“SPINOSAD Y PROTEÍNA HIDROLIZADA PARA EL CONTROL DE
Ceratitis capitata Wiedemann EN MANDARINA *Citrus unshiu*”

Presentado por:

MARCELO FERNANDO VERGARAY WONG

Tesis para optar el título de:

INGENIERO AGRÓNOMO

LIMA – PERÚ

2016
ÍNDICE

I. INTRODUCCIÓN

II. REVISIÓN DE LITERATURA

3.1 LA MANDARINA (Citrus unshiu):

3.2 SITUACIÓN COMERCIAL:

3.3 PRODUCCIÓN NACIONAL:

2.3.1 Época de cosecha

2.3.2 Exportación:

2.3.3. Fenología de la Mandarina

2.3.5 Moscas de la Fruta:

2.3.6 Ceratitis capitata:

III. MATERIALES Y MÉTODOS

3.1 LOCALIZACIÓN DEL EXPERIMENTO:

3.2 LOCALIZACIÓN DEL ÁREA DE CRIANZA DE INSECTOS:

3.3 MATERIALES Y EQUIPOS:

3.3.1 Para la obtención de individuos de Ceratitis capitata:

3.3.2 Para la experimentación:

3.3.3 Para el análisis de datos:

3.4 METODOLOGÍA:

3.4.1 Armado de las cámaras de crianza

3.4.2 Armado de las 22 cabinas enmalladas:

3.4.3 Crianza de las larvas de Ceratitis capitata Wiedemann para la obtención de pupas:

3.4.4 Liberación de las moscas en las cabinas enmalladas:

3.4.5. Evaluación:

3.4.6 Diseño Experimental:

IV. RESULTADOS Y DISCUSIÓN

4.1 RESULTADOS:

4.2 DISCUSIÓN:

V. CONCLUSIONES

VI. RECOMENDACIONES

VII. REFERENCIAS BIBLIOGRÁFICAS

VIII. ANEXOS

Verificación De Áreas Libres De Plagas Para Moscas De La Fruta...... ¡Error! Marcador no definido.
ÍNDICE DE TABLAS

<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estacionalidad de la mandarina de los países productores.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Exportaciones peruanas de mandarinas por meses desde 2013 hasta agosto de 2015.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Principales Empresas Peruanas Exportadoras de Mandarina 2015. (valor en miles de dólares FOB)</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Especies de mosca de la fruta registradas en el Perú.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Número de individuos, por especie, de la Mosca de la Fruta. Desde marzo del 2011 hasta febrero del 2012. En La Molina.</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Resumen de algunas propiedades físicas y químicas de las espinosas A y D (Anónimo, 1996).</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Tratamientos y dosis respectivas usadas en el experimento.</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>Promedios diarios del número de moscas muertas por día de las 4 repeticiones para cada tratamiento.</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>Cuadro de Análisis de Varianza.</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>Comparaciones de Duncan</td>
<td>62</td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

Figura 1: Calendario de Cosecha de Mandarina Nacional.

Figura 2: *Ceratitis capitata* (Wiedemann).

Figura 3: Adultos de *Ceratitis capitata* (Wiedemann).

Figura 4: Ciclo biológico de *Ceratitis capitata* (Wiedemann)

Figura 5: Número de individuos mensual de *Anastrepha sp. y Ceratitis capitata*.

Figura 6: Trampa Mc Phail.

Figura 7: Trampa Jackson

Figura 8: Trampa Seca.

Figura 9: Trampa Panel Amarillo.

Figura 10: Microfotografías electrónicas de barrido de *Saccharopolyspora spinosa*.

Figura 11: Espinosinas A y D, producidas por *S. spinosa*.

Figura 12: Envase de poliestireno expandido (tecnopor).

Figura 13: Cámara de crianza confeccionada.

Figura 14: Cámara de crianza con fruta infestada.

Figura 15: Cabina con malla tipo tul.

Figura 16: Cabina con malla tipo tul y cola blanca.

Figura 17: Pupas recolectadas.

Figura 18: Cabinas enmalladas.

Figura 19: Cabinas enmalladas instaladas en los árboles de mandarina.

Figura 20: Cabinas enmalladas instaladas en los árboles de mandarina.

Figura 21: Foto del primer día de instalación de las cabinas.

Figura 22: Conteo y selección de las 10 moscas por medio del uso de un sorbete de
plástico.

Figura 23: Sorbete plástico con 10 moscas en su interior.

Figura 24: Dos adultos de mosca de la fruta dentro de la cabina enmallada.

Figura 25: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 1.

Figura 26: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 2.

Figura 27: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 3.

Figura 28: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 4.

Figura 29: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 5.

Figura 30: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 6.

Figura 31: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 7.

Figura 32: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 8.

Figura 33: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 9.

Figura 34: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 10.

Figura 35: Foto del último día de evaluación de una cabina enmallada.
ÍNDICE DE ANEXOS

ANEXO 1: Cuadros de los resultados de las 4 repeticiones de los tratamientos. 72

ANEXO 2: Datos de Humedad Relativa, temperatura promedio, temperatura máxima y temperatura mínima de la Estación Meteorológica Alexander Von Humboldt durante los días de la realización del experimento. 74

ANEXO 3: Procesamiento de datos para evaluación estadística. “Corrido” de datos del Software estadístico R versión 3.2.2. 75
RESUMEN

El presente trabajo determinó la viabilidad del uso del ingrediente activo Spinosad mezclado con proteína hidrolizada para el control de la Mosca de la Fruta Ceratitis capitata Wiedemann. El experimento se realizó en plantas de mandarina variedad Satsuma del fundo del programa de Frutales del departamento de Horticultura de la Facultad de Agronomía. Se usó el producto comercial Tracer bajo distintas dosis, comparándolo con un control de GF120 a dosis recomendada por SENASA incluyendo un tratamiento testigo sin aplicación alguna. Las unidades experimentales fueron ramas individualizadas por medio de un soporte de madera cuadrícular con aristas de 50 cm forrado con malla tul, en el cual se introdujeron 10 moscas diarias para simular una condición natural de infestación en campo y así poder determinar la cantidad de días en el que cada tratamiento es efectivo. Como resultado se obtuvo que ningún tratamiento de Spinosad y proteína hidrolizada es mejor que la dosis recomendada de GF120. También se determinó la cantidad de días que el GF120 es efectivo en campo bajo las condiciones de marzo - abril del 2016 en La Molina, además de características relevantes del comportamiento de la mosca de la fruta.

Palabras clave: (Key words) : Spinosad, C.capitata, Tracer, GF120.
I. INTRODUCCIÓN

La moscas de la fruta de la familia Tephritidae representan una gran amenaza al desarrollo agrícola nacional dado que es considerada una plaga cuarentenaria en todos los países de destino de nuestra producción frutícola. Entre ellas se tiene a Ceratitis capitata Wiedemann y Anastrepha spp. Siendo entre ellas la mosca del mediterráneo Ceratitis capitata la más perjudicial de todas debido a su capacidad de oviposición, de adaptación a condiciones medioambientales adversas y a su distribución a nivel mundial. Además, es de hábito polífago que infesta a muchas especies comerciales (se registran hasta ahora a 64 especies de frutales hospederos en nuestro país) e infesta directamente el producto comercial, haciéndolo inservible para su comercialización. Al infestar, para poder alimentarse y completar su ciclo biológico, la larva se introduce dentro del fruto quedando protegido de todos los tipos de control químico posibles de usar. Por esto, C. capitata es una de las plagas más difíciles de controlar y el control va dirigido hacia los adultos.

Los mercados internacionales poseen una demanda creciente de alimentos libres de trazas de productos agrícolas utilizados en su manejo, y existe una creciente preferencia por productos agropecuarios obtenidos por métodos no convencionales u orgánicos, o formas de producción con utilización mínima de pesticidas o su uso reglamentado.

Por tanto, el uso de insecticidas ambientalmente amigables y de corta residualidad como los que son base de Spinosad, es cada vez más común.

Los insecticidas a base de Spinosad representan una muy eficaz vía de control para plagas agrícolas y domésticas; debido a la clasificación orgánica que se le atribuye, es factible aplicar estos insecticidas en árboles en cualquier momento de su ciclo fenológico, pero no se recomienda aplicarlo durante fructificación debido a que es posible que manche los frutos, arruinando el valor comercial de la fruta.

Sin embargo en el mercado se pueden encontrar estos plaguicidas a precios elevados, como es el caso del GF120, esto origina que agricultores frutícolas de bajo presupuesto decidan no incluir el control químico para reducir la infestación de mosca de la fruta, lo cual en muchos casos significa no realizar control alguno. Dado que este insecto es una plaga cuya
presencia puede originar graves problemas para la exportación, resulta necesario investigar distintas opciones para su control.

Incluso existen muchas especulaciones sobre la obligatoriedad por parte del Servicio Nacional de Sanidad Agraria (SENASA) hacia los agricultores del valle de Chao y del valle de Virú al uso del GF120, esto debido a que el SENASA al encontrar niveles de infestación superiores a sus metas o controles para un área determinada, en este caso era un índice mayor a 0.1 MTD (moscas por trampa por día), notificaba a los agricultores a realizar labores de control pero bajo esa premisa: obligación al uso del GF120.

La realización de la presente tesis está también enfocada en la intención de encontrar alternativas al uso del GF120 como control químico para la mosca de la fruta.

El presente trabajo trató de demostrar la posibilidad de abaratar costos al usar Tracer (un producto insecticida a base de Spinosad) mezclado con proteína hidrolizada, ésta último por su función de atrayente alimenticio, dando efectos positivos para el control de la mosca de la fruta sin embargo el Spinosad no logró superar al tratamiento estándar de GF120 (dosis recomendada por SENASA). Aún así, permitió reconocer el mejor tratamiento al variar las dosis de Tracer para poder recomendar una frecuencia de aplicación.
II. REVISIÓN DE LITERATURA

3.1 LA MANDARINA (*Citrus unshiu*):

Los cítricos, entre ellos la mandarina, alcanzan su máximo desarrollo en las áreas subtropicales (30-40° latitud norte sur) donde su producción es estacional y la calidad del fruto para el consumo en fresco es excelenete. La producción mundial de mandarinas muestra un ritmo de crecimiento más dinámico que el de las naranjas (países comprendidos: Estados Unidos, México, España, Portugal, Italia, China, Corea, Japón, Egipto, Israel, Turquía, Chile, Argentina, Australia). En cuanto a los principales mercados de consumo, entre los más importantes se tiene a los países del norte de Europa, en especial Alemania, Austria, Francia, Reino Unido, Noruega, Finlandia, Suecia, Suiza, Rumanía, Hungría, Polonia, Eslovaquia, República Checa, Lituania, Croacia, y el resto de países en épocas de contra estación, a la que se pueden sumar Japón y China. Asimismo, tenemos a los antiguos miembros de la ex Unión Soviética como Rusia, Ucrania, Bielorrusia, en América se tiene a Canadá y más de diez estados del norte de los Estados Unidos. (MINAGRI, 2014)

3.2 SITUACIÓN COMERCIAL

El Perú es el primer productor de mandarina en la región (Sudamérica) al desplazar a Argentina, país que ocupaba este lugar hasta el año pasado.

Durante el año 2014 la producción peruana fue de 351 mil toneladas de mandarina, siendo las provincias de Huaral y Cañete en la región Lima las áreas de mayor producción, seguidas por Ica y Junín. En los últimos años la producción nacional anual ha crecido en 5
por ciento. Del total producido el 75% se destina al mercado nacional, sin embargo, el consumo per cápita de esta fruta aún es bajo.

