UNIVERSIDAD NACIONAL AGRARIA

LA MOLINA

ESCUELA DE POSTGRADO MAESTRÍA EN ENTOMOLOGÍA

"BIOLOGÍA DE *Delphastus quinculus* (Gordon, 1994) (Coleoptera: Coccinellidae) BAJO DIFERENTES TEMPERATURAS"

Presentado por:

NINA CASANA AMORETTI

TESIS PARA OPTAR EL GRADO DE

MAGÍSTER SCIENTIAE EN ENTOMOLOGÍA

Lima - Perú

ÍNDICE

ÍNDICE GENERAL

CAPÍTULO I: Introducción..... 1 **CAPÍTULO II:** Revisión de literatura..... 4 2.1. Aspectos generales del predador D. quinculus (Gordon, 1994)..... 4 2.1.1. Clasificación taxonómica. 6 2.1.2. Biología y comportamiento. 6 Huevo 6 Estadío larval I..... 7 Estadío larval II.... 7 Estadío larval III..... 8 Estadío larval IV..... 8 Pupa..... 8 Adulto..... 9 2.2. Tablas de vida para el establecimiento de un modelo fenológico en función a la temperatura..... 11 Aspectos generales de la mosca blanca de los invernaderos T. 2.3. vaporariorum (westwood, 1856)..... 12

RESÚMEN

2.3.1. Clasificación taxonómica	13
2.3.2. Biología	13
• Huevo	13
Estadío ninfal I	13
Estadío ninfal II	14
Estadío ninfal III	14
Estadío ninfal IV (pupario)	14
• Adulto	14
Ciclo de vida	14
2.3.3. Importancia económica	15
2.3.4. Métodos de control	16
a. Control genético	16
b. Control cultural	16
c. Control legal	16
d. Control biológico	16
e. Control químico	17
CAPÍTULO III: Materiales y métodos	19
3.1. Lugar	19
3.2. Identificación de la especie	19
3.3. Materiales	19
3.3.1. Equipos	19

.

,

	3.3.2. Material de vidrio	20
	3.3.3. Material de plástico	20
	3.3.4. Material de madera	20
	3.3.5. Material biológico	20
	3.3.6. Otros	20
3.4.	Metodología	21
	3.4.1. Crianza masal de <i>T. vaporariorum</i>	21
	3.4.2. Colecta de insectos adultos e inmaduros de <i>D. quinculus</i> .	21
	3.4.3. Crianza masal de <i>D. quinculus</i>	23
	3.4.4. Metodología de desarrollo de las tablas de vida de D.	
	quinculus	25, 26
	3.4.4. a. Período de incubación, tiempo y tasa de desarrollo y	
	establecimiento de un modelo para el estado huevo	27
	3.4.4. b. Período larval, tiempo y tasa de desarrollo y	
	establecimiento de modelos	28
	3.4.4. c. Período pupal, tiempo y tasa de desarrollo y	
	establecimiento de un modelo	28
	3.4.4. d. Período de longevidad de los adultos y establecimiento	
	de un modelo para el tiempo y tasa de	• •
	senescencia	28
	3.4.4. e. Mortalidad de los estados inmaduros y establecimiento	
	de los modelos para esta variable	29
	3.4.4. f. Capacidad de reproducción y establecimiento de un	
	modelo para la frecuencia de oviposición	29

3.5.	Proporción de sexos	29
3.6.	Análisis de datos para el modelo fenológico	29
3.7.	Parámetros de la tabla de vida de D. quinculus	30
	a. Tasa de reproducción neta (R _o)	31
	b. Tasa intrínseca de crecimiento (r_m)	31
	c. Tasa de crecimiento finito (λ)	31
	d. Tiempo de generación (GL o T)	31
	e. Tiempo doble (D _t)	32
	f. Tasa de crecimiento reproductivo (GRR)	32
3.8.	Parámetros e índices simulados para un conjunto de temperaturas fluctuantes	32
3.9.	Análisis estadístico de la tabla de vida de <i>D. quinculus</i>	32
CAPIT	ULO IV: Resultados	33
4.1.	Efecto de la temperatura en la biología del predador D. quinculus	33
	4.1.1 a. Período de incubación de los huevos de D. quinculus	33
	4.1.1 b. Modelos para el tiempo y tasa de desarrollo del huevo	35
	4.1.2 a. Período de desarrollo larval de D. quinculus	37
	4.1.2 b. Modelos para el tiempo y tasa de desarrollo del estado larval	38
	4.1.3 a. Período de desarrollo pupal de D. quinculus	45
	4.1.3 b. Modelos para el tiempo y tasa de desarrollo del estado pupal	46

••

	4.1.4. Long	evidad de los adultos y el establecimiento de los	
	mo	delos tiempo y tasa de senescencia	49
	4.1.5. Ciclo	de vida vs. temperatura del predador D. quinculus	54
	4.1.6. Morta	lidad de los estados inmaduros y establecimiento de	
	mod	elos para esta variable	59
	4.1.7. Capa	cidad de reproducción y establecimiento de un	-
	model	o para la frecuencia de oviposición	64
4.2.	Parámetros	de la tabla de vida	69
	4.2.1. Desar	rrollo del modelo de fenología	69
	a.	Tasa intrínseca de crecimiento (r_m)	69
	. b.	Tasa de reproducción neta (R _o)	69
	c.	Tasa de crecimiento reproductivo (GRR)	69
	d.	Tiempo de generación (GL o T)	70
	e.	Tasa de crecimiento finita (λ)	70
	f.	Tiempo doble (Dt)	70
	4.2.2. Parán	netros para un conjunto de temperaturas fluctuantes	73
4.3.	Descripción	de los estados de desarrollo de D. quinculus	77
	•	Huevo	77
	•	Estadío larval I	77
	•	Estadío larval II	77
	•	Estadío larval III	78
	•	Estadío larval IV	78
	•	Pupa	78

•

		• Adulto	78
4.4.	Descr	ipción de la especie de <i>D. quinculus</i>	80
CAPÍTU	LO V	Discusión	81
5.1.	Tabla	de vida de <i>D. quinculus</i>	8 1
	5.1.1.	Temperatura y su influencia en el tiempo y tasa de desarrollo para los estados inmaduros de <i>D. quinculus</i>	۳ 81
	5.1.2.	Análisis del ciclo de vida vs. temperatura, supervivencia y mortalidad de los estados inmaduros del predador <i>D</i> . <i>quinculus</i>	82
	5.1.3.	Temperatura y capacidad de reproducción de D. quinculus	83
	5.1.4.	Longevidad y senescencia de los estados maduros de <i>D</i> . <i>quinculus</i>	84
5.2.	Parám	etros de la tabla de vida	85
	5.2.1.	Parámetros observados para las temperaturas constantes.	85
	5.2.2.	Parámetros simulados para las temperaturas constantes	88
	5.2.3.	Parámetros de la tabla de vida e índices para las temperaturas fluctuantes	89
CAPÍTU	LO VI	CONCLUSIONES	90
CAPÍTU	LO VII	RECOMENDACIONES	92
CAPÍTU	LO VII	I REFERENCIAS BIBLIOGRÁFICAS	93
ANEXOS	5		101

•

X

• • •

...

ÍNDICE DE CUADROS

Cuadro 1	Promedio en días del período de incubación de <i>D. quinculus</i>	34
Cuadro 2	Tiempo de desarrollo observado y esperado de los huevos de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	35
Cuadro 3	Duración promedio en días, del estado larval de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes.	37
Cuadro 4	Tiempo de desarrollo observado y esperado de las larvas de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes.	39
Cuadro 5	Duración promedio en días del período pupal total y por sexo de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	45
Cuadro 6	Tiempo de desarrollo observado y esperado de las pupas de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	47
Cuadro 7	Longevidad promedio en días y por sexo de hembras y machos apareados de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	50
Cuadro 8	Ciclo de desarrollo de acuerdo al sexo de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	54
Cuadro 9	Ciclo de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	55
Cuadro 10	Porcentaje de la mortalidad de los estados inmaduros de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	59

Cuadro 11	Promedio de huevos/ hembra de D. quinculus Gordon (Col.:	
	Coccinellidae) a temperaturas constantes	65
Cuadro 12	Parámetros de la tabla de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) obtenidos mediante la simulación determinística por el modelo de fenología para dieciocho temperaturas constantes	71
Cuadro 13	Parámetros obtenidos de la tabla de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) para las temperaturas fluctuantes en La Molina, Lima – Perú	74
Cuadro 14	Tiempo de desarrollo, mortalidad e indicador de ajuste por cada estado de la tabla de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) para las temperaturas fluctuantes en el CIP - La Molina, Lima – Perú.	75
Cuadro 15	Parámetros observados de la tabla de vida de <i>D. quinculus</i> (Col.: Coccinellidae), a las temperaturas de 18, 20, 25, 28 y 32 °C y una temperatura fluctuante (a condiciones medioambientales)	87
Cuadro 16	Parámetros de la tabla de vida de los predadores <i>Nephaspis</i> <i>oculatus</i> (Coleoptera: Coccinellidae), <i>Orius laevigatus</i> (Hemiptera: Anthocoridae) y el parasitoide <i>Eretmocerus</i> <i>californicus</i> (Hymenoptera: Aphelinidae)	87
Cuadro 17	Parámetros de la tabla de vida de <i>Propylea dissecta</i> (Coleoptera: Coccinellidae) un predador de <i>Aphis gossypii</i> (Hemiptera: Aphididae) a temperaturas constantes	88

