.00</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

Fuente: (Cosideraciones Generales sobre Canales, 1978)

Cuadro de borde libre en función de la plantilla del canal

<table>
<thead>
<tr>
<th>Ancho de la plantilla (m)</th>
<th>Borde libre (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>0.8 – 1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.5 – 3.0</td>
<td>0.6</td>
</tr>
<tr>
<td>3.0 – 20.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fuente: (Villón Béjar, 2007)
3.2.3 Radios mínimos en canales

En el diseño de canales, el cambio brusco de dirección se sustituye por una curva cuyo radio no debe ser muy grande, y debe escogerse un radio mínimo, dado que al trazar curvas con radios mayores al mínimo no significa ningún ahorro de energía, es decir la curva no será hidráulicamente más eficiente, en cambio sí será más costoso al darle una mayor longitud o mayor desarrollo. (Ministerio de Agricultura y Alimentacion, 1978)

Cuadro de radio mínimo en canales abiertos para Q < 20 m3

<table>
<thead>
<tr>
<th>Capacidad del Canal (m3/s)</th>
<th>Radio Mínimo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Agricultura y Alimentacion, 1978)
IV. DESARROLLO DEL TEMA

4.1 Túnel

4.1.1 Estudio de refracción sísmica

Consistió en 1148 metros de refracción sísmica, distribuidas en 6 líneas. Dos líneas longitudinales ubicadas en el eje del túnel en los sectores de la entrada y salida del túnel, y 4 líneas transversales al eje del túnel, 2 en cada sector.

En la siguiente tabla se resume las características principales de estas líneas:

<table>
<thead>
<tr>
<th>Línea sísmica</th>
<th>Longitud inclinada (m)</th>
<th>Ubicación (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL-1</td>
<td>336</td>
<td>0+768 (Longitudinal Entrada túnel)</td>
</tr>
<tr>
<td>LSL-2</td>
<td>332</td>
<td>1+606 (Longitudinal Salida túnel)</td>
</tr>
<tr>
<td>LST-1</td>
<td>120</td>
<td>0+800 (Entrada, transversal al eje túnel)</td>
</tr>
<tr>
<td>LST-2</td>
<td>120</td>
<td>0+860 (Entrada, transversal al eje túnel)</td>
</tr>
<tr>
<td>LST-3</td>
<td>120</td>
<td>1+540 (Salida, transversal al eje túnel)</td>
</tr>
<tr>
<td>LST-2</td>
<td>120</td>
<td>1+580 (Salida, transversal al eje túnel)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Los perfiles sísmicos se generaron mediante el impacto de una maza sobre una placa metálica apoyada sobre el terreno, con una penetrabilidad de onda comprendida entre 20 y 30 m de profundidad. Las ondas refractadas se registraron mediante un sismógrafo de 24 canales.

Los diferentes niveles elásticos relacionados a las diferentes velocidades de las ondas longitudinales refractadas se muestran en perfiles sísmicos, según los rangos de velocidad de las ondas sísmicas se ubican en diferentes capas o niveles.
- Sedimentos no consolidados, con densidad muy baja, \(V_p: 0.4 \text{ – } 0.6 \text{ Km/s.} \)
- Roca extremadamente meteorizada (A5) y triturada, \(V_p: 0.6 \text{ – } 1.2 \text{ Km/s.} \)
- Roca muy meteorizada (A4) y/o fracturada, \(V_p: 1.2 \text{ – } 2.6 \text{ Km/s.} \)
- Roca meteorizada (A3) y/o fracturada, \(V_p: 2.6 \text{ – } 3.4 \text{ Km/s.} \)
- Roca poco meteorizada a fresca (A2-A1), fracturada, \(V_p > 3.4 \text{ Km/s.} \)

4.1.2 Determinación de tramos de tipo de roca.

<table>
<thead>
<tr>
<th>PROGRESIVA</th>
<th>LONGITUD (m)</th>
<th>CARACTERIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Término</td>
<td></td>
</tr>
<tr>
<td>0+800</td>
<td>0+860</td>
<td>60</td>
</tr>
<tr>
<td>0+860</td>
<td>1+050</td>
<td>190</td>
</tr>
<tr>
<td>1+050</td>
<td>1+170</td>
<td>120</td>
</tr>
<tr>
<td>1+170</td>
<td>1+200</td>
<td>30</td>
</tr>
<tr>
<td>1+200</td>
<td>1+310</td>
<td>110</td>
</tr>
<tr>
<td>1+310</td>
<td>1+475</td>
<td>165</td>
</tr>
<tr>
<td>1+475</td>
<td>1+500</td>
<td>25</td>
</tr>
<tr>
<td>1+500</td>
<td>1+570</td>
<td>70</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>770 m</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