En América Latina el consumo por persona es de 20 kilos, mientras que cada peruano consume unos 10 kilos al año. También indicó que el mayor porcentaje de cosecha de mandarinas se registra entre los meses de abril y agosto.

Los principales países destino de la mandarina peruana son: Estados Unidos, Reino Unido, Países Bajos, Canadá y Rusia, entre otros. (RPP, 2015)

Cuadro 1: Estacionalidad de la mandarina de los países productores.

<table>
<thead>
<tr>
<th>País</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
</tr>
</thead>
<tbody>
<tr>
<td>España</td>
<td></td>
</tr>
<tr>
<td>Estados Unidos</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Sudáfrica</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
</tr>
<tr>
<td>PERU</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: MINAGRI
3.3 PRODUCCIÓN NACIONAL:

2.3.1 Época de cosecha

En cuanto a las épocas en las que se realiza la cosecha de mandarinas, si bien en general estas se realizan durante todo el año, debido a la diversidad de microclimas en las tres regiones del Perú, sin embargo el grueso de la cosecha está concentrada entre los meses de abril y agosto, los que suman alrededor del 82% del total cosechado en el año 2015.

Fuente: MINAGRI (2015)

Figura 1: Calendario de Cosecha de Mandarina Nacional.

2.3.2 Exportación:

La exportación de Mandarinas en el 2015 a Agosto alcanza los U$ 59 millones con un incremento del 46% sobre el 2014. Los precios suben 4% a los U$ 1.19 kilo promedio.
<table>
<thead>
<tr>
<th>MES</th>
<th>2014</th>
<th>KILOS</th>
<th>FOB</th>
<th>PROM</th>
<th>2013</th>
<th>KILOS</th>
<th>FOB</th>
<th>PROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEBRERO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARZO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABRIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAYO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JULIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGOSTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPTIEMBRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCTUBRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOVIEMBRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICIEMBRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRECIMIENTO ANUAL</td>
<td>22%</td>
<td>1%</td>
<td>23%</td>
<td>1%</td>
<td>22%</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROM. MES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CRECIMIENTO ANUAL</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: SUNAT
Cuadro 3: Principales Empresas Peruanas Exportadoras de Mandarina 2015. (Miles de Dólares FOB)

<table>
<thead>
<tr>
<th>Principales Empresas Exportadoras</th>
<th>Valor</th>
<th>% Participación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procesadora Laran S.A.C.</td>
<td>26 728</td>
<td>33.6</td>
</tr>
<tr>
<td>Consorcio De Productores De Fruta S.A.</td>
<td>8 438</td>
<td>10.6</td>
</tr>
<tr>
<td>Cía. De Exp. Y Negocios Generales S.A.</td>
<td>8 183</td>
<td>10.3</td>
</tr>
<tr>
<td>Camposol S.A.</td>
<td>5 904</td>
<td>7.4</td>
</tr>
<tr>
<td>Corporacion Fruticola De Chincha S.A.C.</td>
<td>3 811</td>
<td>4.8</td>
</tr>
<tr>
<td>Agrícola Norsur S.A.C.</td>
<td>3 533</td>
<td>4.4</td>
</tr>
<tr>
<td>Procesadora Torre Blanca S.A.</td>
<td>3 342</td>
<td>4.2</td>
</tr>
<tr>
<td>Empacadora y Procesadora Huamani S.A.C.</td>
<td>2 482</td>
<td>3.1</td>
</tr>
<tr>
<td>Casa Chica S.A.C.</td>
<td>1 814</td>
<td>2.3</td>
</tr>
<tr>
<td>Complejo Agroindustrial Beta S.A.</td>
<td>1 631</td>
<td>2.1</td>
</tr>
<tr>
<td>Sociedad Agrícola Arona S.A.</td>
<td>1 240</td>
<td>1.6</td>
</tr>
<tr>
<td>Sterling Peru S.A.C.</td>
<td>1 228</td>
<td>1.5</td>
</tr>
<tr>
<td>Fundo Santa Patricía S.A.</td>
<td>1 120</td>
<td>1.4</td>
</tr>
<tr>
<td>Agrícola Andrea S.A.C.</td>
<td>948</td>
<td>1.2</td>
</tr>
<tr>
<td>Agrícola Las Marías S.A.C.</td>
<td>773</td>
<td>0.9</td>
</tr>
<tr>
<td>Otras empresas</td>
<td>8 334</td>
<td>10.5</td>
</tr>
<tr>
<td>Total exportado al mundo 2015</td>
<td>79 508</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: Aduanas - Perú.

2.3.3. Fenología de la Mandarina

Según CONAFRUT (1996), todas las variedades comerciales de cítricos, por lo general tienen en el año dos ciclos de crecimiento. El ciclo de primavera es una combinación de crecimiento vegetativo con la diferenciación floral. El ciclo de verano es básicamente crecimiento vegetativo. Los brotes terminales emergen con 3 a 9 hojas en cada brote que se expanden casi simultáneamente. El número de brotes y hojas en cada brote dependen
básicamente de la edad y el vigor de la planta. Existe poca diferencia en la composición mineral de dos hojas próximas una de otra en un brote no frutero.

El desarrollo de frutos, sin embargo modifica la composición de las hojas en un árbol cítrico, usualmente forma de 2 a 4 ciclos de hojas que crecen en forma simultánea. Una yema terminal declina al terminar de crecer y nuevos brotes o yemas florales emergen de yemas axilares.

2.3.5 Moscas de la Fruta:

Las moscas de la fruta es un grupo de plagas muy perjudicial en muchos países debido a su potencial para causar daño en frutas y restringir el acceso a los mercados internacionales. La alta probabilidad de entrada de estas plagas relacionadas con una gran variedad de hospedantes da como resultado las restricciones impuestas por parte de muchos países importadores para aceptar frutas provenientes de áreas en donde estas plagas se han establecido. (Diaz, 2006).

Estos insectos son muy dinámicos, con un poder de adaptación extraordinario, que han encontrado en los huertos frutícolas las condiciones óptimas para su desarrollo y multiplicación masiva. De acuerdo con las exigencias del medio ambiente, se desplazan entre un hospedero y otro (Hernández-Ortiz, 1997). En los trópicos completan de esta manera hasta más de 10 generaciones al año, manteniendo niveles de población elevados (Aluja, 1999).

Cuando un hospedante preferido desaparece, migran a otro que les permita completar una nueva generación. A veces infestan simultáneamente tres o cuatro hospedantes cuando estos coinciden en su época de fructificación. Aun así, algunas especies se caracterizan por preferir cierto tipo de fruto o familia de estos (Gutiérrez, 1976).

La baja humedad en los suelos provoca la pérdida de individuos, debido a que no hay un desarrollo completo en la pupa, dando origen a individuos deformes o a la muerte de los mismos en la emergencia; una elevada humedad en el suelo causa una baja viabilidad de las pupas y la muerte de las mismas. Es por esto, las moscas de la fruta son raramente encontradas en lugares extremadamente secos. (Baker et al., 1944).

El factor determinante para la regulación de la duración del ciclo de vida es la temperatura, y de esta depende el número de generaciones por año. En general, las moscas de la familia Tephritidae se desarrollan entre 10 °C y 30 °C. La fecundidad también se ve afectada, por
la temperatura, encontrándose la máxima producción de huevos entre 25 °C y 30 °C (Fletcher y Kapatos, 1983).

Los adultos son más resistentes porque soportan altas temperaturas. En algunas especies tropicales durante el invierno es normal el agrupamiento de adultos en el follaje de árboles que proveen refugio y alimento. La luz influye en las actividades de alimentación y oviposición y es el factor más importante en la sincronización del comportamiento de cópula. (Bateman, 1972)

SENASA en el año 2011 registró en el Perú a 36 especies de moscas de la fruta, 35 nativas y 1 introducida.
Cuadro 4: Especies de mosca de la fruta registradas en el Perú.

<table>
<thead>
<tr>
<th>No.</th>
<th>Nombre Científico</th>
<th>Nombre Vulgar</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anastrepha alveata Stone</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>2</td>
<td>Anastrepha atrox (Aldrich)</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>3</td>
<td>Anastrepha bahiensis Lima</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>4</td>
<td>Anastrepha barnesi Aldrich</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>5</td>
<td>Anastrepha cryptostrepha Hendel</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>6</td>
<td>Anastrepha curtis Stone</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>7</td>
<td>Anastrepha chilcayae Greene</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>8</td>
<td>Anastrepha dissimilis Stone</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>9</td>
<td>Anastrepha distans Hendel</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>10</td>
<td>Anastrepha distincta Greene</td>
<td>Mosca del Pacae</td>
<td>Nativa</td>
</tr>
<tr>
<td>11</td>
<td>Anastrepha hermosa Norrbom</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>12</td>
<td>Anastrepha fraterculus (Wiedemann)</td>
<td>Mosca Sudamericana de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>13</td>
<td>Anastrepha freidbergi Norrbom</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>14</td>
<td>Anastrepha grandis (Macquart)</td>
<td>Mosca Sudamericana de las Cucurbitáceas</td>
<td>Nativa</td>
</tr>
<tr>
<td>15</td>
<td>Anastrepha kuhlmanni Lima</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>16</td>
<td>Anastrepha lambda Hendel</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>17</td>
<td>Anastrepha lanceola Stone</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>18</td>
<td>Anastrepha leptozona Hendel</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>19</td>
<td>Anastrepha steyskali Korytkowski</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>20</td>
<td>Anastrepha macrura Hendel</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>21</td>
<td>Anastrepha manihoti Lima</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>22</td>
<td>Anastrepha montei Lima</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>23</td>
<td>Anastrepha nigripalpis Hendel</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>24</td>
<td>Anastrepha obliqua (Macquart)</td>
<td>Mosca de la Ciruela</td>
<td>Nativa</td>
</tr>
<tr>
<td>25</td>
<td>Anastrepha ornata Aldrich</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>26</td>
<td>Anastrepha pickeli Lima</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>27</td>
<td>Anastrepha schultzi Blanchard</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>28</td>
<td>Anastrepha serpentina (Wiedemann)</td>
<td>Mosca de los Zapotes</td>
<td>Nativa</td>
</tr>
<tr>
<td>29</td>
<td>Anastrepha pseudoparallela (Loew)</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>30</td>
<td>Anastrepha shannoni Stone</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>31</td>
<td>Anastrepha sororcula Zucchi</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>32</td>
<td>Anastrepha striata Schiner</td>
<td>Mosca de la Guayaba</td>
<td>Nativa</td>
</tr>
<tr>
<td>33</td>
<td>Anastrepha tecta Zucchi</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>34</td>
<td>Anastrepha turicai Blanchard</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>35</td>
<td>Anastrepha willei Korytkowski, sp.n.</td>
<td>Mosca de la Fruta</td>
<td>Nativa</td>
</tr>
<tr>
<td>36</td>
<td>Ceratitis capitata (Wiedemann)</td>
<td>Mosca del Mediterráneo</td>
<td>Introducida</td>
</tr>
</tbody>
</table>

FUENTE: Díaz (2011)
2.3.6 Ceratitis capitata:
Se le considera la plaga más seria en cítricos y demás frutales, en la mayoría de regiones del mundo: templado, tropical o subtropical. Es nativa de África Sub-sahariana, y luego se esparció por el sur de Europa, Oriente Medio, Australia occidental y por último a América del centro, Sudamérica y Norteamérica (EPPO, 2011).