ÍNDICE DE FIGURAS

Figura 1	Distribución geográfica de especies pertenecientes al grupo D.	E
	pusillus	2
Figura 2	Instalación de la colonia madre de D. quinculus	22
Figura 3	Materiales y método de crianza de D. quinculus	24
Figura 4	Metodología de desarrollo de las tablas de vida de D. quinculus	25, 26
Figura 5	Período de incubación del estado huevo en días de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	34
Figura 6	Frecuencia acumulada de desarrollo (%) de D. quinculus del	
	estado de huevo para cinco temperaturas constantes, según el modelo de Cloglog	36
Figura 7	Tasa de desarrollo del estado de huevo de <i>D. quinculus</i> a cinco temperaturas según el modelo Tb Model	36
Figura 8	Período de desarrollo larval total en días de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	38
Figura 9	Frecuencia acumulada de desarrollo (%) de <i>D. quinculus</i> del estadío larva I para cinco temperaturas constantes, según el modelo Probit.	40
Figura 10	Frecuencia acumulada de desarrollo (%) de <i>D. quinculus</i> del estadío larva II para cinco temperaturas constantes, según el modelo Probit.	40
Figura 11	Frecuencia acumulada de desarrollo (%) de <i>D. quinculus</i> del estadío larva III para cinco temperaturas constantes, según el modelo Probit	41
Figura 12	Frecuencia acumulada de desarrollo (%) de <i>D. quinculus</i> del estadío larva IV para cinco temperaturas constantes, según el	<i>4</i> 1
	modelo Logit	41

Figura 13	Distribución acumulativa de la tasa de desarrollo del estadío de	
	Iarva I de D. quinculus para cada temperatura según el modeloHilbert & Logan 2	43
Figura 14	Distribución acumulativa de la tasa de desarrollo del estadío de larva II de <i>D. quinculus</i> para cada temperatura según el modelo	
	Hilbert & Logan 2	43
Figura 15	Distribución acumulativa de la tasa de desarrollo del estadío de	
	larva III de <i>D. quinculus</i> para cada temperatura según el modelo Logan 4	44
Figura 16	Distribución acumulativa de la tasa de desarrollo del estadío de	
	larva IV de <i>D. quinculus</i> para cada temperatura según el modelo Janish 1	44
Figura 17	Duración promedio en días del período pupal de hembras y	
	machos de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a temperaturas constantes	46
Figura 18	Frecuencia acumulada de desarrollo (%) de D. quinculus para el	
	tiempo de desarrollo de pupa para cinco temperaturas	19
	constantes, segun el modelo Logit	40
Figura 19	Distribución acumulativa de la tasa de desarrollo del estado de pupa de D <i>quinculus</i> , para cinco temperaturas constantes según	
	el modelo Logan 1	48
Figura 20	Duración promedio en días de la longevidad total de D.	
	quinculus Gordon (Col.: Coccinellidae) a temperaturas	51
Eigene 21	Dunsián monodio en díos de la la servidad da hambura -	~ 1
Figura 21	machos apareados de <i>D. quinculus</i> Gordon (Col · Coccinellidae)	
	a cinco temperaturas constantes	51

Figura 22	Frecuencia acumulada de desarrollo (%) para la longevidad de las hembras (Ln días) de <i>D. quinculus</i> a cinco temperaturas constantes, según el modelo Logit	52
Figura 23	Frecuencia acumulada de desarrollo (%) para la longevidad de los machos (Ln días) de <i>D. quinculus</i> a cinco temperaturas constantes, según el modelo Cloglog	52
Figura 24	Tasa de senescencia de las hembras vs la temperatura según el modelo Hilbert & Logan 3	53
Figura 25	Tasa de senescencia de los machos vs la temperatura según el modelo Hilbert & Logan 3	53
Figura 26	Análisis de la Supervivencia en días de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a seis temperaturas constantes	57
Figura 27	Análisis de la Supervivencia de las hembras en días de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a cinco temperaturas constantes.	58
Figura 28	Análisis de la Supervivencia de los machos en días de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a cinco temperaturas constantes.	58
Figura 29	Mortalidad del estado de huevo según el modelo Wang 8	60
Figura 30	Mortalidad del estadío de la larva I según el modelo Polynomial 1	61
Figura 31	Mortalidad del estadío de la larva II según el modelo Wang 1	61
Figura 32	Mortalidad del estadío de la larva III según el modelo Wang 1	63
Figura 33	Mortalidad del estadío de la larva IV según el modelo Polynomial 1	63
Figura 34	Mortalidad del estado de pupa según el modelo Polynomial 1	64
Figura 35	Número de huevos / día (promedio) de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a cinco temperaturas constantes	66

.

Figura 36	Oviposición total (promedio) de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a cinco temperaturas constantes según el modelo Janisch & Analytis.	68
Figura 37	Oviposición relativa de <i>D. quinculus</i> Gordon (Col.: Coccinellidae) a cinco temperaturas constantes, según el modelo	68
Figura 38	Parámetros obtenidos de la tabla de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae), mediante la simulación determinística a temperaturas constantes	72
Figura 39	Temperaturas constantes Temperaturas fluctuantes de la tabla de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae), de octubre del 2010 a enero del 2011	72
Figura 40	Modelo obtenido de la tabla de vida de <i>D. quinculus</i> Gordon (Col.: Coccinellidae), a temperaturas fluctuantes en La Molina,	76
Figura 41	Lima – Peru Descripción de los estados y estadíos de desarrollo de D. quinculus	70
Figura 42	Vista general de la genitalia femenina de D. quinculus	80
Figura 43	Espermateca de D. quinculus	80
Figura 44	Curva de sobrevivencia obtenida para D. pusillus (LeConte) y	
	curvas de sobrevivencia propuestas por Rabinovich (1980)	82

X

.

ÍNDICE DE ANEXOS

.

Anexo 1:	Análisis del huevo	101
Anexo 2:	Análisis ciclo de vida vs. Temperatura: larva completa	102
Anexo 3:	Análisis de la larva I	104
Anexo 4:	Análisis de la larva II	106
Anexo 5:	Análisis de la larva III	108
Anexo 6:	Análisis de la larva IV	109
Anexo 7:	Análisis de la pupa	111
	Pupas que serán machos	113
	Pupas que serán hembras	115
Anexo 8:	Análisis de la longevidad	116
Anexo 9:	Análisis ciclo de vida vs temperatura: ciclo de desarrollo	118
	• Período del ciclo de vida cuando son machos	120
	• Período del ciclo de vida cuando son hembras	121
	• Análisis de supervivencia de los machos	124
	Temperatura 18 °C	124
	Temperatura 20 °C	126
	Temperatura 25 °C	128
	Temperatura 28 °C	130
	Temperatura 32 °C	132
	• Análisis de supervivencia de las hembras	133
	Temperatura 18 °C	133
	Temperatura 20 °C	134

	Temperatura 25 °C	135
	Temperatura 28 °C	137
	Temperatura 32 °C	139
	• Análisis de supervivencia de la población	142
	Temperatura 15 °C	142
	Temperatura 18 °C	143
	Temperatura 20 °C	145
	Temperatura 25 °C	147
	Temperatura 28 °C	149
	Temperatura 32 °C	152
Anexo10:	Análisis de la oviposición	153

"BIOLOGIA DE *Delphastus quinculus* (Gordon, 1994) (Coleoptera: Coccinellidae) BAJO DIFERENTES TEMPERATURAS"

Delphastus quinculus (Gordon, 1994) es un predador que ha sido reportado importante, para el control del complejo de la mosca blanca de los invernaderos Trialeurodes vaporariorum (Westwood, 1856). Para obtener información sobre algunos aspectos de su biología y el efecto de la temperatura en su desarrollo, se realizaron experimentos bajo condiciones de laboratorio a seis temperaturas constantes 15, 18, 20, 25, 28 y 32 °C; con un fotoperíodo de 12 L:12 O. Se evaluó el ciclo biológico, la reproducción y los parámetros poblacionales. El tiempo de desarrollo y la tasa de desarrollo de cada uno de los estados inmaduros, desde la oviposición hasta la emergencia del adulto, tienden a decrecer con el incremento de la temperatura entre los 18 °C a 32 °C, a 15 °C no se obtuvo desarrollo de ningún estado. La temperatura afecta la tasa de desarrollo de los estados inmaduros de Delphastus quinculus, siendo el primer estadío larval el más susceptible a las variaciones de temperatura y el menos susceptible la pupa, siendo necesario predecir si su establecimiento será posible en un área, mediante condiciones térmicas. Para la longevidad se observó que al aumentar la temperatura a 18 °C, 20 °C y 32 °C, la longevidad del insecto disminuyó, sin embargo cuando la temperatura aumento a 25 °C y 28 °C, la longevidad del insecto aumento, esto nos indica que son temperaturas favorables para el insecto. Para la longevidad de acuerdo al sexo a 18 °C los machos fueron más longevos que las hembras, a 20°C fueron similares, pero al incrementarse la temperatura a 25 °C, 28 °C y 32 °C, la longevidad del macho disminuyo siendo la longevidad de la hembra mayor. La máxima fecundidad se alcanza a 28 °C (79.77 Huevos/hembra) y la menor a 32 °C con 3.54 posturas. La proporción alcanza un equilibrio de (0.9:1) a 25 °C, favoreciendo a las hembras la mayor temperatura. El ritmo de oviposición presenta dos picos en el primer tercio de su vida para 25 °C y 28 °C, siendo muy irregular para las demás temperaturas estudiadas. Se diferenciaron cuatro estadíos larvales. El comportamiento del insecto es de un predador. La reproducción es sexual. Las tablas de vida obtenidas, nos permitirán desarrollar modelos fenológicos basados en la temperatura, utilizando la herramienta ILCYM, además se podrá predecir y entender la dinámica poblacional, también nos permitirá conocer la temperatura óptima para el crecimiento y desarrollo de D. quinculus. Palabras clave: Delphastus quinculus, predador, Trialeurodes vaporariorum, mosca blanca de los invernaderos, tabla de vida, modelo fenológico.

"BIOLOGY OF Delphastus quinculus (Gordon, 1994) (Coleoptera: Coccinellidae)

UNDER DIFFERENT TEMPERATURES"

Delphastus quinculus (Gordon, 1994) is a predator that has been reported as important to control the complex of the Greenhouse Whitefly *Trialeurodes vaporariorum*. In order to obtain certain information on some aspects of their biology and the effect of temperature on development, experiments under laboratory conditions were undertaken at six constant temperatures 15, 18, 20, 25, 28 and 32 °C; with a common photoperiod of 12 L : 12 D. Life cycle, reproduction and population parameters were evaluated. Development time and development rate of each the immature stages, from oviposition to adult emergence, tend to decrease with increasing temperature from 18 to 32 °C; at 15 °C no development was obtained from any developmental stage.