<table>
<thead>
<tr>
<th>TIPO DE ROCA</th>
<th>LONGITUD (m)</th>
<th>PORCENTAJE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>255</td>
<td>33</td>
</tr>
<tr>
<td>III</td>
<td>355</td>
<td>46</td>
</tr>
<tr>
<td>IV</td>
<td>130</td>
<td>17</td>
</tr>
<tr>
<td>TOTAL</td>
<td>770</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Por otro lado, para el caudal de diseño en el Túnel así planteado y de acuerdo a las normativas del UNITED BUREAU OF RECLAMATION (USBR), la pendiente longitudinal recomendada es de 3.1/1000.
4.1.3 Proceso de excavación del túnel

Es el sistema clásico, que comprende la Perforación, Voladura y Limpieza de escombros, obteniéndose un trabajo cíclico en el avance del frente o frontón de ataque.

- Perforación
- Carga de explosivos
- Voladura
- Ventilación
- Eliminación de escombros
- Sostenimiento
- Topografía

4.1.3.1 Perforación

La perforación se hace con martillos neumáticos accionado por aire comprimido generado por una compresora de aire.

4.1.3.2 Carga de explosivos

Se carga los explosivos con los procedimientos adecuados para generar una voladura adecuada sin riesgos y siguiendo la dirección indicada por el equipo topográfico.

4.1.3.3 Voladura

La voladura se da al quemarse la mecha lenta de una longitud adecuada, que da el tiempo para evacuar los trabajadores y no sufran daños por la detonación y gases emitidos por los explosivos.

4.1.3.4 Ventilación

La longitud máxima de túnel que puede dejarse sin ventilación artificial depende de la intensidad del tráfico, pero también de causas climatológicas e incluso geográficas.

La ventilación es necesario para eliminar los gases emitidos por la voladura, el humo generado por combustión interna de la máquina que elimina el desmonte y el polvo generado por la perforación.
Estos elementos si no son eliminados, impiden la visualización e intoxicación de los trabajadores.

4.1.3.5 Eliminación de escombros

La eliminación de material producto de la excavación de rocas se traslada por una maquinaria de transporte que puede desplazarse en la sección del túnel, esta maquinaria puede ser de diversos tamaños, pero lo que se utiliza en este proyecto es el Scoop.

4.1.3.6 Sostenimiento del túnel

El sostenimiento del túnel es de acuerdo con el tipo de roca que debe sostener y el espaciamiento entre cimbras son menores si la roca es mala y un mayor espaciamiento si la roca es buena.

<table>
<thead>
<tr>
<th>Tipos de roca</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad de roca</td>
<td>Buena</td>
<td>Regular</td>
<td>Mala</td>
<td>Muy mala</td>
</tr>
<tr>
<td>Tipo de sostenimiento</td>
<td>Pernos de anclaje aislados y concreto lanzado puntual</td>
<td>Pernos aislados y concreto lanzado</td>
<td>Pernos sistemáticos, concreto lanzado + malla</td>
<td>Cimbra metálica, concreto lanzado + malla</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Los marcos metálicos (cimbras) e invert instalados con unas especificaciones H4x13 que tienen 0.1 m (4”) de ancho, deben ser instalados de acuerdo al tipo de roca quedando un área interna libre de 2.15 x 2.15 metros

4.1.3.7 Procedimiento de instalación de cimbras

El sostenimiento de del túnel debe ser de acuerdo el avance, preferiblemente que el soporte se instale lo antes posible, pues cualquier retraso se traduce en aumentos de la presión sobre el techo.
- Para iniciar la colocación de una cimbra, se debe proceder a asegurar el techo, lo cual se podrá realizar mediante la colocación de ángulos o marchavantes de ser necesario.

- Todas las cimbras deben estar correctamente apoyadas al piso mediante las platinas de base debidamente ubicadas a una profundidad de 20 cm, (se debe cavar previamente con el techo protegido)

- Luego de ser instaladas las cimbras deben ser sujetadas con los distanciadores de acero y la solera invertida (Invert) y mantener su verticalidad. De ser necesario se debe asegurar la cimbra anclándola con cáncamos a las paredes.