Taxonomía:

Características:

Según López et al. (2010) explica que es una mosca que posee un típico y característico diseño de marcas en las alas y scutum; tiene el tamaño de un tercio menor a la mosca casera, de color café, casi negro y con marcas de color marfil con negro brillante en la parte dorsal del tórax. Escutelo negro con una banda de marfil ondulada cerca de la base. Alas anchas y cortas, transparentes; con manchas en la parte basal y apical; de color café amarillento, blanco y negro.

![Ceratitis capitata](image)

FUENTE: (López et al. 2010)

Figura 2: Ceratitis capitata (Wiedemann). Vista de: Adulto (a), tórax (b), Vista del ala (c)
Dimorfismo sexual:

La hembra es de mayor tamaño y especialmente se diferencia del macho por tener un prominente ovicapto (ovipositor). Además el macho posee un par de setas postoculares spatuladas de color negro en la cabeza. (Alfaro et al., 1998).

![Imagen de Ceratitis capitata](link)

FUENTE: (Alfaro et al., 1998)

Figura 3: Adultos de *Ceratitis capitata* (Wiedemann). Hembra (izquierda), Macho (derecha).

Comportamiento:

Las moscas de la familia Tephritidae son de metamorfosis Holometábola o completa, es decir posee 4 estadíos: huevo, larva, pupa y adulto. De los cuales, los cuatro poseen características bien definidas para desarrollarse en diferentes medios. El huevo y larva se desarrollan en la pulpa de la fruta, mientras que la pupa debe de desarrollarse en el suelo; posteriormente el adulto emergirá y podrá volar libremente. (Aluja, 1999).

Las moscas hembras adultas ovipositan en el interior de las frutas, generalmente en racimos. Unos días después las larvas salen del corión para alimentarse y desarrollarse dentro de la fruta, en donde realizan galerías internas; dejando a su paso excrementos que ocasionan la descomposición de los frutos y por tanto la caída prematura de los mismos. Después de mudar de piel, salen de las frutas realizando orificios con sus diminutas mandíbulas y se dejan caer al suelo, introduciéndose en él (suelo) para empupar. Cuando las condiciones del clima son favorables, el adulto presiona el puparium, lo rompe y luego de estirar las patas y alas, sale a la superficie del suelo. Después de varias horas, cuando el exoesqueleto se encuentra perfectamente endurecido, vuela a las copas de los árboles e
inicia sus actividades como adulto. Luego de emerger, el adulto inicia la búsqueda de alimento, ya que las hembras requieren sustancias proteínicas para madurar sus órganos sexuales. Dicho alimento se encuentra en la savia exudada de los árboles, mielecillas secretadas por insectos, néctar de flores, excremento de aves, entre otros. Cuando los huevos se hallan completamente maduros, la hembra busca el sustrato alimenticio adecuado (generalmente un fruto) para el desarrollo de las larvas. Una vez realizada la oviposición, la mosca arrastra su ovipositor alrededor del lugar de postura, secreando una feromona denominada “De Marcaje”, la que anuncia a sus congéneres y a otras especies que allí se encuentra una oviposición. El adulto vive entre 1 a 2 meses, según las condiciones ecológicas, aunque puede prolongar su vida hasta por 10 meses en zonas templadas frías (Aluja, 1999).

FUENTE: (León et al., 2007).

Figura 4: Ciclo biológico de Ceratitis capitata (Wiedemann)

Las moscas adultas, después de dos a cinco días de emergencia, alcanzan la madurez sexual y proceden a una serie de eventos para continuar con la reproducción de su especie. Los machos se concentran en algún punto referencial del árbol frutal, formando un agrupamiento de moscas conocido como leks que danzan en forma rítmica, liberando una feromona sexual para atraer a las hembras que se encuentran en los alrededores. (Rodríguez et al., 1997)
Ciclo biológico:

La especie *Ceratitis capitata* Wiedemann se desarrolla entre 17 a 33 días, desde que la hembra oviposita hasta la emergencia del adulto. Transcurren entre 2 a 7 días en el estadio de Huevo, luego se desarrolla como larva dentro del fruto por 6 a 11 días y por última en el estadio de pupa tarda de 9 a 15 días.

Una hembra adulta oviposta durante su vida entre 300 a 800 huevos. Además la mosca de la fruta puede llegar a 12 generaciones (hasta más de 12) por año, dependiendo de las condiciones meteorológicas. (MOSCAFRUT, 2015).
Dinámica poblacional en La Molina:

Se han determinado cuatro especies de moscas gracias al trabajo de Bernardo (2014) por medio del uso de trampas McPhail. En el período de marzo de 2011 a febrero de 2012, se obtuvieron los siguientes datos.

Cuadro 5: Número de individuos, por especie, de la Mosca de la Fruta.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>Total de individuos capturados</th>
<th>Porcentaje de captura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceratitis capitata (W.)</td>
<td>17296</td>
<td>88.02</td>
</tr>
<tr>
<td>Anastrepha fraterculus (W.)</td>
<td>2331</td>
<td>11.86</td>
</tr>
<tr>
<td>Anastrepha distincta (G.)</td>
<td>23</td>
<td>0.12</td>
</tr>
<tr>
<td>Anastrepha serpentina (W.)</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>19561</td>
<td>100</td>
</tr>
</tbody>
</table>

FUENTE: Bernardo (2014)

Figura 5: Número de individuos mensual de *Anastrepha sp.* y *Ceratitis capitata*. En el período de marzo del 2011 - febrero del 2012. La Molina

Daños:

- Daño directo al producto comercial: La picadura de oviposición deja una mancha amarilla en la cáscara. La larva que se desarrolla dentro de la pulpa, por las galerías que realiza fomenta la pudrición del fruto, ocasionando que éste se caiga, siendo éste uno de los síntomas visibles de su daño. (Salazar, 1999)

- Se registran los siguientes hospedantes de *Ceratitis capitata* para el Perú: Aceituna (*Olea europea*), Aji (*Capsicum frutescens*), Araza (*Eugenia stripitata*), Cafè (*Coffea arabica*), Caigua (*Cyclantera pedata*), Caqui (*Diospyros kaki*), Caimito (*Chrysophyllum cainito*), Carambola (*Averrhoa carambola*), Cereza (*Prunus cerasus*), Ciruela (*Spondia spp.*), Cocona (*Solanum spp*), Corroto (*Pasiflora foetida*), Chañal
(Geoffroea decorticans), Chirimoya (Annona cherimolia), Damasco / Albaricoque (Prunus armeniaca), Dátil (Phoenix dactylifera), Falso Almendro (Terminalia catappa), Granada (Punica granatum), Granadilla (Passiflora ligularis), Guanábana (Annona muricata), Guayaba (Psidium guajava), Higo (Ficus carica), Lima dulce (Citrus limetta), Limón cravo (Citrus limonia), Limón dulce (Citrus limettioides), Limón rugoso (Citrus jambuhiri), Litchi (Litchi chinensis), Lúcuma (Lucuma obovata), Mamey (Mammea americana), Mandarina (Citrus spp), Mango (Mangifera indica), Mangostino (Garcinia mangostana), Manzana (Malus sylvestris), Maracuyá (Passiflora edulis), Marañón (Anacardium occidentalis), Melocotón / durazno (Prunus persica), Melón (Cucumis melo), Membrillo (Cydonia oblonga), Mora (Morus nigra), Naranja china (Fortunella sp.), Naranjo agrio (Citrus aurantium), Naranjo dulce (Citrus sinensis), Níspero (Eriobotrya japonica), Nogal (Juglans regia), Pacae / Guaba (Inga spp), Palta (Persea americana), Papaya (Carica papaya), Pecano (Carya illinoensis), Pepino dulce (Solanum muricatum), Pera (Pyrus communis), Pimiento/Páprika (Capsicum annum), Pomarrosa (Eugenia spp.), Pomelo (Citrus maxima), Rocoto (Capsicum pubescens), Sandía (Citrullus lanatus), Tangerina (Citrus reticulata x Citrus paradisi), Taperiba (mango-ciruelo) (Spondia cytherea), Toronja (Citrus paradisi), Tomate (Lycopersicum sculentum), Tumbo costeño (Passiflora quadrangularis), Tuna (Opuntia spp), Uva (Vitis vinifera), Zapallo (Cucurbita pepo), Zapote (Achras sapota). Fuente: Díaz (2006)

Importancia económica:

La mosca de la fruta es una plaga muy importante debido a su condición Cuarentenaria en los países de destino de la producción frutícola nacional, además se presenta, como huésped, en una enorme y cada vez mayor cantidad de frutales. Por tanto, su impacto económico tanto como en las medidas de control y daños realizados es muy elevado.

Se calcula que los daños provocados ascienden en 100 millones de dólares al año para los productores nacionales.

Por ejemplo: El Servicio Nacional de Sanidad Agraria en el año 2013, en el programa de Erradicación de mosca de la fruta, gastó 170.7 millones de soles. (SENASA, 2013).
Además el costo para el control de esta plaga que asumen los productores – exportadores es bastante alto, por ejemplo: Para la exportación de cítricos a países donde esta plaga se considera que está extinguida, como es el caso de Estados Unidos, las partidas sufren una inspección y un tratamiento de frío, previamente pactado con los servicios de inspección, que impide la supervivencia de larvas. (Soivre, 1994)

Control:

Wille (1957) afirma que la mosca mediterránea de la fruta se ha extendido por todo el país. Desde que fue detectada por primera vez en la ciudad de Huánuco en 1956, introducida desde Brasil, Se han desarrollado e implementado diversas estrategias y métodos de control de la infestación de *Ceratitis capitata*.

Según Cisneros (1995), las estrategias y métodos de control de cualquier plaga agrícola se clasifican en Control Mecánico, Control Físico, Control Cultural, Control Biológico, Control químico, Control Etológico, Control Genético, Control Legal y Manejo Integrado de Plagas.

- **Control Mecánico:**

 Destrucción de los residuos de cosecha: Durante el período de cosecha se deben recoger todos los frutos de los árboles, sanos e infestados. Las frutas muy pequeñas o que no tienen valor, de no ser recogidas en su totalidad sirven de alimento a nuevas generaciones de la plaga. Esta fruta que carece de valor deberá ser eliminada, ya sea incinerándola o enterrándola. Si la fructificación es irregular, se debe proceder a revisar detalladamente con el fin de que no queden frutos en los árboles. Debe recogerse la fruta en forma diaria como una práctica de rutina o máximo cada 2 ó 3 días; de esta manera se impide que las larvas salgan de los frutos infestados que se encuentran en el suelo y así ya no culminan su ciclo biológico. Estos despojos de la cosecha en el caso de ser enterrados, deben ser colocados en hoyos lo suficientemente profundos para que no exista la posibilidad de que los adultos logren emerger. La manera adecuada de lograrlo es aplicar el insecticida, triturar la fruta y luego se procede a cubrir con tierra. (Sánchez, 2003).
MOSCAMED (1983) expone que el agricultor debe recoger toda la fruta de sus árboles, esté sana o infestada. Dejar las que "no tienen valor" es dejar alimento para que las moscas se reproduzcan y le sigan haciendo daño a su propia fruta infestada y caída. Si se deja en el suelo la fruta caída, las larvas salen de ella, se introducen al suelo, empupan y luego de unos días sale la mosca adulta. La fruta que se recoge debe ser enterrada o destruida por el fuego. Cuando se entierra, debe hacerse en hoyos convenientemente profundos que no permitan la emergencia o salida de los adultos; para esto se aplica insecticida, luego se tritura la fruta, para terminar cubriendo con tierra, bien apisonada. En caso de una chacra (terreno de cultivo) de muchos árboles se debe de hacer hoyos por cada 15 a 20 árboles para luego depositar la fruta y seguir el mismo procedimiento.