Temperature affects the development rate of the immature stages of *Delphastus quinculus*, being the first larval stage the most susceptible to changes in temperature and the least susceptible was the pupal stage, being necessary to predict whether this property will influence its establishment in an area, due to its thermal conditions. For longevity it was observed that increasing the temperature to 18 °C, 20 °C and 32 °C, decreased the longevity of insects, however when the temperature increased to 25 °C and 28 °C the longevity of insects increased, this indicates that those are favorable temperatures for the insects. For longevity according to sex at 18 °C showed that males live longer than females, at 20 °C were similar, but with increasing of temperature to 25, 28 and 32 °C, male longevity decreased; female longevity was longer than the males.

The maximum fertility reached at 28 °C (79.8 eggs / female) and the lowest at 32 °C with 3.54 eggs. The sex proportion reaches equilibrium of 0.9: 1 at 25 °C, by favoring the highest temperature to the females. The rate of oviposition has two peaks in the first third of their life to 25 °C and 28 °C, being very irregular for the other temperatures studied. Four larval stages were differentiated. The insect acted as a predator. Reproduction is sexual. Life tables obtained allow us to develop phenological models based on temperature by using the *ILCYM software* and so be able to predict and understand the population dynamics and to determine the optimum temperature for growth and development of *D. quinculus*.

Keywords: *Delphastus quinculus*, predator, *Trialeurodes vaporariorum*, Greenhouse Whitefly, life table, phenology model.

I. INTRODUCCIÓN

Los estudios de las características biológicas intrínsecas de predadores son fundamentales para entender el comportamiento de los agentes de control en las poblaciones de sus presas, ya que de esta manera se puede determinar el nivel de acción de los enemigos naturales y predecir el éxito o el fracaso dentro de un programa de manejo integrado de plagas.

El complejo de *Delphastus pusillus*, se pensó que se extendían desde los Estados Unidos (Nueva York) hasta el Perú, porque los caracteres de diagnóstico no eran conocidos. La taxonomía del género *Delphastus* fue sistemáticamente revisada por Gordon en 1970 y 1994, muchos ejemplares más han sido examinados desde entonces, ahora parece que las genitalias femeninas pueden ser utilizadas para la diferenciación de especies que en parte resuelven el complejo de *D. pusillus*. Este descubrimiento, junto con el acceso a los especímenes de *Delphastus*, dieron lugar al reconocimiento de ocho especies más (Gordon, 1994).

Gran parte de las últimas investigaciones del control biológico de los *Delphastus* se ha realizado en Colombia, en el Centro Internacional de Agricultura Tropical (CIAT), algunos datos de investigación publicados, mencionan a *D. pusillus* como un predador de moscas blancas en Colombia, ahora se sabe que este predador se presenta al este de los Estados Unidos, lo que significa que el *Delphastus pusillus* de Colombia fue mal identificado, en octubre del año 2010, el especialista Guillermo González (Chile) nos refirió la existencia de una nueva identificación, realizada por Gordon en 1994, siendo actualmente conocido como *Delphastus quinculus*, el nombre específico se deriva del Latín Quingue y se refiere a la fila, en el apéndice de la espermateca por lo general con cinco espículas. La utilización de la bibliografía colombiana para este trabajo sigue siendo válida, ya que se trata de la misma especie en estudio, la investigación sobre la historia natural, la biología o la eficacia de las especies de *Delphastus* en programas de control biológico, hasta el momento ha sido limitada (Gordon, 1994).

Diferentes especies del género *Delphastus* han sido encontradas predando sobre diferentes especies de Aleyrodidae entre ellas a *Aleurothrixus floccosus, Bemisia tabaci* y *Trialeurodes vaporariorum*, resultando positivo (SENASA, 2001), se ha encontrado además predando escamas Diaspididae (Gordon, 1985; González, 2010).

Actualmente *D. quinculus* se encuentra distribuido en Colombia (Cundinamarca, Meta, Tolima), en Ecuador, en el Perú (Cusco, Loreto, Tumbes), en Venezuela (Aragua, Guárico, Barinas) y en las Antillas (Cuba, Haití, Granadinas, Grenada, Jamaica, Tobago) (Gordon, 1994).

Basado en trabajos anteriores, *D. pusillus* es un coccinélido que ha demostrado ser un agente potencial para el control biológico de *B. tabaci* (Gennadius), en invernaderos contra muchas especies de Aleyrodidae, como *T. vaporariorum* (García, 1998), incluyendo *Aleurocanthus woglumi* Ashby, *Pealius Kellogi* (Bemis), *Trialeurodes floridenses* (Quaintance), *Dialeurodes citri* (Ashmead), *Singhiella citrifolii* (Morgan) (Gordon 1970, 1985) y *D. pusillus* ha sido encontrado, asociado con una alta población de mosca blanca *B. tabaci* (Gennadius) y *B. argentifolii*, además Hoelmer *et al.* 1993, 1994 y Liu & Stansly (1996) encontraron en *D. pusillus*, altas tasas de consumo de posturas de mosca blanca, controlando altas infestaciones y que la capacidad de usar presas alternativas favorecería la supervivencia del controlador cuando la población de mosca blanca disminuye.

Actualmente debido al cambio climático y el calentamiento global es probable que *Trialeurodes vaporariorum* "la mosca blanca de los invernaderos" pueda migrar a nuevas zonas de valles interandinos, siendo un peligro potencial para el manejo fitosanitario de los cultivos, una alternativa a este problema es identificar los controladores biológicos (predadores y parasitoides), que cumplen un rol importante porque reducen las poblaciones de insectos dañinos.

En el estudio se presenta al coccinélido *Delphastus quinculus* (Gordon, 1994), porque es un buen controlador para la mosca blanca de los invernaderos *T. vaporariorum*, ya que las larvas y adultos de este predador, consumen grandes cantidades de estos insectos y también para ver los efectos de la temperatura sobre ellos.

El uso de tablas de vida de los insectos es una herramienta de investigación que nos permitirá entender la dinámica poblacional de un grupo de organismos (Cividades, 2002) y para estudiar algunos aspectos de la biología del insecto, tales como el tiempo de desarrollo y la tasa de desarrollo, la fecundidad y supervivencia (Kazak *et al.* 2002) y además, se podrá predecir la temperatura óptima para el crecimiento y desarrollo de los insectos (Yang & Chi, 2006). *Delphastus quinculus* no presenta datos de su biología y comportamiento bajo un amplio rango de temperaturas, por ello es conveniente un estudio de las tablas de vida de este controlador natural.

La presente investigación tiene como objetivo, determinar el efecto de diferentes temperaturas sobre la biología de *D. quinculus* y sus parámetros biológicos.

Los objetivos específicos considerados para el estudio son:

- Obtener los registros del ciclo de vida de *D. quinculus* a diferentes temperaturas.
- Determinar el efecto de la temperatura en el ciclo de desarrollo, fecundidad, longevidad y proporción sexual de *D. quinculus*.

II. REVISIÓN DE LITERATURA

2.1. ASPECTOS GENERALES DEL PREDADOR D. quinculus (Gordon, 1994)

De acuerdo a la bibliografía reportada (Hoelmer & Pickett, 2003), la gama del complejo **D**. *pusillus* se pensó que se extendía desde los Estados Unidos (Nueva York) hasta el Perú, porque los caracteres de diagnóstico no eran conocidos.

La taxonomía del género *Delphastus*, fue tratada y revisada sistemáticamente por Gordon en 1970 y 1994 para el hemisferio occidental, siendo *Delphastus* el único representante nativo del hemisferio. El género *Delphastus* fue ubicado dentro de la subfamilia Sticholotidinae, de la tribu Serangiini (Gordon, 1970), la cual se caracteriza por tener una antena cuyo primer y segundo segmento son más largos que del segundo al sexto segmento, con una clava de un segmento alargado en el extremo apical y un prosternum fuertemente lobulado, donde se oculta el aparato bucal (Liu *et al.* 1996).

Delphastus se distingue de todos los demás miembros de la tribu, porque presenta una antena conformada por nueve segmentos, donde el tercer segmento antenal es cilíndrico; las tibias media y posterior fueron externamente anguladas con dentículos o una cresta en el margen exterior de cada ángulo (Gordon, 1994).

Los miembros de la tribu Serangiini son predadores obligados de la mosca blanca (Hemíptera: Aleyrodidae), Smith y Maltby (1964), fueron los primeros en tratar a las especies de *Delphastus* como agentes de control biológico (Gordon, 1994).

El género *Delphastus* se divide en dos grupos: el grupo *collaris* y el grupo *pusillus* (Gordon, 1994). La especie en estudio pertenece al grupo *pusillus*, el cual se caracteriza por presentar: 1) Los élitros son lisos y no presenta puncturas, además tienen ocho setas largas dispuestas en la cuarta parte del área basal del élitro, tal como se observa en *D. pusillus* y aproximadamente doce setas cortas en la mitad del ápice en el margen lateral del élitro; 2) El margen del élitro no presenta rebordes y la epipleura posterior presenta depresión; 3) El quinto sternum abdominal es pubescente, presentando mayor pubescencia

en la parte media y en cada lado; 4) La cápsula de la espermateca presenta una sección lateral; 5) El apéndice de la espermateca es grande y 6) La cápsula del penis presenta una área pequeña interna diferente a un embudo. Actualmente, la genitalia de la hembra es utilizada para la diferenciación entre especies, este descubrimiento, junto con el acceso a los especímenes de *Delphastus*, dieron lugar al reconocimiento de ocho especies más (Gordon, 1994).

Las especies pertenecientes al grupo *D. pusillus* son las siguientes: *D. nebulosus* Chapin, *D. pallidus* (Le Conte), *D. pusillus* (Le Conte), *D. sonoricus* Casey, *D. minutus* Gordon, *D. amazonensis*, *D. davidsoni*, *D. mexicanus*, *D. occidentalis* Juárez y Zaragoza, *D. argeniinicus* Nunenmacher, *D. quinculus* (Gordon, 1994), *D. berryi, D. dejavu*, *D. diversipes* (Champion) y *D. celatus* (Gordon, 1994) (Figura 1).