- Se asegurará el techo entablando el espacio entre las 2 últimas cimbras instaladas cubriendo toda la corona de la excavación. El entablado debe estar apoyado por la superficie externa de la cimbra.

- El bloqueo de la cimbra contra las paredes rocosas es esencial para que pueda haber una transferencia uniforme de las cargas rocosas sobre las cimbras. Si no se realiza un buen bloqueo las cimbras no serán efectivas. Para este propósito se hace uso de los bolsacrets y tablas, el cual servirá como tope entre las cimbras y la superficie rocosa del túnel.

- Es muy importante que la instalación sea cimbra por cimbra y no varias cimbras a la vez, es decir, completar la instalación de una cimbra para comenzar con la siguiente.
Gráfico de cimbras y partes complementarias para el sostenimiento del túnel.

PERFIL DEL ACERO: Es la forma o figura del corte en sección transversal de una viga de acero que se debe construir según el diseño de excavación del túnel, una de las más usadas que tenemos es el perfil “H” y omega.

MARCHAVANTES: Pueden ser tablas o rieles de 3 metros de longitud, con un extremo en punta, que sirve para controlar los derrumbes del techo de una labor en avance, se usa antes de colocar el sostenimiento.

INVERT: Solera invertida que sirve aumentar la resistencia de las cimbras frente a las presiones laterales.

4.1.3.8 Topografía

Los trabajos topográficos son importantes para seguir la dirección horizontal y la pendiente del túnel - canal, y debe ser verificada constantemente para que no haya errores en trazo y ejecución del canal.

a. Reconocimiento del terreno. - Se recorre la zona, anotándose todos los detalles que influyen en la determinación de un eje del canal, determinándose el punto inicial y el punto final (georreferenciados).
b. **Trazo preliminar.**- Se procede a levantar la zona con una brigada topográfica, clavando en el terreno las estacas de la poligonal preliminar y luego el levantamiento con el equipo topográfico, posteriormente a este levantamiento se nivelará la poligonal y se hará el levantamiento de secciones transversales, estas secciones se harán de acuerdo a criterio, si es un terreno con una alta distorsión de relieve, la sección se hace a cada 5 m, si el terreno no muestra muchas variaciones y es uniforme la sección es máximo a cada 20 m.

c. **Trazo definitivo.** - Con los datos del trazo preliminar se procede al trazo definitivo, teniendo en cuenta la escala del plano, la cual depende básicamente de la topografía de la zona y de la precisión que se desea:

- Terrenos con pendiente transversal mayor a 25%, se recomienda escala de 1:500.
- Terrenos con pendiente transversal menor a 25%, se recomienda escalas de 1:1000 a 1:2000.

4.2 Determinación de caudal

4.2.1 Efluentes de la ciudad de Cutervo

<table>
<thead>
<tr>
<th>Población Cutervo (1)</th>
<th>Dotación Diaria (2)</th>
<th>Factor Contribución Efluentes (3)</th>
<th>Volumen Diario Efluente (4)=(1)x(2)x(3)</th>
<th>Caudal Equivalente (5)=(4)/86400</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 000</td>
<td>250</td>
<td>0,90</td>
<td>22 500</td>
<td>260,42</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia
Cuadro N° 4.- CAUDAL DE DISEÑO DE EFLUENTES CUTERVO

<table>
<thead>
<tr>
<th>Caudal Efluente Diario (lps)</th>
<th>Factor de Máxima Demanda</th>
<th>Factor de Máxima Demanda Horaria</th>
<th>Caudal Máximo de Diseño (lps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)=(1)(2)(3)</td>
</tr>
<tr>
<td>260,42</td>
<td>1.30</td>
<td>2.60</td>
<td>880,23</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

En resumen, el caudal pico de los efluentes asciende a 0,88 m³/s. El mismo que se elimina por el tragadero existente en Acuchingana y que podría obstruirse por los desperdicios flotantes en los efluentes o ser rebasada su capacidad a efectos de las lluvias extraordinarias.

4.2.2 Aguas pluviales

La zona de Acuchinanga (tragadero natural) es una depresión del terreno, hacia donde concurren los efluentes de la ciudad de Cutervo y las aguas pluviales del vaso conformado. De la Carta Nacional se observa que el área de la hoyada es alrededor de 46,50 km², por lo que en épocas de grandes precipitaciones pluviales se forma un embalse de consideración. Con la apertura del túnel destinado a evacuar las aguas de los efluentes de la hoyada, es posible también evacuar las aguas embalsadas de la lluvia, acortando considerablemente el periodo de desembalse del agua estancada.