- **Control físico:**

En 1988 se realizaron pruebas de tratamiento hidrotérmico en mango, como medida cuarentenaria con fines de exportación; lo cual fue subvencionado por el Instituto de Comercio Exterior (ICE). A partir de ese momento todo el mango peruano para exportación necesita de tratamiento hidrotérmico. (Rodríguez, 1998).

- **Control Cultural:** (Sánchez, 2003).

Poda: Los árboles frutales que no necesitan de una poda especial, deben recibir una poda sanitaria, con la finalidad de eliminar las ramas muy bajas, que permita el ingreso de los rayos solares, con lo cual además se obtienen una mayor aireación, además facilita las aplicaciones para esta y otras plagas. Si además de la poda se procede también con la eliminación de las hojarascas de la base de los árboles, se aumenta el porcentaje de éxito en la lucha contra la mosca de la fruta, puesto que se reduce el microclima favorable para que complete su ciclo. Cabe destacar que un follaje abundante (sombra) es favorable para las moscas en busca de refugio.

Cultivo trampa: Sobre todo en cultivos de áreas pequeños, es posible la presencia de un frutal que sea más atractivo para la mosca de la fruta, lo cual se puede determinar mediante el trampeo. Esto con la finalidad de controlar en estos focos a la plaga en
forma más intensiva. Por ejemplo en los valles frutícolas del norte del Perú, el mango generalmente se encuentra asociado a las plantas de ciruela (*Spondias* spp.), que resultan más atractivas a las moscas de la fruta, concentrando el agricultor la aplicación de cebos tóxicos en la ciruela.

Control Biológico:

Entre los controladores biológicos que afectan a la mosca de la fruta, se tienen a los parasitoides, predateores y enfermedades. Los predateores más comunes son las hormigas y otros insectos que se alimentan de larvas (Carabidae, Forficulidae), arañas, lagartijas y aves que capturan adultos. (Sánchez, 2003).

Diachasmimorpha longicaudata solo parasita larvas de la mosca del segundo y tercer estadios; busca las frutas infestadas en el árbol o aquellas que se encuentran en el suelo. A pesar que los controladores biológicos desempeñan un rol muy importante en otros cultivos, no es así en el caso de las moscas de la fruta, debido principalmente a su comportamiento de oviposición y alimentación de las larvas de esta plaga. (Sánchez, 2003).

Sistemas de Trampeo (Martinez-Ferrer,2012), (Bernabé, 1998) y (Gutiérrez, 2013): Existen diferentes tipos de trampas, algunas solo para detección y otras como medidas de control. Entre las cuales se puede nombrar a: Trampa Mc Phail, Jackson, Pegante amarillas y Fase IV o Seca, Delta, Steiner, Harris, Tablero. Siendo las 4 primeras las más comunes para el control de la mosca de la fruta.

Trampa Mc Phail: Es una botella de vidrio invaginada en cuyo interior se encuentra el atrayente líquido. El insecto al ingresar, entrará en contacto con el
líquido y no podrá escapar. Es conveniente por la gran variedad de atrayentes que se pueden usar, pero su dificultad se encuentra en su mantenimiento y en el costo que implicaría en convertirlo en una herramienta de control y no solo de detección.

Figura 6: Trampa Mc Phail.
FUENTE: SENASA

- **Trampa Jackson y Delta:** Son trampas en donde el insecto queda atrapado al contacto con una sustancia pegajosa, se usa además un atrayente sexual llamado Trimedlure.

Figura 7: Trampa Jackson
FUENTE: SENASA
- **Trampa seca o fase IV:** (Usado en Guatemala) Está compuesta por un cartón parañado verde cilíndrico con tres perforaciones circulares, en la parte superior se coloca una caja de petri para sujetar la trampa, en el otro extremo la trampa sujeta la laminilla de color verde con pegamento y en la parte interior del cilindro se coloca los 3 atrayentes específicos: Trimetilamina, Putrecina y Amonio. Su ventaja se encuentra en que puede capturar en mayor proporción a hembras que a machos.

![Trampa Seca](image)

Figura 8: Trampa Seca

Fuente: Moscamed Guatemala

- **Trampa Panel amarillo:** es un panel de cartón amarillo brillante (23cm x 14cm) al que se le adhiere una sustancia pegajosa.

![Trampa Panel Amarillo](image)

Figura 9: Trampa Panel Amarillo

Fuente: SENASA
• **Autocida o Técnica del Insecto Estéril** (Sánchez, 2003; Gilmore, 1989)

En la actualidad existen tres cepas de moscas estériles:

- La cepa normal, en la cual se esterilizan moscas nativas criadas en el laboratorio y se liberan tanto machos como hembras estériles.
- La cepa de color de pupa; por la cual mediante ingeniería genética se obtiene una cepa que se manifiesta en distinto color de pupa, en machos marrones y en hembras blanco; mediante una máquina fotosensible se separan machos y hembras, para liberar únicamente machos.
- La cepa TSL (tratamiento sexual letal), en la cual por ingeniería genética se selecciona una población nativa en la cual se obtiene el gen que determina el sexo y a este gen se le vuelve sensible a un cambio de temperatura en el cual mueren todas las hembras, mediante esta sepa se crían y multiplican únicamente machos.

• **Control químico.** Según Aluja (1993) Los insecticidas proporcionan la única medida práctica de control cuando las poblaciones de insectos se acercan al umbral económico. Tienen acción rápida en la prevención de daños económicos. Poseen amplio rango de propiedades, usos y métodos de aplicación, dependiendo de la situación particular.

Las moscas de la fruta son susceptibles a prácticamente cualquier insecticida. Sin embargo, el único producto autorizado para su control es el Malatió, el cual se combina con un atrayente alimentario y a la mezcla se le llama insecticida cebo. El Malatió es barato, posee una Dosis letal Media (DL 50) muy elevada y además efectos suaves sobre el medio si se usa racionalmente. Recalcando que Malatió es el producto recomendado por la Organización Mundial de la Salud por ser el más seguro para el hombre y el ambiente. (Cerpeda, 2008).

La mezcla es de acuerdo al tipo de aplicación; cuando se trata de aplicación terrestre se mezcla una parte de malatió 1000 E, cuatro partes de proteína hidrolizada y 95 partes de agua; esto se Aplica a una dosis de 15 a 350 ml. de mezcla por árbol; y cuando se trata de aplicación aérea se mezcla una parte de malatió y cuatro partes de proteína hidrolizada, aplicándose una dosis de 1:1 de mezcla por hectárea (CONASAG-SAGAR, 1992). Esta
combinación es más efectiva que el malatión solo, porque se aplica menor cantidad del producto y se reducen los costos de aplicación. Las aspersiones terrestres se hacen en bandas alternas, esto es, una hilera si y otra no, o bien se aplica con mancha matadora, que consiste en aplicar en cuatro partes del árbol aproximadamente 200 cc de la mezcla (López, 1994).

En España se utilizó en el año 1940 organoclorados como el DDT y el lindano, etc. (Gómez, 1952). Para luego ser sustituidos en los años 50 por organofosforados como el malatión, clortión, paración, diazinon, triclorfon, dimetoato, fentión, etc. con estas pulverizaciones se pretendía aprovechar el poder de penetración de los productos y su acción sobre las larvas de las moscas en el interior del fruto (Planès, 1956).

El componente importante dentro del manejo integrado de la mosca de la fruta, es el control químico por medio de aplicaciones de insecticida-cebo. Su aplicación oportuna permite, junto a los otros mecanismos de control, reducir al máximo los daños que estos insectos provocan a los productos frutícolas. (Aluja, 1993). Esta combinación de insecticidas y de un cebo para el control de la mosca de la fruta se viene utilizando desde principios del siglo XX. Hasta 1952 se utilizaron como cebos a los carbohidratos y las sustancias azucaradas, años después se usaron mezclas de ácidos grasos, aceites esenciales, etc. (Roessler, 1989)

La primera vez que se utilizó a la proteína hidrolizada como cebo fue en Hawai en 1952 para controlar a la mosca Bractocera dorsalis (Steiner, 1952). A partir de este momento, la combinación de proteína hidrolizada y Malatiôn se convirtió el cebo mayormente utilizado para el control de la mosca de la fruta.

Según el proyecto peruano MOSCAMED (1986), las aspersiones terrestres se hacen mediante un "cebo tóxico" al follaje de los árboles hospederos de las moscas. este cebo tóxico consiste de la mezcla de un "insecticida" más un "atrayente proteico" que atrae más hembras que machos adultos. Las gotas aplicadas en el follaje de los árboles conservan su atracción por varios días, reduciéndose ésta por efecto del clima (polvo, sol, lluvia, etc.).

Los insecticidas más comúnmente utilizados y recomendados por su baja toxicidad a las personas y al medio ambiente son los siguientes:
Lebaycid como concentrado emulsificable al 50%, o Malation como concentrado emulsificable al 57%

Los atrayentes más comúnmente utilizados y recomendados, no siendo tóxicos a las personas o medio ambiente, son los siguientes: Buminal o No-Lure.

Aspersiones en el suelo: Los insecticidas aplicados al suelo matan algunas larvas cuando penetran al suelo para pasar a pupas, y también mata a la mayoría de los adultos que salen de las pupas del suelo.

Estos tratamientos se pueden hacer como medida complementaria ya que son excesivamente caros y contaminantes.

En su lugar se recomienda rastillar periódicamente el suelo, volteando la tierra, para exponer a las larvas o pupas al sol.

En el caso de aplicaciones en líquido debe mojarse bien el suelo hasta unos 5 cm. De profundidad, y si se usan insecticidas granulados o en polvo debe mezclarse bien con el suelo mediante un rastillado.

Aluja (1993) también afirma que los mejores atrayentes son las proteínas hidrolizadas. Especialmente efectivas son las proteínas hidrolizadas derivadas de las de levadura, pero se usa también proteínas hidrolizadas de maíz, de semilla de algodón y otros derivados de la Industria de alimentos. Producto mucho menos atractivo y que puede además presentar problemas secundarios por la aparición de fumagina, es la melaza. Sin embargo, es muy común y accesible para mucha gente, por lo que no se debe rechazar definitivamente. Para aumentar su efectividad, se recomienda agregarle jugo de fruta fermentado y una porción de proteína hidrolizada. Todo se deja fermentar unos tres días y entonces se mezcla con el insecticida. Es importantísimo asperjar una mezcla homogénea para lo cual hay que agitar constantemente el producto o agregar un emulsificante. Si esto no se hace, el Malathión y el atrayente se sepan, provocando que primero se asperje el insecticida y luego la proteína, pudiendo causar daños al fruto o disminuyendo por completo la efectividad.

La mezcla debe ser aplicada mismo día que se preparó. Es recomendable hacerlo durante las primeras horas del día para evitar evaporación alta y, además para permitir que el personal pueda utilizar todo el equipo de protección sin verse afectado por las altas temperaturas.
• **Control Etológico:** Es la utilización de métodos de represión que aprovechan las reacciones de comportamiento de los insectos. El comportamiento está determinado por la respuesta de los insectos a la presencia u ocurrencia de estímulos que son predominantemente de naturaleza química, aunque también hay estímulos físicos y mecánicos. (Cisneros, 1995).