Figura 1: Distribución geográfica de especies pertenecientes al grupo *D. pusillus: Delphastus quinculus* (+), *D. berry* (□), *D. diversipes* (▲), *D. celatus* (●).
FUENTE: Gordon, R., 1994. South American Coccinellidae (Coleoptera) part III: Taxonomic Revision of the Western Hemisphere Genus *Delphastus* Casey.

2.1.1. CLASIFICACIÓN TAXONÓMICA, según Arnett 2002:

Reino	: Animalia
Phyllum	: Arthropoda
Clase	: Insecta
Orden	: Coleoptera
Suborden	: Polyphaga
Super familia	: Cucujoidea
Familia	: Coccinellidae
Sub Familia	: Sticholotidinae Weiss, 1901
Tribu	: Serangiini Pope, 1962
Género	: Delphastus Casey, 1899
Especie	: Delphastus quinculus (Gordon, 1994)

2.1.2. BIOLOGÍA Y COMPORTAMIENTO

Se ha tomado como antecedente de esta especie, citada anteriormente como *D. pusillus* y actualmente es reportada como *D. quinculus*.

D. pusillus se encuentra distribuido en Estados Unidos (California, Kansas, Tennessee, West Virginia, Massachusetts), México (Durango) y España (Islas Canarias) (GBIF).

D. quinculus se encuentra distribuido en Colombia (Cundinamarca, Meta, Tolima, Valle), Ecuador, Perú (Cusco, Loreto, Tumbes), Venezuela (Aragua, Barinas, Guárico, Lara). Antillas (Cuba, Haití, Granadinas, Grenada, Jamaica, Tobago) (González, 2007).

D. pusillus es un insecto holometábolo (metamorfosis completa) que presenta los siguientes estados de desarrollo durante su ciclo de vida: huevo, larva (cuatro estadíos larvales), pupa y adulto (García y López-Ávila, 1998; Liu *et al.* 1996).

Huevo, es cilíndrico con sus extremos redondeados y corion estriado. El período de incubación varía dependiendo las condiciones abióticas (Temperatura, % HR, e Intensidad de Luz), por ejemplo, el periodo de incubación está entre 3 a 4 días a 25 ± 2 °C y $58 \pm 5\%$ HR; el huevo es flácido debido a la conformación de la larva, con uno de sus extremos

más voluminoso que corresponde a la conformación de la cabeza; cuando el huevo está a punto de eclosionar, se observa claramente el cuerpo de la larva, distinguiéndose en la cabeza tres puntos negros, dispuestos en forma triangular que corresponden a los ojos simples ubicados a cada lado (García y López-Ávila, 1998). Las dimensiones del huevo son en promedio 0,43 mm de largo por 0,23 mm de ancho (Liu *et al.* 1996).

Los huevos eclosionan por el extremo donde se encuentra ubicada la cabeza de la larva, haciendo un orificio en forma de V. La larva al momento de emerger presiona el corion con su cabeza, abriendo un espacio suficiente para que por allí salga todo el cuerpo (García y López-Ávila, 1998).

Estadío larval I, el cuerpo presenta trece segmentos, posee gran cantidad de setas finas en el dorso y en las partes laterales; presenta seis patas, cada una de las cuales en su parte terminal posee un par de uñas; la cabeza es más oscura que el resto del cuerpo con una tonalidad marrón, sus ojos simples se observan, cómo tres puntos negros dispuestos de manera triangular y ubicados cada uno a los costados de la cabeza; en el costado interno de los ojos, se observan dos protuberancias que son las antenas atrofiadas; poseen un par de palpos y un par de mandíbulas, que le sirven para la búsqueda y consumo de su presa (García y López-Ávila, 1998; Hoelmer, 1993). Cuando la larva llega a su tamaño máximo, fija su último segmento abdominal a una superficie, se adhiere a ésta mediante la secreción de una sustancia pegajosa amarillenta, los anillos del cuerpo se vuelven más pronunciados y el cuerpo se encorva, pierde movimiento y se produce la muda.

La duración promedio de la larva de primer estadío fue de 3.6 días a 25 ± 2 °C y $58 \pm 5\%$ HR, con dimensiones de 0,56 mm de largo y 0,19 mm de ancho (García y López-Ávila, 1998).

Estadío larval II, la larva emerge por una abertura hecha en el dorso, entre la parte terminal de la cabeza y el tercer segmento torácico. La exuvia que queda en el proceso de muda se observa fuertemente adherido a la superficie y forma un ángulo aproximado de 45° con respecto a la superficie donde ha mudado. La larva de segundo estadío, es de mayor tamaño que la larva de primer estadío, con una coloración amarilla más intensa; presentando gran cantidad de setas en el dorso, mucho más rígidas y en mayor cantidad que en el primer estadio larval y cubren además del dorso los costados del cuerpo. A diferencia de la larva del primer estadio, en que el tamaño de la cabeza fue proporcional al tamaño del cuerpo, en la larva del segundo estadío la cabeza es más pequeña respecto a su cuerpo. La duración promedio del segundo estadío larval fue de 2,1 días, a 25 ± 2 °C y 58

± 5% HR, las dimensiones fueron de 1,40 mm de largo y 0,42 mm de ancho (García y López-Ávila, 1998).

Estadío larval III, el primer segmento del cuerpo comienza a aumentar de tamaño en el ancho, iniciándose la conformación de una cavidad que protege la cabeza, mediante la melanización de esta área; las larvas son más ágiles y activas que los estadíos anteriores, moviéndose rápidamente y alimentándose continuamente de los estados inmaduros de la mosca blanca. La duración promedio del tercer estadío larval fue de 2,7 días, a 25 ± 2 °C y $58 \pm 5\%$ HR, con dimensiones de 2,01 mm de largo y 0,60 mm de ancho (García y López-Ávila, 1998).

Estadío larval IV, las larvas presentan mayor incremento en el ancho que en el largo del cuerpo; la cavidad que protegerá la cabeza se diferencia con mayor facilidad, se observa de forma rectangular y del mismo tamaño de la cabeza; las antenas que se observan atrofiadas en el primer estadío, en este estadío se diferencian con mayor claridad, mostrando un mayor tamaño; las mandíbulas se observan más fuertes de color marrón oscuro, con las cuales la larva se alimenta; las setas dorsales se observan turgentes y rígidas cubriendo el cuerpo. La duración promedio del cuarto estadío larval fue de 3,8 días, a $25 \pm 2 \text{ °C y } 58 \pm 5\%$ HR, con dimensiones de 2,69 mm de largo y 0,89 mm de ancho. La mayoría de las larvas presentan cuatro estadíos, pero ocasionalmente puede ocurrir un quinto estadío supernumerario (García y López-Ávila, 1998; Liu *et al.* 1996; Hoelmer, 1993).

Las larvas del estadío IV, que se encuentran próximas a empupar (prepupa) dejan de alimentarse, para luego buscar un lugar donde realizan este cambio de estado. Como en los estadíos anteriores, la larva fija su último segmento abdominal a una superficie, se adhiere a ésta mediante la secreción de una sustancia pegajosa amarillenta, los anillos del cuerpo se vuelven más pronunciados y el cuerpo se encorva, recogiendo la cabeza hacia el interior del mismo, a veces las larvas que no logran adherirse bien a la superficie no alcanzan a empupar y mueren inmediatamente. Con el paso de los días las larvas sufren un incremento en el ancho de su cuerpo, se observa la pupa a punto de emerger en la exuvia larval. Debido a la curvatura que presenta la larva, la longitud fue menor que en la larva IV de fase alimentaria, con 2,16 mm en promedio, mientras que el ancho permaneció relativamente estable y fue de 0,91 mm en promedio. La duración promedio de la prepupa fue de 3,0 días a $25 \pm 2 \,^{\circ}$ C y $58 \pm 5\%$ HR (García y López-Ávila, 1998).

Pupa, inicialmente es de color amarillo y con el transcurrir de los días toma una coloración marrón, inicialmente en la cabeza, en el par de élitros del futuro adulto y

posteriormente en el resto del cuerpo; los élitros se empiezan a formar a los tres días de empupar, se observa como dos divisiones que se forman a los costados del cuerpo; se diferencian los segmentos abdominales, que posteriormente son cubiertos por los élitros; los tres pares de patas se ubican en la parte ventral recogidas. A diferencia del estado larval donde los ojos simples, se observan cómo tres puntos negros dispuestos de manera triangular, en las pupas los ojos compuestos son redondeados y de color negro. La duración promedio de la pupa fue de 7,3 días a 25 ± 2 °C y $58 \pm 5\%$ HR, las dimensiones fueron de 1,5 mm de largo y 1,1 mm de ancho (García y López-Ávila, 1998).

Adulto, de *D. pusillus*, se caracteriza por presentar la cabeza escotada en cada lado para la recepción de las antenas; dorsalmente son visibles especialmente cuando se alimenta.

La cabeza, el prosternum y el sternum son de color algo más claro o amarillento. El prosternum es liso y es fuertemente lobulado anteriormente, ocultando las piezas bucales. El cuerpo tiene forma oval semiesférica, es de color marrón oscuro y posee un par de alas membranosas, estas alas le sirven para realizar vuelos cortos, las cuales están protegidas por dos élitros de color negro brillantes, de apariencia lisa, ligeramente pubescentes en la base y el ápice. Los élitros presentan escasas puncturas.

El primer par de patas se encuentra ubicada en la base del protórax, separados de los otros dos pares, las patas presentan fémur bien desarrollado, tarso trisegmentado y un par de uñas; el abdomen presenta cinco sternum visibles, terminados en punta con gran cantidad de setas muy finas en el último segmento, los sexos son separados (García y López-Ávila, 1998; Liu *et al.* 1996).