El desagüe se originará a través del túnel con la sección parcialmente llena con un caudal de en 3.5 m³/s, el caso de que el embalse incremente su cota por encima del túnel, el caudal se incrementará permitiendo desaguar en menor tiempo el embalse derivado.
Límite de la microcuenca endorreica (línea roja) y punto de salida de las masas de agua de la microcuenca (Tragadero). Fuente: Elaboración propia.

4.3 Diseño de secciones hidráulicas de canal

Se debe construir un canal para la conducción de los flujos de agua en todo el tramo del de túnel - canal. Deberá considerarse una altura media de entre 1,20 a 1,25 para un caudal de descarga de 3,5 m3/s. Esta determinación estructural está asociada a la caracterización geomecánica observada en el reconocimiento de campo del trayecto del túnel donde los mayores esfuerzos se presentan en los axiales, especialmente en el sector de rocas lutíticas (Tipo IV y TIPO V)

El diseño hidráulico del canal determinará la dimensión y forma geométrica del canal en función al caudal que transporta, y las características técnicas finales de la construcción del túnel.
Habiéndose culminado la excavación y teniendo como sostenimiento definitivo los marcos metálicos “Cimbras”, será necesario el análisis estructural para correcto y seguro sostenimiento, así como la construcción del canal de fondo que servirá para conducción de las aguas que el proyecto contempla.

4.3.1 Canal circular

4.3.1.1 Diseño hidráulico de la tubería TMC 72” Φ en la entrada del túnel

Datos

| Q = 3.5 m3/s | (Φ72") do = 1.82 m | n = 0.024 |

Cuadro de resultados

<table>
<thead>
<tr>
<th>S (m/m)</th>
<th>Y (m)</th>
<th>A (m²)</th>
<th>V (m/s)</th>
<th>T (m)</th>
<th>F</th>
<th>Tipo de flujo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0026</td>
<td>1.658</td>
<td>2.487</td>
<td>1.407</td>
<td>1.038</td>
<td>0.290</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.003</td>
<td>1.486</td>
<td>2.274</td>
<td>1.539</td>
<td>1.409</td>
<td>0.387</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.004</td>
<td>1.304</td>
<td>1.995</td>
<td>1.754</td>
<td>1.640</td>
<td>0.508</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.005</td>
<td>1.200</td>
<td>1.820</td>
<td>1.924</td>
<td>1.725</td>
<td>0.598</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.006</td>
<td>1.127</td>
<td>1.692</td>
<td>2.069</td>
<td>1.768</td>
<td>0.675</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.009</td>
<td>0.990</td>
<td>1.446</td>
<td>2.420</td>
<td>1.813</td>
<td>0.866</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.0097</td>
<td>0.968</td>
<td>1.406</td>
<td>2.490</td>
<td>1.816</td>
<td>0.904</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.01</td>
<td>0.959</td>
<td>1.390</td>
<td>2.519</td>
<td>1.817</td>
<td>0.920</td>
<td>SUBCRITICO</td>
</tr>
</tbody>
</table>
4.3.1.2 Diseño hidráulico de la tubería TMC 60" Φ en la salida del túnel

<table>
<thead>
<tr>
<th>Q</th>
<th>3.5 m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Φ60") do</td>
<td>1.52 m</td>
</tr>
<tr>
<td>n</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Cuadro de resultados

<table>
<thead>
<tr>
<th>S (m/m)</th>
<th>Y (m)</th>
<th>A (m²)</th>
<th>V (m/s)</th>
<th>T (m)</th>
<th>F</th>
<th>Tipo de flujo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>1.338</td>
<td>1.692</td>
<td>2.068</td>
<td>0.986</td>
<td>0.504</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.008</td>
<td>1.227</td>
<td>1.570</td>
<td>2.229</td>
<td>1.199</td>
<td>0.622</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.009</td>
<td>1.160</td>
<td>1.486</td>
<td>2.356</td>
<td>1.293</td>
<td>0.702</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.0097</td>
<td>1.123</td>
<td>1.437</td>
<td>2.435</td>
<td>1.335</td>
<td>0.750</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.01</td>
<td>1.109</td>
<td>1.418</td>
<td>2.467</td>
<td>1.351</td>
<td>0.769</td>
<td>SUBCRITICO</td>
</tr>
<tr>
<td>0.02</td>
<td>0.870</td>
<td>1.074</td>
<td>3.261</td>
<td>1.504</td>
<td>1.233</td>
<td>SUPERCRITICO</td>
</tr>
<tr>
<td>0.03</td>
<td>0.768</td>
<td>0.920</td>
<td>3.804</td>
<td>1.520</td>
<td>1.562</td>
<td>SUPERCRITICO</td>
</tr>
<tr>
<td>0.0382</td>
<td>0.716</td>
<td>0.841</td>
<td>4.163</td>
<td>1.517</td>
<td>1.787</td>
<td>SUPERCRITICO</td>
</tr>
</tbody>
</table>