Bolsas matadoras: Son bolsas elaboradas de yute u otro material textil que en su interior contiene aserrín u otro sustrato que permita absorber y retener sustancias líquidas con viscosidad. Esta bolsa tiene una dimensión de 12 cm. de longitud por 8 cm. de ancho. Debe tener un gancho para ser colgada en el árbol a una altura del tercio medio superior y en una zona sombreada. Se sumerge la bolsa en una mezcla de proteína hidrolizada, insecticida y agua, 24 horas antes de colocarla en el árbol. Proteína hidrolizada 16cc - 40cc más Malathion 04cc - 10cc y Agua 950cc - 980cc (Sánchez, 2003).

Se puede preparar trampas caseras usando: botellas de plástico, gancho (de cualquier material) y una sustancia atrayente diluida en agua. Por ejemplo: El fosfato diamónico diluido en agua bajo condiciones de campo sufre un proceso de descomposición, emitiendo olores que actúan como atrayente de la mosca de la fruta. Entonces el adulto de la mosca ingresa a la trampa a través de los orificios de la botella y al no poder escapar cae en la solución atrayente donde muere por ahogamiento. (Sánchez, 2003)

• **Control legal:** Mediante el Decreto Supremo N 009 – 2000 – AG del Presidente de la República. Se aprueba el reglamento para el “Control, Supresión y Erradicación de las Moscas de La Fruta” El cual consta de 5 títulos, 5 capítulos, 37 artículos y 3 disposiciones complementarias. (SENASA,2013)

• **Programa de Erradicación de la Mosca de la Fruta:** el Servicio Nacional de Sanidad Agraria SENASA conduce un programa a nivel nacional para erradicar la plaga de la Mosca Mediterránea mediante distintos métodos.

SENASA: El Servicio Nacional de Sanidad Agraria – SENASA, es un Organismo Público Técnico Especializado Adscrito al Ministerio de Agricultura con Autoridad Oficial en materia de Sanidad Agraria, Calidad de Insumos, Producción Orgánica e Inocuidad agroalimentaria. El SENASA, mantiene un sistema de Vigilancia Fitosanitaria y Zoosanitaria, que protegen al país del ingreso de plagas y enfermedades que no se
encuentran en el Perú. Además de un sistema de cuarentena de plagas de vegetales y animales, en lugares donde existe operaciones de importación.

También desarrolla los Programas Nacionales de Moscas de la Fruta, Control Biológico y Fiebre Aftosa. Para esto, cuenta con veinticinco órganos desconcentrados, una sede central en la ciudad de Lima y periféricos en el puerto marítimo del Callao y el Aeropuerto Internacional Jorge Chávez. Además, brinda los servicios de inspección, verificación y certificación fitosanitaria y zoonotaria, diagóstica, identifica y provee controladores biológicos. Además registra y fiscaliza los plaguicidas, semillas y viveros; de igual manera, los medicamentos veterinarios, alimentos para animales, a los importadores, fabricantes, puntos de venta y profesionales encargados y emite licencias de internamiento de productos agropecuarios. (Portal web SENASA Perú).

Programa Nacional de Mosca de la Fruta: Las moscas de la fruta es uno de los mayores problemas de la fruticultura mundial, especialmente la *Ceratitis capitata* y la *Anastrepha spp.* Que ocasionan problemas sanitarios en la producción, calidad y comercialización de frutos y en los mercados nacionales e internacionales. Para prevenir este inconveniente, el SENASA ejecuta el Programa Nacional de Moscas de la Fruta encargado de implementar sistemas de detección y de manejo integrado, desarrollando métodos para la crianza artificial y liberación de moscas de la fruta estériles; introduciendo nuevos agentes que apoyen el control de la plaga.

Mediante el Programa Nacional de Control Biológico el SENASA busca una agricultura sin contaminación generando oferta y demanda de controladores biológicos, fomentando la formación de laboratorios de control biológico privados; a través de convenios de cooperación y asistencia técnica.

La Subdirección de Moscas de la Fruta y Proyectos Fitosanitarios, es la encargada de formular, establecer y supervisar las acciones de supresión y erradicación de las moscas de la fruta en áreas de producción comerciales y no comerciales, urbanas y suburbanas.

La Subdirección de Cuarentena Vegetal, es la encargada de formular, establecer y supervisar las acciones de protección cuarentenaria a través de los Puestos de Control Cuarentenarios, Oficinas de Certificación Fitosanitaria y Zonas de Tratamientos.
Área Libre de Plagas de Mosca de La Fruta: El establecimiento de un área Libre de Plagas de Mosca de la Fruta (ALP-MF) y su reconocimiento por los países con los cuales se mantiene relaciones comerciales implica que no se requerirán otras medidas fitosanitarias para los productos hospedantes de las especies objetivo de mosca de la fruta.

Es necesario que se cumplan una serie de requisitos establecidos por SENASA y por Normas Internacionales.

Es necesario mencionar, que dentro del Programa de Erradicación de mosca de la fruta, se encuentra la aplicación de insecticidas a base de Spinosad (generalmente el producto GF120, distribuido por la empresa Bayer S.A.C).

Estas aplicaciones se realizan en zonas frutícolas de pequeños agricultores que no pueden solventar dichos gastos y en zonas que geográficamente se encuentran en el área de control pero que no pertenecen a alguien exactamente o son de uso común.

Spinosad: El descubrimiento y la caracterización del actinomiceto del suelo *Saccharopolyspora spinosa* representó una novedosa oportunidad para desarrollar un portafolio de herramientas para avanzar en el manejo de insectos (Thompson *et al.* 1997, Sparks *et al.* 1998).

Spinosad es un metabolito secundario de la fermentación aeróbica de *S. spinosa* en un medio nutritivo. Después de la fermentación, el spinosad se procesa y se extrae de una suspensión acuosa convencional altamente concentrada para facilidad de distribución y uso. Spinosad es un sólido cristalino de color gris claro a blanco con un olor a tierra similar al del agua ligeramente estancada. Tiene un pH de 7.74, es estable en presencia de metales e iones metálicos durante 28 días, y como material formulado tiene una vida de anaquel de tres años. Se los considera no volátiles con presiones de vapor alrededor de 10^{10} mm Hg. (Kirst *et al.*, 1992)
Figura 10: Microfotografías electrónicas de barrido de *Saccharopolyspora spinosa* que muestran la superficie espinosa del actinomiceto (izquierda) y una vista de sección transversal del estado vegetativo (derecha).
FUENTE: Kirst et al., 1992

Figura 11: Espinosinas A y D, producidas por *S. spinosa*

Estructuralmente, estos compuestos son macrólidos y contienen un sistema único de anillos tetraciclicos al cual están ligados dos azúcares diferentes. Un modo de acción único, junto con un alto grado de actividad en las plajas objetivo y baja
toxicidad para los organismos que no son objetivo (incluyendo muchos artrópodos benéficos). (Carson, W. 1997).
<table>
<thead>
<tr>
<th></th>
<th>Espinosina A</th>
<th>Espinosina D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso Molecular</td>
<td>731.98</td>
<td>746.00</td>
</tr>
<tr>
<td>Fórmula Empírica</td>
<td>C_{42}H_{67}NO_{16}</td>
<td>C_{41}H_{65}NO_{16}</td>
</tr>
<tr>
<td>Punto de Fusión</td>
<td>84 - 99.5°C</td>
<td>161.5 - 170°C</td>
</tr>
<tr>
<td>Presión de Vapor</td>
<td>2.4 x 10^{-10}</td>
<td>1.6 x 10^{-10}</td>
</tr>
<tr>
<td>Solubilidad en Agua a pH 5.0</td>
<td>290 ppm</td>
<td>29 ppm</td>
</tr>
<tr>
<td>Solubilidad en Agua a pH 7.0</td>
<td>235 ppm</td>
<td>0.332 ppm</td>
</tr>
<tr>
<td>Solubilidad en Agua a pH 9.0</td>
<td>16 ppm</td>
<td>0.053 ppm</td>
</tr>
</tbody>
</table>

Coeficiente de Partición

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Octanol/Agua a pH 5.0</td>
<td>log P = 2.8</td>
<td>log P = 3.2</td>
</tr>
<tr>
<td>Octanol/Agua a pH 7.0</td>
<td>log P = 4.0</td>
<td>log P = 4.5</td>
</tr>
<tr>
<td>Octanol/Agua a pH 9.0</td>
<td>log P = 5.2</td>
<td>log P = 5.2</td>
</tr>
</tbody>
</table>
La degradación de spinosad en el medio ambiente ocurre mediante una combinación de rutas, principalmente fotodegradación y degradación microbial a sus componentes naturales: carbono, hidrógeno, oxígeno y nitrógeno. La vida media de spinosad degradado por fotólisis en el suelo es 9-10 días. Es menos de 1 día para fotólisis acuosa y la fotólisis en la superficie de la hoja resulta en una vida media de 1.6 a 16 días. La vida media de spinosad degradado por metabolismo aeróbico del suelo en ausencia de luz es 9-17 días. La hidrólisis no contribuye de manera significativa a la degradación ya que es relativamente estable en agua a pH de 5-7 y tiene una vida media de por lo menos 200 días a pH 9. El potencial de lixiviación es muy bajo debido al moderado K_d (5-323) (constante de distribución), a solubilidad moderada en agua y a una residualidad corta en el medio ambiente. Por tanto, cuando se usa de manera apropiada, no representa un riesgo para las aguas del suelo (Anónimo, 1996).

El modo de acción del Spinosad es ser antagonista de los receptores de la acetilcolina en el sistema nervioso central. Es poco afín con la enzima acetilcolinesterasa, obteniendo una lenta degradación y así hiper-exitar el sistema nervioso (Omoto,2003). Presenta una gran afinidad con los receptores de acetilcolina y en la neurona post- sináptica. Cuando la molécula de espinosad se fija sobre estos receptores permite la entrada continua de cationes, provocando excitación constante de la célula (Salgado, 1977). Por esto, los insectos presentan contracciones musculares involuntarias, postración con temblores, parálisis y por último la muerte. (Cleveland et al., 2001).

Según Vargas, Miller y Prokopy (2002), Spinosad es más preferido por las moscas de la fruta especie Ceratitis capitata, en comparación con Malathion y Phloxine B. Haciendo uso del mismo cebo proteico. Además se encontró que las moscas hembras eran más atraídas que los machos. También el Spinosad resultaba una opción ambientalmente amigable y que a concentraciones normales del producto no afectaba a la fauna benéfica.

Adán, Estal, Budia, González y Viñuela, E. (1996), mencionan que incluso Spinosad tiene un mayor número de larvas muertas de Ceratitis capitata expuestas a inmersión en comparación con el insecticida organofosforado Fenthion, bajo condiciones laboratorio.
Existen varios estudios de impacto del Spinosad a la fauna benéfica como el de Medina, Budia, Del Estal y Viñuela (2003) en donde se expuso a adultos del controlador *Chrysoperla carnea* a diferentes dosis del producto, en donde se sigue comprobando que Spinosad no afecta a la fauna benéfica.

GF-120:

- **Ficha ténica:**
 - Empresa formuladora: Dow AgroSciences LLC
 - Titular del registro: Dow Perú S.A.
 - Número de Registro: 099-SENASA
 - Concentración: 0,24 g de Spinosad/L.
 - Formulación: Cebo Concentrado (CB).
 - Uso: La dosis es 1,6 L/ha de GF-120* en 2,4 L de agua para cada 4 L/ha de mezcla total. Se recomienda una agitación constante o periódica de la solución para asegurar la uniformidad de la mezcla, especialmente durante la preparación de la dilución. El tamaño de gota debe ser de 4 – 6 mm para optimizar la cobertura y la distancia de atracción del cebo. Evitar condiciones climáticas que ocasionan deriva hacia áreas no blanco. Este producto puede perder efectividad si es expuesto a lluvia o irrigación.
 - Categoría toxicológica: Ligeramente Peligroso – Cuidado (Banda Azul).
 - Periodo de reingreso: 4 horas después de la aplicación.