Los adultos de *D. pusillus* presentan dimorfismo sexual, siendo la hembra de mayor tamaño que el macho. Esta mide 1,65 mm de largo por 1,16 mm de ancho en promedio; el macho mide 1,49 mm de largo por 1,06 mm de ancho. El macho se diferencia fácilmente de la hembra por la cabeza amarilla y el borde lateral del pronotum amarillo. Las antenas presentan nueve segmentos cada una, siendo clavadas en el extremo apical (García y López-Ávila, 1998; Liu *et al.* 1996).

En la pre cópula y cópula, las hembras requieren de un período de preoviposición y el macho puede empezar a montar a la hembra, a los cinco días después de haber emergido. El cortejo se inicia con un acercamiento de la hembra al macho, ésta lo palpa con su par de antenas por un breve período de tiempo; el macho ante este estímulo se desplaza rápidamente tratando de evitar el contacto con la hembra, mientras que ésta va tras él para

ġ

alcanzarlo. La hembra deja de perseguir al macho y presenta una reacción por parte de éste, el toma la iniciativa y va en busca de la hembra por algunos momentos. Seguidamente la hembra se detiene y permanece inmóvil mientras que el macho la monta, sujetando su primer par de patas en la base de los élitros de la hembra y sus otros dos pares de patas los ubica a los costados del cuerpo de ésta. En esta etapa la hembra puede rechazar al macho moviéndose fuertemente, o puede aceptarlo. El macho estira la parte terminal de su abdomen y lo curva formando un arco dirigiéndolo hacia el abdomen de la hembra para alcanzar la genitalia de ésta, iniciándose de esta manera la cópula (García y López-Ávila, 1998).

García y López-Ávila (1998), observaron las primeras posturas 15 días después de la emergencia ($25 \pm 2 \text{ }^{\circ}\text{C}$ y 58 \pm 5% HR), así esta haya sido observada copulando.

En la primera postura solo colocó un huevo, la cantidad fue aumentando después de la primera oviposición, alcanzando un máximo de 4 huevos por día.

Es de gran importancia, que la hembra oviposite en áreas donde exista suficiente alimento para su descendencia, debido a que los estados larvales requieren varias presas para completar su desarrollo y los individuos de primer estadío larval, tienen recursos energéticos limitados para conseguir presas óptimas, este estadío es el más vulnerable a la mortalidad natural (García *et al.* 2005), también se observó que los hábitos alimenticios de larvas y adultos fueron similares, para que *D. pusillus* se pueda alimentar, las larvas y los adultos del coccinélido palpan la hoja con sus piezas bucales en busca de su presa, pasando a menudo por sus proximidades sin verla. Cuando detectan a su presa (huevo, ninfa o pupario), el predador toca el dorso de su presa por breves momentos, si la presa es aceptada inserta su par de mandíbulas en los costados del cuerpo de la presa.

D. pusillus, muestra una marcada tendencia a evitar los estadios ninfales parasitados por los aphelinidos *Encarsia transvena* (Timberlake) y *Eretmocerus sp. nr. californicus* Howard; este comportamiento se debe a que el parasitoide al alimentarse de la ninfa hace que la presa sufra cambios fisiológicos, liberando fluidos internos que son parte de su alimentación, endureciendo la cutícula de la ninfa (presa) gradualmente, además durante la alimentación del parasitoide se forman espacios de aire lo cuales pueden interferir con la absorción de los líquidos que requiere *D. pusillus* a la hora de alimentarse (Savoiskaya 1960; Hoelmer *et al.* 1994). *Delphastus pusillus* (Le Conte), es potencialmente un buen agente de control biológico de *B. tabaci* biotipo B (*=Bemisia argentifolii* Bellows & Perring) en Florida (Hoelmer *et al.* 1993, Heinz *et al.* 1994, Heinz & Parrella 1994), así

como en colonias de biotipo A (Hoelmer *et al.* 1993, 1994), también se ha registrado alimentándose vorazmente sobre estados inmaduros de *T. vaporariorum* en diferentes cultivos y regiones de Colombia (García *et al.* 1998).

Las altas tasas de consumo de huevos de mosca blanca, favorecen la supresión de grandes infestaciones de mosca blanca, como alimento alternativo recientemente ha sido reportado a *D. quinculus* predando sobre diferentes presas como *Crypticerya multicicatrices* Kondo y *Unruh* (Hemiptera: Monophlebidae) consumiendo posturas y ninfas recién emergidas, *Aleurocanthus woglumi* Ashby (Gordon 1994), *A. floccosus* (Maskel) (Hemiptera: Aleyrodidae) (Hoelmer *et al.* 1994); *Pinnaspis aspidistrae* (Signoret) y *P. strachani* (Cooley) (Hemiptera: Diaspididae) en una huerta de limón (Miró y Castillo 2010, Gonzales 2012), la capacidad de utilizar presas alternativas, estaría a favor de la supervivencia, cuando la población de mosca blanca fuera baja (Hoelmer *et al.* 1993, 1994), estaa capacidad del predador para seleccionar la presa y para evitar presas parasitadas es un atributo útil para facilitar su uso en el manejo integrado de plagas.

2.2. TABLAS DE VIDA PARA EL ESTABLECIMIENTO DE UN MODELO FENOLÓGICO EN FUNCIÓN A LA TEMPERATURA

La tabla de vida es un componente importante en el entendimiento de la dinámica de la población de una especie (Deevy, 1947, citado por Southwood, 1978; García *et al.* 2005). Deevy (1947), fue el primer investigador que enfocó su atención en la importancia de estas tablas, que fueron usadas para determinar la expectativa de vida de un organismo en un estado específico. En la obtención de una tabla de vida, se deben estimar tres parámetros de la población para que esta sea lo más completa posible. El primero es el número de individuos vivos que entran a cada estado del ciclo de vida del insecto; el segundo la mortalidad a partir de factores específicos en cada estado de vida y el tercero la fecundidad (Bellows *et al.* 1992).

El éxito del establecimiento de una especie, depende principalmente de la compatibilidad climática para su desarrollo, siendo la temperatura el principal factor que los afecta. Con ayuda de una herramienta llamada *ILCYM* (Insect Life Cycle Modeling), en la cual utilizaremos las tablas de vida, se puede obtener modelos fenológicos, los cuales van a ayudar a predecir el momento en que ocurrirán los cambios durante el desarrollo de un organismo. *ILCYM* es una herramienta analítica importante para la predicción, evaluación

y comprensión de la dinámica de las poblaciones de las plagas (Sporleder *et al.* 2009). El Centro Internacional de la Papa, ha desarrollado un modelo fenológico basado en la temperatura, que predice satisfactoriamente los parámetros de las tablas de vida para diferentes zonas agro ecológicas (Sporleder *et al.* 2004), validados con datos de campo y laboratorio (Keller 2003), en zonas agro-ecológicas específicas, en relación con los datos de temperatura (Kroschel and Sporleder, 2006). El modelo, al ser utilizado junto con sistemas de información geográfica (GIS) y la temperatura atmosférica, nos permite la simulación de estos índices de riesgo a una escala a nivel mundial (Sporleder *et al.* 2007; Sporleder *et al.* 2009). Esta herramienta también puede ser utilizada para predecir cambios futuros en los índices a consecuencia del calentamiento global (Sporleder *et al.* 2007; Sporleder *et al.* 2008), también nos ayuda a determinar el momento oportuno de realizar la liberación de los enemigos naturales (Berti y Marcano, 1997).

2.3. ASPECTOS GENERALES DE LA MOSCA BLANCA DE LOS INVERNADEROS T. vaporariorum (Westwood, 1856)

T. vaporariorum es una especie de amplia distribución a nivel mundial (Martín, 1987; Cardona *et al.* 2005). Generalmente está por encima de los 1000 m.s.n.m. Es una plaga polífaga que se alimenta de más de 250 especies de plantas hospederas, incluidas en más de 80 familias de plantas, teniendo preferencia por las familias Solanaceae, Fabaceae, Cucurbitaceae, etc. (Caballero, 1994).

2.3.1. CLASIFICACIÓN TAXONÓMICA, según Mound & Halsey, 1978

Reino	: Animalia
Phylum	: Arthropoda
Clase	: Insecta
Orden	: Hemiptera
Suborden	: Sternorrhyncha
Superfamilia	: Aleyrodoidea
Familia	: Aleyrodidae Westwood, 1840
Género	: Trialeurodes Cockerell, 1902
Especie	: Trialeurodes vaporariorum (Westwood, 1856)

2.3.2. BIOLOGÍA

T. vaporariorum es un insecto hemimetábolo (metamorfosis gradual) que presenta los siguientes estados de desarrollo durante su vida: huevo, cuatro estadíos ninfales y adulto (Stenseth, 1985; Cardona *et al.* 2005). Frecuentemente los tres estados de desarrollo se observan en el envés de las hojas.

Huevo, la mosca blanca se fija en el envés de la hoja mediante un pedicelo, el huevo es liso, alargado, la parte superior termina en punta y la parte inferior es redondeada, mide 0.23 mm de longitud y 0.1 mm de ancho, inicialmente son blancos, luego se tornan amarillos y próximos a la eclosión café oscuro (Cardona *et al.* 2005; Morales, 2006).

Estadío ninfal I, se observa luego de la eclosión del huevo, este estadío es llamado también gateadora o crawler, debido a que el insecto se mueve por la hoja hasta localizar un sitio apropiado para iniciar su alimentación (es el único estadío inmaduro que tiene movimiento), posee ojos simples de color rojo, tres pares de patas y un par de antenas. Mide 0.27 mm de longitud y 0.15 mm de ancho, es traslúcida con algunas manchas amarillas. Cuando se fija a la hoja, se produce la atrofia de las patas y antenas, secreta melaza por el orificio anal (Cardona *et al.* 2005; Stenseth, 1985).

Estadío ninfal II, es translúcida, de forma oval con bordes ondulados. Mide 0.38 mm de longitud y 0.23 mm de ancho (Cardona *et al.* 2005).

Tanto el estadio ninfal I como el II, se observan con mayor facilidad con la ayuda de una lupa de 10 aumentos por su tamaño.