4.3.2 Canal rectangular

4.3.2.1 Diseño hidráulico del canal rectangular de concreto.

Datos

<table>
<thead>
<tr>
<th>Q</th>
<th>3.5 m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.014</td>
</tr>
<tr>
<td>b</td>
<td>1.75 m</td>
</tr>
</tbody>
</table>
Cuadro de resultados

<table>
<thead>
<tr>
<th>S (m/m)</th>
<th>Y (m)</th>
<th>A (m²)</th>
<th>V (m/s)</th>
<th>T (m)</th>
<th>F</th>
<th>Tipo de flujo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0010</td>
<td>1.35</td>
<td></td>
<td>El tirante de agua excede a la atura del canal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0020</td>
<td>1.031</td>
<td></td>
<td></td>
<td></td>
<td>0.769</td>
<td>SUBCRÍTICO</td>
</tr>
<tr>
<td>0.0030</td>
<td>0.884</td>
<td>1.547</td>
<td>2.262</td>
<td>1.750</td>
<td>0.903</td>
<td>SUBCRÍTICO</td>
</tr>
<tr>
<td>0.0040</td>
<td>0.794</td>
<td>1.390</td>
<td>2.518</td>
<td>1.750</td>
<td>0.964</td>
<td>SUBCRÍTICO</td>
</tr>
<tr>
<td>0.0045</td>
<td>0.760</td>
<td>1.331</td>
<td>2.631</td>
<td>1.750</td>
<td>1.001</td>
<td>CRÍTICO</td>
</tr>
<tr>
<td>0.0048</td>
<td>0.742</td>
<td>1.298</td>
<td>2.697</td>
<td>1.750</td>
<td>0.769</td>
<td>SUBCRÍTICO</td>
</tr>
<tr>
<td>0.0050</td>
<td>0.731</td>
<td>1.280</td>
<td>2.734</td>
<td>1.750</td>
<td>1.021</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0060</td>
<td>0.684</td>
<td>1.197</td>
<td>2.923</td>
<td>1.750</td>
<td>1.129</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0070</td>
<td>0.647</td>
<td>1.132</td>
<td>3.091</td>
<td>1.750</td>
<td>1.227</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0080</td>
<td>0.617</td>
<td>1.079</td>
<td>3.243</td>
<td>1.750</td>
<td>1.319</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0090</td>
<td>0.591</td>
<td>1.035</td>
<td>3.383</td>
<td>1.750</td>
<td>1.406</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0097</td>
<td>0.576</td>
<td>1.007</td>
<td>3.475</td>
<td>1.750</td>
<td>1.463</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0100</td>
<td>0.569</td>
<td>0.996</td>
<td>3.513</td>
<td>1.750</td>
<td>1.487</td>
<td>SUPERCRÍTICO</td>
</tr>
</tbody>
</table>