- Según los estudios de Manrakhan (2011). Cataloga a GF120 como el producto comercial que tiene una mejor función atrayente para las moscas de la fruta, incluso específicamente *Ceratitis capitata* es la especie entre las moscas de la fruta que responde con mayor incidencia al poder atrayente del GF120.
Tracer:

- Ficha técnica:
 - Empresa formuladora: Dow AgroSciences LLC
 - Titular del registro: Dow Perú S.A.
 - Número de Registro: 100-SENASA
 - Concentración: 120 g de Spinosad/L.
 - Formulación: Suspensión Concentrada (SC)
 - Uso: Si el pH es demasiado ácido o alcalino afectará su desempeño, lo ideal es pH de 7 en la solución. No aplicar el producto en caso de posibilidad de lluvia.
 - Categoría toxicológica: Ligeramente Peligroso – Cuidado (Banda Azul).
 - Período de reingreso: 24 horas después de la aplicación.
III. MATERIALES Y MÉTODOS

3.1 LOCALIZACIÓN DEL EXPERIMENTO:
Av. La Molina s/n. Campo experimental del programa de Frutales del Departamento de Horticultura de la Facultad de Agronomía de la Universidad Nacional Agraria La Molina, La Molina, Lima. Perú.

3.2 LOCALIZACIÓN DEL ÁREA DE CRIANZA DE INSECTOS:
Se realizó en el laboratorio del Departamento de Entomología de la Facultad de Agronomía de la Universidad Nacional Agraria La Molina, La Molina, Lima. Perú.

3.3 MATERIALES Y EQUIPOS:

3.3.1 Para la obtención de individuos de Ceratitis capitata:
- Fruta infestada: Chirimoya (Annona cherimola) y Guayaba (Psidium guajaba). Preferentemente chirimoya, debido a que puede albergar mayor cantidad de larvas de mosca de la fruta.

- Cámaras adecuadas para crianza: cajas de poliestireno expandido (tecnopor) con tapa (ver: figura 12), la caja debe contener hasta 5 cms de altura de arena, en el medio de la caja se coloca una rejilla para que pueda soportar la fruta, pues debe existir un espacio entre la fruta y la arena que está en el fondo.
Figura 12: Envase de poliestireno expandido (tecnopor).

- Recipientes para recolectar y agrupar las pupas.

3.3.2 Para la experimentación:
- Plantas de mandarina (ramas).
- Malla antiáfida.
- Estructuras de madera.
- Engrapador.
- Grapas.
- Cola Blanca.
- Chinches.
- Hilo Pabilo, soguillas.
- GF120.
- Tracer.
- Proteína hidrolizada
- Agua.
- Jeringas de uso médico – veterinario de 20mL, 10 mL y 1 mL
- Envases medidores.
- Aspersores manuales.
- Botellas vacías de plástico de 3L
- Cartilla de evaluación.
- Lápiz.
- Cámara fotográfica.
• Letreros.
• Plumones.
• Equipo de seguridad personal para aplicación.

3.3.3 Para el análisis de datos:
• Software estadístico R versión 3.2.2.
• Software Microsoft Office Excel 2013.

3.4 METODOLOGÍA:

3.4.1 Armado de las cámaras de crianza
• Se colocó arena en las cajas de poliestireno expandido (tecnopor).
• Luego se colocó unas bases de cartón para poder soportar la rejilla, que a su vez soporta a la fruta infestada.

![Cámara de crianza confeccionada.](image)

Figura 13: Cámara de crianza confeccionada.

• Una vez colocada la fruta infestada, se necesita cerrar la caja para conservar estable temperatura pero dejando un pequeño espacio para que circule el aire y la humedad no aumente dentro de la caja. (Ver: figura 14)
3.4.2 Armado de las 22 cabinas enmalladas:

- Se armó un cubo de 50 cm de lado usando bastidores de madera (solo aristas, sin caras)
- Se forró el cubo con malla tipo tul (ver: figura 15). Se usó tachuelas para asegurarlo al cubo y luego se enrapó todos los bordes en línea corrida para evitar la salida de las moscas, al final se embadurnó con cola blanca todos los bordes del cubo (ver: figura 16).
Figura 15: Cabina con malla tipo tul

Figura 16: Cabina con malla tipo tul y cola blanca.

3.4.3 Crianza de las larvas de *Ceratitis capitata* Wiedemman para la obtención de pupas:
Por medio del Ingeniero Jesús Barrionuevo de SENASA, se me otorgó la ayuda necesaria para infestar la fruta y así obtener masivamente a los individuos en las instalaciones de el Programa de Producción de Moscas Estériles de SENASA, luego la mantención del núcleo de cria fue realizado íntegramente por mi persona.

Una vez ovipositada la fruta, se espera dos días para poder recogerlas de las instalaciones de SENASA. Luego, se coloca la fruta en las cámaras de crianza.

La fruta óptima a usar fue la Guanábana. Debido a que una guanábana de 150 gramos puede albergar 80 huevos de mosca de la fruta.

Pero, es necesario considerar que siempre existe un porcentaje de larvas muertas o con problemas de desarrollo: Solo el 80% de los huevos sobrevive como larva para luego salir de la fruta para empupar. Por último, solo un 95% de la cantidad de pupas logra desarrollarse en adulto. Por lo tanto, aproximadamente se obtienen 60 adultos de Ceratitis capitata de una Guanábana de 150 gramos.

Luego de 23 días de la oviposición, se obtuvieron las pupas y fue necesario clasificarlas según su color. Se Tiene: marrón oscuro, marrón rojizo y marrón claro. Las pupas marrón oscuro demoran 3 días más en emerger. Las pupas marrón rojizo demoran 4 días y las pupas marrón claro demoran 5 días.

Recolección de pupas: se colectaron las pupas de las cámaras y se colocaron en cabinas enmalladas adecuadas especialmente para este fin (cabinas que no son del experimento). (Ver figura 17).
Figura 17: Pupas recolectadas.

Distribución de tratamientos: Se distribuyó los tratamientos de forma aleatoria

Figura 18: cabinas enmalladas.
Figura 19: Cabinas enmalladas instaladas en los árboles de mandarina.

Figura 20: Cabinas enmalladas instaladas en los árboles de mandarina.
Figura 21: Foto del primer día de instalación de las cabinas.

Cuadro 7: Tratamientos y dosis respectivas usadas en el experimento.

<table>
<thead>
<tr>
<th>T.</th>
<th>DOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Testigo (ninguna aplicación)</td>
</tr>
<tr>
<td>2</td>
<td>1.6 L GF120/2.4L de Agua/ Ha</td>
</tr>
<tr>
<td>3</td>
<td>1.6 L GF120/18.4L de Agua/ Ha +3cc Prote. Hidrol</td>
</tr>
<tr>
<td>4</td>
<td>1.6 L GF120/18.4L de Agua/ Ha +6cc Prote. Hidrol</td>
</tr>
<tr>
<td>5</td>
<td>1.6 L GF120/18.4L de Agua/ Ha +9cc Prote. Hidrol</td>
</tr>
<tr>
<td>6</td>
<td>Tracer 0.1 ml/1L de Agua + 15 cc Prote. Hidrolizada</td>
</tr>
<tr>
<td>7</td>
<td>Tracer 0.2 ml/1L de Agua + 15 cc Prote. Hidrolizada</td>
</tr>
<tr>
<td>8</td>
<td>Tracer 0.3 ml/1L de Agua + 15 cc Prote. Hidrolizada</td>
</tr>
<tr>
<td>9</td>
<td>Tracer 0.4 ml/1L de Agua + 15 cc Prote. Hidrolizada</td>
</tr>
<tr>
<td>10</td>
<td>Tracer 0.5 ml/1L de Agua + 15 cc Prote. Hidrolizada</td>
</tr>
</tbody>
</table>
Consideraciones:

1. El producto GF120 generalmente se aplica a una hectárea bajo la forma de “desmanche” o de un solo chorro pequeño por árbol. Es decir los 4 litros (1.6 litros de GF120 más 2.4 litros de Agua) deben alcanzar para abarcar una hectárea. Es decir, para aplicar el tratamiento de GF120, se divide los 4 litros entre el número de árboles de una densidad promedio (400 árboles aproximadamente), resultando 10 ml por árbol. Por tanto, la boquilla se debe regular para poder aplicar 10 ml por chorro.

\[(1.6 \text{ Litros de GF120}) + (2.4 \text{ Litros de Agua}) = 4 \text{ Litros de mezcla insecticida.}\]

4 Litros de mezcla insecticida se usan para 1 hectárea.
Además, 1 hectárea tiene 400 árboles.
Entonces se divide: \[4 \text{ L} / 400 \text{ árboles} = 10 \text{ ml por árbol.}\]
Por lo tanto se debe de aplicar un chorro de 10 ml por árbol.

3.4.4 Liberación de las moscas en las cabinas enmalladas:

Luego de aplicar todos los tratamientos correspondientemente, se liberaron 10 adultos en cada cabina y diariamente se liberaron 10 adultos más. Todos los adultos liberados emergieron el mismo día, horas antes de la inoculación.

Mediante el uso de un tubo pequeño de plástico angosto sellado por uno de sus lados con una malla, a manera de sorbete, se aspiró con mucho cuidado las moscas. Así se tuvo mayor facilidad para el conteo de las 10 moscas diarias por cabina, además este método aseguró que no se escape ninguna mosca. (Ver: figura 22 y figura 23)

Es necesario recalcar que las moscas ingresan a las cabinas enmalladas sin haber consumido alimento alguno, esto debido a que así se obliga a los individuos a consumir el tratamiento aplicado. Resultando un análisis exacto del nivel de toxicidad al pasar los días bajo condiciones de campo y la disposición del insecto a querer consumir el tratamiento aplicado.
Diariamente se liberaban diez moscas diarias en cada cabina, pero las moscas de los días anteriores (muertas o vivas) no fueron retiradas de la cabina debido a que abrir para retirar (limpiar) las moscas del día anterior es una actividad con un alto riesgo de que se escapen los individuos y provocar problemas de repoblación de mosca de la fruta en el campo de cultivo o incluso la zona de La Molina.

Entonces, por ejemplo, si se liberó moscas por 6 días en una cabina enmallada, al final del experimento se obtienen 60 moscas muertas dentro de la cabina.

Pero, esto quiere decir que en algunos días se empezaba con un número de moscas vivas mayor a 10 (porque no siempre se moría el 100% de las moscas liberadas). Por tanto, para poder procesar los datos estadísticamente, se tuvo que usar los datos en porcentaje y usar el método de Corrección de Box y Cox.

Figura 22: Conteo y selección de las 10 moscas por medio del uso de un sorbete de plástico.
Figura 23: Sorbete plástico con 10 moscas en su interior.

3.4.5. Evaluación:
Diariamente se evaluó la cantidad de individuos muertos para poder determinar la residualidad del producto.
Figura 24: Dos adultos de mosca de la fruta dentro de la cabina enmallada.