Estadío ninfal III, es oval, aplanada y translúcida semejante al estadío ninfal II, sin embargo es de mayor tamaño, casi el doble ya que mide de 0.54 mm de longitud y 0.33 mm de ancho, se observa fácilmente sin necesidad de usar lupa (Cardona *et al.* 2005).

Estadío ninfal IV (pupario), recién formada es oval, plana y casi transparente. A medida que avanza su desarrollo, se torna opaca y en ese momento se da el nombre de pupario. El pupario está rodeado por filamentos de seda largos y erectos que son característicos, de perfil sobresale elevada sobre la superficie de la hoja. En el pupario más desarrollado próxima a la emergencia del adulto, los ojos se observan con facilidad. La pupa o pupario mide de 0.73 mm de longitud y 0.45 mm de ancho. El estadío pupario es importante porque sirve para realizar la identificación de la especie, porque estas difieren en su biología y en el tipo de daño que provocan (Cardona *et al.* 2005; Caballero, 1994).

Adulto, mide 1 mm de longitud, presenta un aparato bucal picador chupador bien desarrollado, el cuerpo es de color amarillo limón. Las alas son transparentes y están cubiertas por un polvillo blanco, son angostas en la parte anterior con el margen posterior más ancho; en reposo las mantienen en forma plana sobre el abdomen. Por lo general, sobre todo en las hembras, las alas quedan levemente traslapadas en la línea media del dorso. Los ojos son de color rojo oscuro. Las hembras son un poco más grandes que los machos. Se alimentan y ovipositan en el envés de las hojas jóvenes, las cuales seleccionan por atracción de color. Los adultos copulan apenas emergen, pero puede haber un período de preoviposición de un día. Una hembra oviposita de 80 a 300 huevos dependiendo de la temperatura, *T. vaporariorum* se puede reproducir partenogenéticamente y la progenie estará constituida exclusivamente por machos (Cardona *et al.* 2005; Caballero, 1994; Escobar y Peláez, 1986).

El ciclo de vida de *T. vaporariorum* tiene un periodo de 46 a 62 días; la duración de los estadíos ninfales y del estado de pupario es de 10 a 14 días a las temperaturas de 23 a 27 °C; los adultos pueden tener una longevidad de 30 a 40 días (Metcalf citado por Escobar y

Peláez, 1986). Sin embargo, Stenseth (1985) dice que el tiempo de desarrollo total puede variar de 18 a 123 días, dependiendo de la temperatura.

2.3.3. IMPORTANCIA ECONÓMICA

T. vaporariorum alcanza particular importancia, porque ha sido reconocida como vector de algunos virus de importancia en América Latina (Morales *et al.* 2006). La enfermedad del "virus del amarillamiento de las nervaduras de la papa" (Potato yellow vien virus, *PYVV*), posiblemente es originaria de la parte septentrional del Ecuador y del Sur de Colombia. En Colombia se ha observado en los departamentos de Nariño, Antioquía, Tolima y Cundinamarca (Alba, 1952; Butiricá, 1971; Tamayo y Navarro, 1984; Saldarriaga, 1988). En el Ecuador en toda la zona productora de papa (Díaz, 1966; Butiricá, 1971). El "virus del amarillamiento de las nervaduras de la papa" (*PYVV*) es un problema en la zona papera del Oriente Antioqueño (Colombia) desde 1943 (Alba, 1952), inicialmente no tenía importancia debido a que su presencia era esporádica, sin embargo, desde 1983 ha aumentado su incidencia. Saldarriaga *et al.* 1988, mencionó reducciones en el rendimiento de 41.82% y 53.76% para los cultivares colombianos Capiro y Picacho.

El "virus del amarillamiento de las nervaduras de la papa" (*PYVV*) se está extendiendo con rapidez debido a las altas poblaciones del insecto vector *T. vaporariorum* (Westwood), al difícil control del insecto, a la transmisión del patógeno a través del tubérculo, a las siembras asociadas papa-frijol, siendo el frijol un huésped importante del insecto y a la no utilización de semilla certificada libre del patógeno (Díaz y Pulgarín, 1989).

En el Perú también ha sido reportado el "virus del amarillamiento de las nervaduras de la papa" (*PYVV*) (Salazar *et al.* 2000; Butiricá, 1971; Díaz *et al.* 1989; Tamayo y Navarro, 1984), en las localidades de Chota, Huaraz y Huancayo en forma persistente, pero no por inoculación mecánica (Díaz y Pulgarín, 1989) y en 1998 fue reportada en Venezuela en el estado de Lara, Meridia, Tachira y Trujillo, esta enfermedad (*PYVV*) disminuye el rendimiento en 50% (Díaz y Pulgarín, 1989).

En referencia a las interacciones del insecto con la papa y el "virus del amarillamiento de las nervaduras de la papa" (*PYVV*), Saldarriaga (1987) observó que el color amarillo dado por la enfermedad al follaje atrae el insecto, favoreciendo una mayor distribución del patógeno. También la preferencia de los adultos por alimentarse de las hojas tiernas produce que las plántulas de papa puedan infectarse rápidamente (Díaz y Pulgarín, 1989).

2.3.4. MÉTODOS DE CONTROL

En general el control de una plaga consiste en mantener la densidad de su población debajo del nivel en el cual comienza a causar perjuicio económico (Cisneros, 1995). La implementación de estrategias de control para plagas como la mosca blanca de los invernaderos, requiere de la utilización de diversos métodos, siendo el paso más importante la correcta identificación del problema fitosanitario (Morales *et al.* 2006).

a. Control genético

La resistencia genética es la estrategia más efectiva, económicamente viable y respetuosa del medio ambiente y de la salud de agricultores y consumidores, pero la alta inversión en recursos humanos y materiales, además del tiempo necesario en desarrollar variedades mejoradas, son algunas de las razones por las cuales no ha recibido la atención debida en América Latina (Morales *et al.* 2006).

b. Control cultural

Existen varias prácticas culturales recomendadas como el manejo de la época de siembra, la rotación de cultivos, el manejo de agua, el manejo de malezas, la destrucción de residuos de cosecha, la protección física de semilleros, la protección física del cultivo y otras prácticas culturales (Morales *et al.* 2006).

c. Control legal

El Ministerio de Agricultura legisla medidas fitosanitarias obligatorias, como prohibir (veda) total o parcialmente (sólo algunos meses) la siembra de cultivos hospederos de mosca blanca, o virus transmitidos por estos insectos, para evitar el incremento exponencial de la población plaga, debido a las siembras continuas, al abandono de las socas o al monocultivo de especies susceptibles (Morales *et al.* 2006).

d. Control biológico

El control biológico es una de las estrategias más deseables para el problema de la mosca blanca, pero no actúa con suficiente rapidez para reducir sus poblaciones, este control es realizado por predadores de los órdenes Coleóptera, Díptera, Neuróptera, Hemíptera y Thysanoptera; parasitoides del orden Hymenoptera (*Amitus, Encarsia y Eretmocerus*), pero el uso intensivo de plaguicidas, hace que los organismos benéficos no sean efectivos y

no se restablezca el equilibrio ecológico, siendo la acción de los enemigos naturales muy limitada (Morales *et al.* 2006).

En el Perú existen pocas referencias sobre el control biológico de las especies de mosca blanca. Sotomayor y Montes (1999) informaron de algunos controladores biológicos de *Bemisia* sp. como *Rhinacloa* sp., *Geocoris punctipes, Nabis punctipennis* y *Encarsia* sp., en los cultivos de algodonero, frijol y pallar.

En 1998-1999 en el cultivo de algodonero y camote, Cisneros y Mujica (1999), citaron entre los predadores más abundantes a las arañas *Anyphaena* spp. y *Pardosa* sp. y la mosca Dolichopodidae *Condylostylus similis*, a los coccinélidos *Cycloneda sanguinea, Scymnus* sp., *Hippodamia convergens, Eriopis connexa* y *Coleomegilla maculata* alimentándose de los inmaduros de mosca blanca. Entre las especies menos abundantes estuvieron *Chrysoperla* spp., *Hyaliodes* sp., *Rhinacloa* spp., *Nabis puntipennis* y *Geocoris punctipes*.

En la campaña del algodonero 1998–1999, se presentó en el valle de Cañete una epizootia natural causada por el hongo *Paecilomyces fumosoroseus*, que redujo drásticamente las poblaciones de *B. tabaci* (Vidal *et al.* 1996; Torres y Cárdenas, 1996), pero también fueron identificados otros hongos como *Aschersonia aleyrodes, Beauveria bassiana, Paecilomyces farinosus, P. fumosoroseus* y *Verticillium lecani*, con la capacidad de infectar a *B. tabaci* y *B. argentifolii* (Morales *et al.* 2006).

En Colombia en la búsqueda de alternativas de manejo de la plaga de mosca blanca, se han adelantado estudios del insecto predador *Delphastus pusillus* (Le Conte) (Coleoptera: Coccinellidae), que se alimenta de las dos especies de mosca blanca de mayor importancia económica *T. vaporariorum* y *B. tabaci* (López-Ávila *et al.* 2001).

a. Control químico

Las plagas que causan daño directo, son controladas con insecticidas cuando alcanzan el "umbral de acción", pero en el caso de un insecto vector de virus no se puede hablar de "umbral", porque los virus causan mayor daño en las etapas iniciales del desarrollo de las plantas susceptibles, cuando las plantas presentan síntomas de la enfermedad, las pérdidas por rendimiento serán totales o muy significativas, por lo tanto se debe proteger la planta con un insecticida sistémico de nueva generación (neonicotinoides y tiametoxam) (Morales *et al.* 2006).

Los insecticidas y otros productos biológicos, como el neem (Azadirachta indica), los extractos de plantas que actúan como repelentes, los aceites y jabones o detergentes

orgánicos e inorgánicos, no deben usarse cuando hay alta presión de la mosca o virus transmitidos por este insecto, sino pasado el período crítico del cultivo (45 a 60 días) para mantener baja la población de adultos de *T. vaporariorum* (Morales *et al.* 2006).