4.3.3 Canal trapezoidal.

4.3.3.1 Diseño hidráulico del canal trapezoidal de concreto.

Datos

<p>| Q= | 3.5 m³/s |
| n= | 0.014 |
| z= | 0.162 |
| b= | 1.38 m |</p>
<table>
<thead>
<tr>
<th>S (m/m)</th>
<th>Y (m)</th>
<th>A (m²)</th>
<th>V (m/s)</th>
<th>T (m)</th>
<th>F</th>
<th>Tipo de flujo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0030</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0040</td>
<td>0.90</td>
<td>1.365</td>
<td>2.563</td>
<td>1.670</td>
<td>0.906</td>
<td>SUBCRÍTICO</td>
</tr>
<tr>
<td>0.0048</td>
<td>0.84</td>
<td>1.273</td>
<td>2.749</td>
<td>1.652</td>
<td>1.001</td>
<td>CRÍTICO</td>
</tr>
<tr>
<td>0.0050</td>
<td>0.83</td>
<td>1.255</td>
<td>2.789</td>
<td>1.649</td>
<td>1.021</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0060</td>
<td>0.78</td>
<td>1.172</td>
<td>2.986</td>
<td>1.632</td>
<td>1.125</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0070</td>
<td>0.74</td>
<td>1.107</td>
<td>3.162</td>
<td>1.619</td>
<td>1.222</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0080</td>
<td>0.70</td>
<td>1.053</td>
<td>3.323</td>
<td>1.608</td>
<td>1.312</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0090</td>
<td>0.68</td>
<td>1.009</td>
<td>3.470</td>
<td>1.599</td>
<td>1.396</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0097</td>
<td>0.66</td>
<td>0.981</td>
<td>3.567</td>
<td>1.594</td>
<td>1.452</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0100</td>
<td>0.65</td>
<td>0.970</td>
<td>3.607</td>
<td>1.592</td>
<td>1.476</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0110</td>
<td>0.63</td>
<td>0.937</td>
<td>3.736</td>
<td>1.585</td>
<td>1.552</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0120</td>
<td>0.61</td>
<td>0.908</td>
<td>3.856</td>
<td>1.579</td>
<td>1.625</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0130</td>
<td>0.60</td>
<td>0.882</td>
<td>3.970</td>
<td>1.573</td>
<td>1.694</td>
<td>SUPERCRÍTICO</td>
</tr>
<tr>
<td>0.0140</td>
<td>0.58</td>
<td>0.858</td>
<td>4.079</td>
<td>1.569</td>
<td>1.762</td>
<td>SUPERCRÍTICO</td>
</tr>
</tbody>
</table>

4.4 Proceso constructivo de alcantarillas

La tubería de acero corrugado y las estructuras de planchas deberán ser ensambladas de acuerdo con las instrucciones del fabricante.

La tubería se colocará sobre un lecho de material granular, conformado y compactado principiando en el extremo de aguas abajo, cuidando que las pestañas exteriores circunferenciales y las longitudinales de los costados se coloquen frente a la dirección aguas arriba.
4.4.1 Armado de alcantarilla.

- Empezar aguas abajo, para unir dos planchas de base colocar la primera corrugación de la 2° plancha sobre la última corrugación de la 1° plancha, de esta manera se obtendrá el traslape en el sentido del flujo de agua. Se debe dar un giro a la 2° plancha respecto a la 1° plancha desfasándola en un agujero. (Costura circunferencial)

- Colocar la 3° plancha sobre la 2° con el mismo giro de la 1° plancha.

- Seguir así hasta completar toda la base.

- Paralá parte superior empezar aguas arriba. Colocar la primera plancha en la parte superior sobre la última plancha de base y cerrar el primer anillo (costura longitudinal).

- Colocar la 2° plancha superior sobre el siguiente anillo y continuar hasta completar la tubería.
4.4.2 Suelo de fundación.

Material de baja capacidad portante debe extraerse y reemplazarse por material apropiado para relleno, que brinde soporte continuo y uniforme.

En algunos casos será suficiente reemplazar por una capa de 15 a 30cm de material granular bien nivelado; en otros casos deberá excavarse a lo largo de toda la alcantarilla un espesor aproximado de 60cm, con un ancho del triple del diámetro, esto varía según el diámetro y la altura del terraplén.

4.4.3 Material de Relleno

El material de relleno debajo de las esquinas y a los costados de la tubería se debe colocar uniformemente en capas de 15 a 20 cm y apisonarse. Las capas de relleno se colocan alternadamente a cada lado de la tubería para mantener la misma altura de relleno en ambos lados.

Los procedimientos de excavación eliminación de material excedentes y otros trabajos complementarios son iguales a la del canal y están descritos en el proceso constructivo del canal.

4.5 Descripción de tramos de canal para evacuación de aguas pluviales.

4.5.1 Canal de entrada al túnel (Tramo progresiva 0+000 al 0+600)

En el tramo inicial que comienza con la estructura de entrada del canal y finaliza en la progresiva 0+600 donde la altura de carga que soporta la alcantarilla se excede. Para este tramo se considera una tubería corrugada 72” que se extiende sobre una pendiente suave (mínima). Donde se han diseñado sumideros y se han proyectado cámaras de inspección y estructura de concreto por cambio de dirección horizontal.