3.4.6 Diseño Experimental:

Se realizó un Diseño de Bloques Completamente al Azar, además el experimento se realizó dos veces, cada vez con dos repeticiones. Es decir, se obtuvieron 4 repeticiones por tratamiento. Se consideró como unidad experimental a una cabina enmallada. Los tratamientos fueron asignados en forma completamente aleatoria a las unidades experimentales. Debido a la aleatorización, es necesario utilizar unidades experimentales homogéneas para poder disminuir la magnitud del error experimental. Después de realizarse el análisis de variancia se empleó la prueba de comparación de Duncan.
• Variable analizada:

Número de adultos muertos por día

Hipótesis del experimento:

El uso de Tracer más proteína hidrolizada realizará un control igual o más eficaz que el actualmente usado GF120, en la dosis recomendada por SENASA (Tratamiento 2).
IV. RESULTADOS Y DISCUSIÓN

4.1 RESULTADOS

Se presenta la tabla del promedio de los resultados de las 4 repeticiones. Al analizar la variable: Número de moscas muertas por día.

Cuadro 8: Promedios diarios del número de moscas muertas por día de las 4 repeticiones para cada tratamiento.

<table>
<thead>
<tr>
<th>DÍAS</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>9.5</td>
<td>9.3</td>
<td>8.3</td>
<td>9.8</td>
<td>9.3</td>
<td>9.5</td>
<td>9.5</td>
<td>9.3</td>
<td>9.5</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>9.8</td>
<td>8.5</td>
<td>8.5</td>
<td>9.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>8.8</td>
<td>10</td>
<td>7.8</td>
<td>8.5</td>
<td>6.5</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>9.5</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>5.3</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>9.3</td>
<td>9.3</td>
<td>9.3</td>
<td>5.3</td>
<td>4</td>
<td>2.8</td>
<td>4.8</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>5.3</td>
<td>3.3</td>
<td>2.8</td>
<td>4.8</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>7</td>
<td>9.8</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>10</td>
<td>9.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>8.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.
Se puede apreciar en el cuadro anterior la cantidad de moscas muertas obtenida de las evaluaciones diarias de cada una de las cabinas enmulladas. Se puede apreciar que los primeros 4 días todos los tratamientos tuvieron un índice de mortalidad mayor a 8, a partir del quinto día es donde se empiezan a notar las diferencias de la residualidad de los tratamientos.

Dado que todos los días a cada cabina se le aplicaba 10 moscas, sin tomar en cuenta cuantas moscas vivas aun quedaban del día anterior, se obtuvieron algunos datos mayores a 10 moscas muertas diarias. Esto no implicó ningún problema porque la estadística se basó en el porcentaje de adultos muertos por día.

De todos los tratamientos, el mejor fue el tratamiento de GF120 a la dosis recomendada por SENASA, el cual tuvo un buen efecto residual hasta por 7 días.

A continuación se hará un análisis de los tratamientos por medio del uso de Gráficos lineales analizando la variable estudiada (Número de moscas muertas) versus el tiempo (en días).
4.2 DISCUSIÓN

Figura 25: Número de moscas muertas por día del Tratamiento 1.
Testigo (sin aplicación)

![Gráfico de lineas](image)

FUENTE: Elaboración propia.

Se puede apreciar en la Figura 25 la distribución en el tiempo del número de individuos muertos cuando no se aplica ningún tratamiento. Este gráfico permite comparar con los demás tratamientos y determinar si hubo influencia del tratamiento sobre la variable en estudio.

Los dos primeros días no se observó muerte de insectos debido a que este tratamiento testigo no tuvo aplicación de ningún insecticida. Luego las moscas empiezan a morir por inanición, confirmándose los datos de las fuentes bibliográficas de Thomas et al. (2001) en donde afirma que 3 a 5 días es el tiempo de vida de un adulto de mosca de la fruta sin alimentación.

Gracias a este Tratamiento 1 – Sin aplicación se pudo diferir el momento en el cual el insecticida evaluado deja de hacer efecto sobre los adultos de la Mosca de la Fruta.
Figura 26: Número de moscas muertas por día del Tratamiento 2.
1.6 L GF120/2.4L de Agua/ Ha

<table>
<thead>
<tr>
<th>Número de moscas muertas</th>
<th>Días</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.

La figura 26 muestra la distribución en el tiempo de los adultos de la Mosca de la Fruta del Tratamiento 2, que es 1.6 L del producto GF120 más 2.4L de agua. Dicho producto y la dosis usada son los recomendadas por el Programa de Erradicación de la Mosca de la Fruta del SENASA-Perú.

Esta figura muestra la gran afinidad que tienen los adultos de la Mosca de la Fruta para consumir el GF120 a la dosis evaluada, dado que desde el primer día se tiene el índice más alto de mortandad, el cual se mantuvo por 7 días. Luego de esto el efecto del insecticida sobre la variable en estudio decreció. Al tener menos de 40% del número de adultos muertos por día se considera el último día en el cual el producto es viable, en este caso es el día 10. Lo cual convierte a dicho tratamiento como el mejor de todos los tratamientos evaluados en la presente experimentación.
Figura 27: Número de moscas muertas por día del Tratamiento 3.

1.6 L GF120/18.4L de Agua/ Ha +3cc Buminal

<table>
<thead>
<tr>
<th>Número de moscas muertas</th>
<th>Días</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.

Las figuras 27, 28 y 29 muestran la distribución en el tiempo de la variable número de adultos muertos de Mosca de la Fruta de los tratamientos 3, 4 y 5 respectivamente. Estos 3 tratamientos son a base de GF 120 mezclado con proteína hidrolizada y agua. Estos son una modificación de la dosis original recomendada por SENASA con el fin de ahorrar el producto GF120 al usarlo en una dosis menor.

Se obtienen resultados similares para los 3 tratamientos (tratamiento 3, tratamiento4 y tratamiento 5), confirmando la bibliografía ya citada en la revisión bibliográfica que afirma que la mosca de la fruta Ceratitis capitata Wiedemann es una especie muy sensible a los insecticidas.

Al día en el que se registró menos de 40% del número de adultos muertos por día se considera el último día en el cual el producto es viable, en estos casos es el día 4.
Figura 28: Número de moscas muertas por día del Tratamiento 4.

1.6 L GF120/18.4L de Agua/ Ha +6cc Buminal

Tratamiento 4

<table>
<thead>
<tr>
<th>Días</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de moscas muertas</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.

Figura 29: Número de moscas muertas por día del Tratamiento 5.

1.6 L GF120/18.4L de Agua/ Ha +9cc Buminal

Tratamiento 5

<table>
<thead>
<tr>
<th>Días</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de moscas muertas</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.
Figura 30: Número de moscas muertas por día del Tratamiento 6.

Tracer 0.1 ml/L de Agua + 15 cc Buminal

FUENTE: Elaboración propia.

La figura 30 muestra el número de adultos muertos por día del Tratamiento 6 el cual consiste de Spinosad (producto comercial Tracer) más proteína hidrolizada. Se puede observar que incluso desde el principio no se obtuvo un 100% de mortandad (como lo hizo el tratamiento 2), luego los índices bajaron hasta el día 5, en donde se considera el último día que el insecticida es efectivo.

Este grupo de tratamientos (6, 7, 8, 9 y 10) fueron el motivo principal de la experimentación ya que se creía que al usar el mismo ingrediente activo del GF120 más proteína hidrolizada como atrayente, se podría obtener igual o mejores resultados.

Se obtuvo como resultado que ninguno de los tratamientos de Spinosad más proteína Hidrolizada es mejor que el GF120.
Figura 31: Número de moscas muertas por día del Tratamiento 7.

Tracer 0.2 ml/1L de Agua + 15 cc Buminal

![Gráfico del Tratamiento 7](image)

FUENTE: Elaboración propia.

Figura 32: Número de moscas muertas por día del Tratamiento 8.

Tracer 0.3 ml/1L de Agua + 15 cc Buminal

![Gráfico del Tratamiento 8](image)

FUENTE: Elaboración propia.
Figura 33: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 9.

Tracer 0.4 ml/1L de Agua + 15 cc Buminal

FUENTE: Elaboración propia.

Analizando la figura 33 que nos muestra el gráfico de número de individuos muertos por día del Tratamiento 9 de Tracer con proteína hidrolizada, se aprecia una pequeña diferencia al inicio del experimento (días 1, 2 y 3) al compararse con los otros tratamientos de Tracer y proteína hidrolizada (tratamientos 6, 7, 8 y 10). Esta pequeña diferencia genera en el análisis estadístico a este Tratamiento 9 como el mejor de estos cinco tratamientos. A pesar de esto, se considera el quinto día como el último día en el cual el insecticida es viable, al igual que los otros cuatro tratamientos.
Figura 34: Gráfico Lineal del Número de moscas muertas por día del Tratamiento 10.
Tracer 0.5 ml/1L de Agua + 15 cc Buminal

FUENTE: Elaboración propia.

El tratamiento 10 no presentó superioridad a los demás tratamientos. Infiéndose que la dosis de insecticida para este experimento no afecta a la variable respuesta.
Gracias a que se tuvo una prueba previa al experimento, se pudo determinar de que los adultos pueden vivir bajo estas condiciones 3 días sin ingerir alimento alguno, esta información se confirma con el trabajo de Thomas et al. (2001). Quienes registran una duración de 3 a 5 días, dependiendo de la temperatura.

También gracias a dicha prueba previa al experimento se pudo determinar que si los adultos recién emergidos consumen agua o una fuente de alimento (calórica o proteica) puede que necesite un par de días para poder alimentarse nuevamente, esto lo confirma el trabajo de Manrakhan y Lux (2008); se debe a que el adulto necesita al menos 4 días para que sus órganos sexuales se desarrollen completamente y así empezar un desgaste físico mayor para alimentarse y encontrar pareja. Manrakhan y Lux (2008) también determinaron
que la disposición del adulto a ser atraído o no a una fuente alimenticia depende mucho más del estado nutricional que del estado de apareamiento en que se encuentre.

Esta información fue importante para determinar el uso de moscas recién emergidas sin alimentar para poder realizar con éxito la prueba. Además para poder simplificar el análisis estadístico, se decidió inocular diariamente 10 moscas solo hasta que se obtenga una tasa de mortalidad promedio menor al 30%. Lo cual significa el momento en el cual el tratamiento ya no es eficaz.

Se confirma la información de las diversas fuentes bibliográficas, en donde se expone la gran capacidad de respuesta que posee Ceratitis capitata Wiedemann ante los factores adversos como sequía, falta de alimento, cambios de temperatura, etc. Esto lleva a la lógica conclusión que los métodos de control y el manejo integrado deben de tener la misma capacidad de respuesta que la plaga a tratar.

No es anormal observar moscas mediterráneas de la fruta cerca de las cebos tóxicos, fuentes alimenticias o atrayentes alimenticios y pasar mucho tiempo sin que sean consumidos. Es porque su disposición a buscar fuentes alimenticias está determinada por muchos factores y no necesariamente responden inmediatamente a los estímulos organolépticos de los productos mencionados. Es más, podrían tardar incluso más de dos días sin alimentarse.

El efecto residual del Spinosad ha sido evaluado por algunos investigadores alrededor del mundo, teniéndose que el promedio es de 7 a 8 días, como por ejemplo las investigaciones de Fangneng (2007) y también Mc Donald et al. (1998). Dichos datos se vuelven a confirmar al realizarse la presente investigación.
Cuadro 9: Cuadro de Análisis de Varianza.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>9</td>
<td>26.16</td>
<td>2.907</td>
<td>9.544</td>
<td>5.90E-08</td>
<td>***</td>
</tr>
<tr>
<td>Bloques</td>
<td>5</td>
<td>36.57</td>
<td>7.314</td>
<td>24.017</td>
<td>1.10E-11</td>
<td>***</td>
</tr>
<tr>
<td>Error experimental</td>
<td>45</td>
<td>13.7</td>
<td>0.305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>76.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns= no significativo; *=significativo al 0.1 de probabilidad* = significativo al 0.05 de probabilidad;
= significativo al 0.01 de probabilidad; *=significativo al 0.001 de probabilidad

CV%=31.31273

A un nivel de significación del 5% se puede afirmar que al menos uno de los tratamientos es distinto a los demás, al analizar la proporción media de moscas muertas

FUENTE: Elaboración propia.