Desde la aparición del problema de la mosca blanca de los invernaderos *T. vaporariorum*, en los cultivos de tomate en el valle Ica a mediados de 1996, no se ha encontrado un control adecuado, utilizando sólo un método de control (control cultural, control biológico o control químico unilateralmente). Gerling (1992) recomienda el uso de diferentes enemigos naturales, junto con plantas resistentes e insecticidas selectivos. En Arizona (EUA) se recomienda el uso de insecticidas reguladores de crecimiento de insectos, en la primera etapa del cultivo luego a medida que el cultivo desarrolla, usar insecticidas no piretroides y al final de la campaña se recomiendan los piretroides (Morales *et al.* 2006).

III. MATERIALES Y MÉTODOS

3.1. LUGAR

El presente trabajo de investigación se realizó, en el Laboratorio de Virología del Centro Internacional de la Papa y en el Laboratorio de Investigación del Departamento de Entomología de la Universidad Nacional Agraria La Molina, entre Marzo del 2009 y Abril del 2011.

En el museo de entomología se encuentra registrada una muestra de seis especímenes provenientes de la crianza efectuada con el código UA 217 - 2008.

3.2. IDENTIFICACIÓN DE LA ESPECIE

La identificación fue realizada por el entomólogo especialista en Coccinellidae Dr. Guillermo González en Chile, el cual determinó que el insecto en estudio corresponde a *Delphastus quinculus*.

3.3. MATERIALES

3.3.1. EQUIPOS:

Cámara de crecimiento marca BIOTROM Modelo LH-220 N, microscopio estereoscopio trinocular marca OLYMPUS Modelo SZX-7, microscopio trinocular marca OLYMPUS Modelo CX 41 RF-5, cámara digital marca OLYMPUS Modelo EVOLT E 330, cámara digital marca PANASONIC Modelo DMC-FZ 28 PL-K y computadora Laptop marca DELL Modelo E 6400 (Figura 2 y 3).
3.3.2. MATERIAL DE VIDRIO:

Viales de 15 mm de diámetro por 45 mm de largo, tubos de ensayo, vaso de precipitación, placa excavada, láminas de porta y cubre objetos.

3.3.3. MATERIAL DE PLÁSTICO:

Tapers rectangulares de 30 cm x 17 cm x 10 cm, placas petri de 9 cm de diámetro, placas petri de 14.5 cm de diámetro, botellas de 100 ml de capacidad, aspirador de insectos, macetas de 4 pulg. de diámetro por 9 cm de altura y $\frac{1}{2}$ lt. de capacidad, tapers plásticos descartables de 1 lt. de capacidad, bandejas y piceta de agua (Figura 3).

3.3.4. MATERIAL DE MADERA:

- Jaulas de crianza de dos mangas de dimensiones: 76.5 cm x 41 cm x 52cm (Figura 2)
- Jaulas portátiles de madera de una manga de dimensiones: 60 cm x 30 cm x 30 cm.

3.3.5. MATERIAL BIOLÓGICO:

Tubérculos de semilla de papa (S. tuberosum) de la variedad Canchan INIA y las especies Delphastus quinculus y Trialeurodes vaporariorum (Figura 3).

3.3.6. OTROS:

Papel toalla, tela de organza, malla antiáfida, parafilm, alcohol al 96%, algodón, miel de abeja, polen, pistola y barras de silicona, lejía, detergente, engrampadora de madera, grapas de madera, pinceles, estiletes, bisturí, pinzas, sacabocado, mechero, fósforo, tijera, lupa de 20X, marcador indeleble, hormona de enraizamiento, tierra preparada y desinfectada, cinta de embalaje, cinta masking tape, chinches, lápiz, tajador, borrador, lapicero, regla, hojas y folders (Figura 3).

3.4. METODOLOGÍA

3.4.1. CRIANZA MASAL DE T. vaporariorum

Se realizaron siembras escalonadas de tubérculos semilla de papa (*S. tuberosum*) de la variedad Canchan INIA, luego de la tercera semana de desarrollo, las macetas fueron colocadas dentro de una jaula de dos mangas (Figuras 2b y 2c), ubicados en un invernadero bajo condiciones controladas (18-23°C, 80% HR y 12 hr. de fotoperiodo) (Figura 2d), luego se procedió a infestar las jaulas con la plaga, se mantuvo una crianza masal de la plaga para disponer de alimentos para la instalación del predador.

3.4.2. COLECTA DE INSECTOS ADULTOS E INMADUROS DE D. quinculus

Para el inicio de esta investigación, se colectaron en el sector La Playa, distrito de Mollepata, provincia de Anta, región Cusco a una altitud de 2,250 m.s.n.m. en condiciones climatológicas: clima seco mediterráneo, adultos e inmaduros del predador, provenientes de hojas de papayo (*Carica papaya*) y malvarrosa (*Althaea rosea*), infestadas con *T. vaporariorum*, especie colectada e identificada, por M. Narrea (UNALM) y H. Gamarra (CIP).

Se acondicionaron las hojas colectadas con el predador y la plaga de la siguiente manera: los peciolos fueron introducidos en un frasco de plástico (8.5 cm largo x 3 cm de diámetro) con agua, para evitar su deshidratación y se colocó como soporte de la hoja algodón, luego este frasco conteniendo las hojas con el predador y plaga, fue introducido dentro de un taper de plástico rectangular (30 cm x 17 cm x 10 cm), cuya tapa previamente había sido cortada, dejando un margen de 3 cm de borde por lado y esta abertura había sido cubierta con malla entomológica y pegada con silicona, se colocaron tres frascos por taper, luego los tapers que contenían a los insectos, fueron trasladados del Cusco a la ciudad de Lima, a los laboratorios de virología del Centro Internacional de la Papa.

21

Figura 2: Instalación de la colonia madre de *D. quinculus*. a) Cámara de crecimiento con la crianza masal de *D. quinculus;* b) Propagación de plantas de papa (Canchan INIA); c) Jaula de crianza masal de *T. vaporariorum*; d) Invernadero para la crianza masal de *T. vaporariorum*.

3.4.3. CRIANZA MASAL DE D. quinculus

Con la ayuda de un microscopio estereoscopio, se revisaron las hojas provenientes del campo. Los insectos adultos fueron acondicionados en placas petri de 14.5 cm de diámetro, las tapas de las placas estuvieron modificadas haciéndoles una perforación de 5 cm de diámetro, las cuales fueron cubiertas con tela de organza y pegadas con silicona (Figura 3a y 3f), en la base de la placa se colocó papel toalla y tres viales de vidrio de 15 mm de diámetro por 45 mm de largo "micro floreros" conteniendo brotes de papa, infestados con la plaga T. vaporariorum y una solución de agua, miel y polen en la proporción 3:1:0.25, se cerró la placa y se selló con parafilm, debido al canibalismo que presentaron entre ellas, para los estados inmaduros del predador, se individualizaron y se acondicionaron en placas petri de 9 cm de diámetro, cuyas tapas fueron perforadas y acondicionadas con tela de organza, en la base de la placa se colocó papel toalla y un "micro florero" de papa infestado con la plaga (Figura 3g), finalmente la placa cubierta fue sellada con parafilm, todas estas placas fueron colocadas dentro de la cámara de crecimiento a 25 °C y un fotoperiodo de 12 horas de luz y 12 horas de oscuridad (Figura 2a), de esta manera se dio inicio a la crianza masal del insecto, los adultos fueron observados diariamente, se encontró parejas copulando (Figura 3d) y se pudo determinar, que la hembra presenta el cuerpo negro o de color rojizo oscuro y las patas amarillo brillantes, también es de mayor tamaño (Figura 41h), mientras que el macho presenta las patas y la cabeza amarilla y es de menor tamaño que la hembra (Figura 41i), esto coincidió con las diferencias morfológicas descritas por Liu & Stansly en 1996. Todos los días fueron colectadas las posturas para obtener insectos de la misma edad y dar inicio al estudio correspondiente.

Figura 3: Materiales y método de crianza de *D. quinculus*. a) Materiales de laboratorio; b) Microscopio estereoscopio; c) Micro floreros con hojas de papa infestadas con huevos y ninfas de *T. vaporariorum*, papeles untados con agua, miel y polen (3:1:0.25); d) Pareja de *D. quinculus* en cópula; e) Macho de *D. quinculus;* f) Acondicionamiento de placas petri con malla en la tapa; g) Micro florero de papa con huevos y estados inmaduros de la plaga; h) Evaluación diaria de los micro floreros al microscopio estereoscopio; i) Posturas y ninfas de *T. vaporariorum* (flechas azules), larva del predador *D. quinculus* (círculo rojo).

3.4.4. METODOLOGÍA DE DESARROLLO DE LAS TABLAS DE VIDA DE *D. quinculus*

Elegida la temperatura a estudiar, las evaluaciones se realizaron todos los días, con los siguientes pasos: (Figura 4)

- a. De la cámara bioclimática, se procedió a sacar las placas que contenían un microflorero con hojas de papa infestados con la plaga *T. vaporariorum* y un insecto del predador *D. quinculus*.
- b. Con ayuda de un microscopio estereoscopio, se procedió a revisar las hojas de papa para encontrar al predador y evaluar si este insecto había presentado cambio de estado.

 c. En el caso de larvas, la evaluación fue para determinar la presencia o ausencia de la exuvia, que nos indicó el cambio de estado del insecto (la flecha indica la exuvia).

d y e. En el caso de los insectos adultos fue para determinar el periodo de oviposición, cantidad de posturas y longevidad del adulto, además del micro florero con alimento, se añadió un papel untado con una solución de agua, miel y polen en la proporción 3:1:0.25 (las flechas indican la pareja de insectos adultos).

f y g. Terminada la evaluación diaria de la placa, se procedió a cerrarla y sellarla con parafilm para evitar el escape del insecto en estudio.

 Luego, en una hoja de formato para la tabla de vida, si procedió a registrar el nuevo dato evaluado.

 Cuando se observó un cambio en el estado del insecto, se anotó en la placa la fecha en que observó este cambio.