4.5.2 Canal de concreto, entrada al túnel (Tramo progresiva 0+600 al 0+800)

Se construirán canal rectangular en los tramos más crítico donde la instalación de la tubería TMC, cuya altura de carga máxima que puede soportar está de 13 a 18.00 metros,
por ellos es necesario construir canales rectangulares de concreto que puedan soportar alturas de relleno mayores, ya que en la entrada del túnel hay alturas con mayores rellenos.

4.5.3 Tramo del Túnel, progresiva 0+800 al 1+570

Este tramo de canal está conformada por el túnel, las secciones del canal dentro del túnel es de acuerdo a la sección de excavación que determinaron los estudios estructurales, el canal de concreto de sección baúl y canal de sección trapezoidal cuya pendiente depende del método.

Túnel de sección tipo baúl, se observa la cimbra metálica de sostenimiento y en la parte superior la manga de ventilación.

4.5.4 Canal de salida 1+570 al 1+880.

Este tramo se inicia en una cámara de salida del túnel y termina en las estructuras de la poza de disipación, Se ha previsto una tubería de 60” para esta parte final del canal.
Salida del túnel Cutervo: se observa al Escoop retornando luego de la eliminación de material de excavación, las señalizaciones y el elemento de ventilación del túnel.

Salida del túnel: Instalación de alcantarilla en el canal y cambio de dirección, donde se construirá una cama de inspección.
V. CONCLUSIONES

Se ha diseñado un canal que se encuentra ubicado dentro de una microcuenca sin salida, el agua que fluye dentro de ella drena por un sumidero natural, el cual se obstruye en la época de lluvia ya que no es suficiente para evacuar mayores caudales, de modo que inunda tierras de pastoreo, tierra de uso agrícola y carreteras, generando efectos de contaminación ambiental, corte de vías de comunicación, pérdidas de cultivos y pastos naturales. Para solucionar esos problemas se construyó un canal de evacuación de aguas pluviales.

En la evaluación se determinó que el canal – túnel evacuará el caudal que discurre en la microcuenca endorreica de la ciudad de Cutervo, flujos de agua generado por las precipitaciones en las épocas de lluvia, filtraciones que salen de los manantiales en todo el año y aguas servidas de la población de la ciudad de Cutervo, previo paso por la Planta de Tratamiento de Aguas Residuales. El canal tiene una capacidad para evacuar caudales proyectados con el crecimiento poblacional y en épocas de mayores precipitaciones.

Se diseñó topográficamente el canal para definir la dirección y pendiente de excavación por donde se cimentará el lecho del canal, ya que pequeños errores de desniveles pueden generar problemas de sedimentación. El cálculo hidráulico determina las dimensiones y la forma geométrica del canal en función al caudal que transporta, la pendiente que recorre, la rugosidad del material por donde discurre el fluido y otros factores.
VI. RECOMENDACIONES

La ejecución del canal de evacuación de aguas pluviales debe ejecutarse en épocas de estiaje para no tener dificultades en las filtraciones de agua o derrumbes, también dificultades en las cimentaciones de las estructuras y sistemas de drenaje.

La topografía debe ser bien controlada en la construcción del túnel - canal, si se ejecutan desde el ingreso y salida del canal. Los puntos de referencia de la entrada y salida deben estar referenciados de forma precisa, errores mínimos son significativos con el avance de excavación.

El canal de conducción de aguas pluviales debe tener un mantenimiento constante para el buen funcionamiento del sistema.
VII. REFERENCIAS BIBLIOGRÁFICAS

VIII. ANEXOS

a. Panel Fotográfico

Problemas de inundación de áreas de cultivo y contaminación de las aguas estancadas, al mezclarse con las aguas servidas.

Excavación en el canal de entrada al túnel. Material arcilloso, dificulta el trabajo de excavación al impregnarse la arcilla en la cuchara de la excavadora.
Construcción de un sumidero en el canal de entrada al túnel, para evacuar las masas de agua que se concentran en el lugar.

Limpieza de un sumidero, que ha sido inundado por la lluvia, que deformó la alcantarilla debido a la saturación de agua.
Trabajos dentro del túnel, poca ventilación, concentración de humo de la maquinaria que elimina el desmonte (Scoop) y polvo generado por la perforación y voladura.

Instalación de cimbras necesario para el sostenimiento del túnel con espaciamientos según el tipo de roca.
b. PLANOS