Como se puede observar, el coeficiente de variabilidad es aceptable para este tipo de experimentos y además se confirma la presencia de diferencias significativas entre tratamientos. También se verifican los supuestos de Normalidad y Homogeneidad del experimento. La significancia del Análisis de varianza se afirma hasta con 0.001 de probabilidad.
Cuadro 10: Comparaciones de Duncan

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>Promedio</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción T</td>
<td>0.31d</td>
<td>3.11a</td>
<td>1.78bc</td>
<td>1.48c</td>
<td>2.25b</td>
<td>1.5c</td>
<td>1.96bc</td>
<td>1.83bc</td>
<td>1.79bc</td>
<td>1.62bc</td>
<td>1.7623</td>
<td>31.3127</td>
</tr>
<tr>
<td>Proporción</td>
<td>0.2d</td>
<td>0.91a</td>
<td>0.65bc</td>
<td>0.6c</td>
<td>0.74b</td>
<td>0.57c</td>
<td>0.65bc</td>
<td>0.63bc</td>
<td>0.62bc</td>
<td>0.6bc</td>
<td>0.6171</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.

A un nivel de significación del 5%, T2 fue el tratamiento que presento la mayor proporción media de moscas muertas mientras que T1 fue el que presento la menor proporción media de moscas muertas.
V. CONCLUSIONES

La hipótesis fue rechazada con una significancia de 0.001 de probabilidad. Notablemente ninguno tratamiento probado es más eficaz que el ya usado producto GF120 en la dosis recomendada por SENASA.

Teóricamente se tuvo como mejor tratamiento después del T2 (tratamiento de GF120) a T5, seguido por el tratamiento T3 y luego el T9. Pero, al tratarse de un experimento agrícola – biológico, no se tiene la suficiente significancia para asegurar superioridad o inferioridad entre los tratamientos.

No se pudo concluir en una forma más económica de aplicar el control químico a base de Spinosad contra los adultos de la mosca de la fruta, el presente trabajo confirma la viabilidad del uso del producto comercial GF120, bajo la dosis establecida por SENASA.

Actualmente, SENASA recomienda aplicar cada diez días GF120, el presente trabajo sugiere que 10 días es un intervalo de tiempo amplio, el cual debería ser acortado debido a que el experimento demostró que el insecticida bajo condiciones de campo actúa correctamente solo por 7 días.
VI. RECOMENDACIONES

Siempre es necesario realizar un experimento de prueba previo al experimento definitivo, debido a que existen muchos factores que no se pudieron haber notado en el planteamiento del proyecto de Tesis. Realizar investigaciones en seres vivos siempre genera resultados inesperados que pueden ser reducidos al mínimo con un buen planteamiento del proyecto y con experimentaciones previas.

Es necesario aislar todos los factores que puedan influir en el experimento, para que la única variable a considerar sea el mismo tratamiento. Por tanto, eventos anormales como el medio ambiente pueden generar errores experimentales. Se adjunta información meteorológica de los días en los que se realizó el experimento en el ANEXO 3.

Se debe estabilizar las varianzas antes de realizar el análisis estadístico en sí, debido a que un experimento biológico tiene ciertos parámetros para poder declararse como válido. En el caso del presente trabajo resultó muy útil realizar la transformación de Box y Cox. Ver ANEXO 2.

Los tratamientos de Tracer más Buminal, a pesar de no haber superado al tratamiento de GF120, han sido efectivos durante 4 días, esto quiere decir que aún se puede trabajar en otras investigaciones para poder lograr mejores resultados adicionando conservantes u otras fuentes atrayentes.

Es necesario realizar investigaciones constantes del comportamiento de este insecto para poder tener mayores posibilidades de respuesta ante futuras amenazas de infestación. Existen muchos factores que pueden influir en el comportamiento del individuo como sexo, edad, nivel nutricional, estado de apareamiento, etc. Que han sido muy poco examinados por investigadores a nivel mundial, y casi ningún trabajo de investigación en este tema a nivel nacional.

El presente de trabajo de investigación posee una metodología innovadora y útil que permite analizar con mayor detalle el comportamiento del insecto plaga con el insecticida, la residualidad del insecticida e incluso los hábitos de consumo de la plaga. Por eso, considero importante realizar la misma metodología empleada en esta tesis para evaluar la mosca de la fruta en distintas localidades de nuestro país.
La presente tesis es además una intención de buscar opciones de control químico de la mosca de la fruta. Para que así los agricultores controlen la mosca con medidas y acciones disponibles según su capacidad económica y logística. Partiendo en la premisa de que no se le puede obligar a los agricultores (mientras no afecte las estrategias de control de SENASA o mejor dicho, no llegue a los niveles de infestación en los cuales SENASA procede a actuar) a usar un determinado producto, sin darle opción a escoger otros productos o llevar a cabo otras estrategias.
VII. REFERENCIAS BIBLIOGRÁFICAS

2. Aduanas – Perú. Elaboración ADEX DATA TRADE.

69

Referencias electrónicas
2. Portal web SENASA (Servicio Nacional de Sanidad Agraria) : www.senasa.gob.pe

6. Ficha técnica GF120: portal web BAYER S.A.

7. Ficha técnica Tracer: portal web Aris Industrial S.A.
VIII. ANEXOS

ANEXO 1: Cuadros de los resultados de las 4 repeticiones de los tratamientos.

Resultados del experimento realizado el 29 de marzo del 2016. Primera repetición

<table>
<thead>
<tr>
<th>DÍAS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>T2</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>T3</td>
<td>9</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T5</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T6</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T8</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T10</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.

Resultados del experimento realizado el 29 de marzo del 2016. Segunda repetición

<table>
<thead>
<tr>
<th>DÍAS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>T3</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T5</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T6</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T10</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.
Resultados del experimento realizado el 12 de abril del 2016. Primera Repetición

<table>
<thead>
<tr>
<th></th>
<th>DÍAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0 0 3 14 11 9 9 10 11 10 9 3</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>9 10 9 10 11 10 10 7 6 3 4 6 5</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>9 8 10 11 8 6 4 3 3 6 2 0 0</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>8 9 10 9 7 6 4 4 3 7 2 1 0</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>10 10 9 8 7 6 4 3 3 5 3 1 1</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>9 7 9 10 6 3 2 3 7 2 2 0 0</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>10 10 9 7 5 2 3 4 6 3 1 0 0</td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>10 8 8 11 4 3 3 5 5 3 0 0 0</td>
<td></td>
</tr>
<tr>
<td>T9</td>
<td>8 9 10 8 5 4 3 4 5 3 1 0 0</td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>8 9 9 8 6 4 2 4 5 3 2 0 0</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.

Resultados del experimento realizado el 12 de abril del 2016. Segunda repetición

<table>
<thead>
<tr>
<th></th>
<th>DÍAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0 0 6 12 7 11 10 10 12 12 8 7 5</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>10 10 10 9 9 9 12 7 4 4 3 6 7</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>9 9 10 8 7 5 4 3 4 7 4 0 0</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>9 7 9 11 8 6 3 3 5 6 2 1 0</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>10 9 10 9 9 7 3 3 3 6 1 0 0</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>9 8 10 8 4 4 4 3 5 3 2 0 0</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>9 8 10 8 5 3 2 3 8 4 0 0 0</td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>9 10 9 8 5 4 2 4 5 2 2 0 0</td>
<td></td>
</tr>
<tr>
<td>T9</td>
<td>9 10 7 8 4 3 3 4 6 4 2 0 0</td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>9 10 9 7 5 2 3 4 5 4 2 0 0</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia.
ANEXO 2: Datos de Humedad Relativa, temperatura promedio, temperatura máxima y temperatura mínima de la Estación Meteorológica Alexander Von Humboldt durante los días de la realización del experimento.
ANEXO 3: Procesamiento de datos para evaluación estadística. “Corrido” de datos del Software estadístico R versión 3.2.2.

R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

[Workspace loaded from ~/.RData]

> datos<-read.delim("clipboard")
> head(datos)

<table>
<thead>
<tr>
<th>Y</th>
<th>Trat</th>
<th>Bloque</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>0.32</td>
<td>0.32</td>
</tr>
</tbody>
</table>

> datos$Trat<-as.factor(datos$Trat)
> datos$Bloque<-as.factor(datos$Bloque)
> mod<-lm(Y~Trat+Bloque,data=datos)
> summary(aov(mod))

DF Sum Sq Mean Sq F value Pr(>F)
Trat 9 1.688 0.1876 7.865 7.41e-07 ***
Bloque 52.124 0.4248 17.810 1.05e-09 ***
Residuals 45 5.173 0.0239

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> yt<-datos$Y+1
> library(MASS)
> boxcox(yt~Trat+Bloque,data=datos,seq(0,5,0.01))
> ytb<-(yt^4-1)/4
> mod<-lm(ytb~Trat+Bloque,data=datos)
> summary(aov(mod))
<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trat</td>
<td>9</td>
<td>26.16</td>
<td>2.907</td>
<td>9.544</td>
<td>5.9e-08 ***</td>
</tr>
<tr>
<td>Block</td>
<td>5</td>
<td>36.57</td>
<td>7.314</td>
<td>24.017</td>
<td>1.1e-11 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>45</td>
<td>13.70</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

```r
> library(agricolae)
> compd<-duncan.test(aov(mod),"Trat")
> compd
$statistics
     Mean    CV  MSError
1 1.762348 31.31272 0.3045265

$parameters
     Df  ntr
1      45   10

$Duncan
  Table CriticalRange
     2  2.848372 0.6417024
     3  2.995440 0.6748348
     4  3.091920 0.6965706
     5  3.161684 0.7122875
     6  3.215093 0.7243200
     7  3.257548 0.7338845
     8  3.292203 0.7416917
     9  3.321052 0.7481912
    10  3.345434 0.7536840

$means
     ytb   std r   Min   Max
1 0.3137979 0.2543279 6 0.0000000 0.5676784
10 1.6203608 1.0297877 6 0.2131559 2.6783766
2 3.1074339 0.1953931 6 2.9256778 3.3647516
3 1.7840662 0.9819674 6 0.4051659 3.1829142
4 1.4820041 0.7239840 6 0.4519861 2.5232657
5 2.2522121 1.1712539 6 0.5746431 3.5537188
6 1.4963500 1.0676315 6 0.2349678 3.1829142
7 1.9567728 1.3409128 6 0.1994428 3.3647516
8 1.8252304 1.2659539 6 0.2327713 3.3647516
9 1.7852563 1.2208809 6 0.1818259 3.0080250

$comparison
NULL

$groups
    trt  means M
1 2 3.1074339 a
<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Metric</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>2.2522121</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1.9567728</td>
<td>be</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.8252304</td>
<td>be</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1.7852563</td>
<td>be</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1.7840662</td>
<td>be</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>1.6203608</td>
<td>be</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1.4963500</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1.4820041</td>
<td>c</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.3137979</td>
<td>d</td>
</tr>
</tbody>
</table>