- j. Terminada la evaluación de las placas a la temperatura en estudio, se procedió a llevarlas de regreso a la cámara bioclimática.
- k. Finalmente, los datos observados fueron registrados en un archivo de Excel en la computadora.

se

3.4.4.a. PERÍODO DE INCUBACIÓN, TIEMPO Y TASA DE DESARROLLO Y ESTABLECIMIENTO DE UN MODELO PARA EL ESTADO HUEVO

Se contaron y marcaron 100 huevos de la misma edad provenientes de la crianza masal, al eclosionar el huevo, la larva fue individualizada en una placa petri, este proceso fue seguido para las temperaturas de 18 °C, 20 °C, 25 °C y 28 °C; para las temperaturas extremas de 15 °C y 32 °C, se procedió a utilizar plantas en maceta, debido que a 15 °C se prolongó mucho el periodo de incubación de los huevos y los tallitos de las hojas en el agua se pudrieron y para la temperatura de 32 °C, las hojas de papa contenidos en los micro floreros se deshidrataron rápidamente. Diariamente se evaluó cada placa para determinar el periodo de incubación se realizó hasta la eclosión de los huevos o hasta que el huevo colapsó por deshidratación.

Todos los datos obtenidos de las tablas de vida a 18 °C, 20 °C, 25 °C, 28 °C y 32°C, fueron introducidos en el *software ILCYM*, (no se introdujo los datos a 15 °C, porque ninguna de las posturas eclosionó) de esta manera se pudo obtener el tiempo de desarrollo y la tasa de desarrollo de los estados inmaduros, se estableció un modelo para cada estado de desarrollo; con los datos registrados se obtuvo la frecuencia de desarrollo de los insectos, cuyo estado fenológico duró hasta el cambio del siguiente estado.

Para este estado se utilizó un modelo binario (formato éxito-fracaso) sin intercepto cuya estructura fue:

• Variable dependiente:

$$Y = \begin{cases} Exito (1) : \text{Insecto cuy o estado fenológico duró hasta el cambio al} \\ \text{siguiente estado} \\ Fracaso(0) : \text{Insecto cuy o estado fenológico no cambió o murió antes} \\ \text{de ser adulto} \end{cases}$$

• Variables independientes:

 X_1 = Logaritmo neperiano de los días observados

Finalmente se definió el modelo como "La probabilidad de que el estado fenológico de un insecto dure hasta el cambio al siguiente estado a la temperatura estudiada en un día fijo".

3.4.4.b.PERÍODO LARVAL, TIEMPO Y TASA DE DESARROLLO Y ESTABLECIMIENTO DE MODELOS

Para los estadíos larvales (primero, segundo, tercero y cuarto), se consideró a todos los individuos del estado anterior que llegaron al siguiente estado larval, los datos provenientes de las tablas de vida a las diferentes temperaturas en estudio (18 °C, 20 °C, 25°C, 28 °C y 32 °C), fueron introducidos al *software ILCYM* (Versión 3.0) y con ello se pudo calcular el tiempo de desarrollo y la tasa de desarrollo, estableciéndose un modelo para cada estado de desarrollo larval; con los datos registrados se obtuvo la frecuencia de desarrollo de los insectos, cuyo estado fenológico duró hasta el cambio del siguiente estado.

3.4.4.c.PERÍODO PUPAL, TIEMPO Y TASA DE DESARROLLO Y ESTABLECIMIENTO DE UN MODELO

Se consideró a todos los individuos del estado anterior (larva), que llegaron al estado de pupa, hasta que el 100 por ciento de los adultos emergió. Para el establecimiento de los mejores modelos de utilizó los mismos métodos explicados anteriormente.

3.4.4.d.PERÍODO DE LONGEVIDAD DE LOS ADULTOS Y ESTABLECIMIENTO DE UN MODELO PARA EL TIEMPO Y TASA DE SENESCENCIA

Para el estudio de la longevidad, se consideró a los insectos adultos apareados provenientes de los ciclos de desarrollo (los adultos recién emergidos tuvieron un periodo de melanización y esclerotización de 24 horas, luego fueron sexados y acondicionados por parejas de la misma edad; se les alimento con posturas y ninfas de la plaga y una solución de agua, miel y polen en la proporción 3:1:0.25, hasta que todos murieron). Para el tiempo y tasa de senescencia, se utilizó los mismos métodos explicados anteriormente.

3.4.4.e.MORTALIDAD DE LOS ESTADOS INMADUROS Y ESTABLECIMIENTO DE LOS MODELOS PARA ESTA VARIABLE

Se contabilizaron los individuos que no lograron pasar al siguiente estado, la mortalidad de los estados de huevo, larva y pupa se evaluaron en forma independiente, las mortalidades fueron expresadas en porcentajes. Se utilizó los mismos métodos explicados anteriormente.

3.4.4.f.CAPACIDAD DE REPRODUCCIÓN Y ESTABLECIMIENTO DE UN MODELO PARA LA FRECUENCIA DE OVIPOSICIÓN

Para realizar estas observaciones, se utilizaron las parejas provenientes del estudio del ciclo de desarrollo, los adultos de 24 horas de edad fueron acondicionados por parejas, se les alimentó con posturas y ninfas de la plaga y con una solución de agua, miel y polen (3:1:0.25).

Diariamente se cambió el alimento y se evaluó, hasta que la hembra murió. Se estableció el mejor modelo para la frecuencia de oviposición y se utilizó el mismo método explicado anteriormente.

3.5. PROPORCIÓN DE SEXOS

Se procedió a instalar 5 parejas por cada temperatura en estudio y se realizó el seguimiento correspondiente de toda su descendencia, registrando la proporción de sexos.

<u>NH</u> : NH = 0.5:1; 1.5:1; 1:1 NM NH = Número de insectos hembra NM = Número de insectos macho

3.6. ANÁLISIS DE DATOS PARA EL MODELO FENOLÓGICO

El Centro Internacional de la Papa (CIP), ha desarrollado un *software* llamado Insect Life Cycle Modelling (*ILCYM*), que es una herramienta que permite desarrollar y utilizar modelos fenológicos basados en la temperatura y con los datos obtenidos de las tablas de vida, se podrá predecir el crecimiento potencial del enemigo natural en estudio (Sporleder *et al.* 2004, 2009). Para el análisis de los datos provenientes de la tabla de vida, se utilizó:

- La herramienta de *ILCYM*, que contiene el programa estadístico R-2.15.1, sirvió para el desarrollo de los modelos fenológicos basados en la temperatura. De los 54 modelos contenidos dentro del *software ILCYM* se eligieron tres, que fueron los que biológicamente representaron mejor las condiciones biológicas registradas en las tablas de vida; luego con el mismo *ILCYM*, se realizó una simulación determinística a diferentes condiciones de temperatura y el modelo final elegido para cada estado de desarrollo, longevidad y fecundidad, fueron aquellos con los cuales la simulación pudo ser llevada a cabo. Se determinaron los parámetros de las tablas de vida, se desarrolló el modelo de fenología y por último se determinó los parámetros para un conjunto de temperaturas fluctuantes para la validación del modelo.
- Finalmente la aplicación del programa *ILCYM* y los resultados del modelaje proveen un mejor entendimiento de la biología y ecología del predador el cual servirá para que sea incluido dentro de un programa de manejo integrado de plagas para mejorar la seguridad alimentaria y la vida diaria de los agricultores (Sporleder *et al.* 2012).
- También se utilizó las pruebas estadísticas de Kruskal-Wallis.

3.7. PARÁMETROS DE LA TABLA DE VIDA DE D. quinculus

Los parámetros observados y simulados fueron modelados mediante el programa *ILCYM*, procesando los estados de desarrollo de: huevo, larva y pupa y también la senescencia del adulto. Para que esto se realizara, fue necesario agrupar los cuatro estadíos larvales en un solo estado larval, de lo contrario se subestiman los valores parecidos, además la metodología del *software* está diseñado para analizar sólo estados de desarrollo y no estadíos de desarrollo, por lo que se obtuvieron los siguientes parámetros: Tasa intrínseca de crecimiento (r_m), Tasa de reproducción neta (R_o), Tasa de crecimiento reproductivo (GRR), Tiempo de generación (GL o T), Tasa de crecimiento finito (λ) y Tiempo doble (D_t).

En el programa *ILCYM* se eligió la opción de simulación determinística, el *software* requirió de:

- El número de insectos fue de 100 (datos provenientes de la tabla de vida).
- El número de días correspondiente a un año (365).
- Temperaturas a simular (18, 20, 25, 28 y 32 °C)
- Para todos los parámetros simulados se escogió la ecuación cuadrática, por ser la que mejor representó los datos observados.

a. Tasa de reproducción neta (R₀)

Es el número de progenie hembra sobreviviente en la generación x + 1 producida por una hembra de la generación x durante su periodo de oviposición. $\sum m_x l_x$

 l_x : Proporción de insectos vivos en el intervalo de edad x

 m_r : Promedio del número de hembras colocado por hembra en el intervalo de edad x

b. Tasa intrínseca de crecimiento (r_m)

Es la capacidad de un individuo para reproducirse expresado en una tasa, asumiendo que la población posee un crecimiento exponencial, bajo condiciones constantes ambientales, donde el espacio y la comida son ilimitados y es igual al log (λ)

$$Ln (R_0)/T$$

c. Tasa de crecimiento finito (λ)

Es la tasa que se debe multiplicar a una población inicial de hembras, para obtener el número de la población final de hembras en el tiempo t.

$$\operatorname{Exp}(r_m)$$

d. Tiempo de generación (GL o T)

Es el tiempo estimado en días entre el nacimiento de una generación, hasta que las hembras de esa generación alcanzan el 50 por ciento de oviposición.

T = (1 / dhuevo) + (1 / dlarva) + (1 / dpupa) + (1 / Shembras) * TN hembras

dhuevo	: Tasa de desarrollo de huevo
dlarva	: Tasa de desarrollo de larva
dpupa	: Tasa de desarrollo de pupa
Shembras	: Tasa de senescencia de las hembras
TN hembras	: Edad normalizada de las hembras hasta un 50 por ciento de oviposición

e. Tiempo doble (Dt)

Es el tiempo estimado en días que requiere la población para duplicar su número.

 $Ln(2)/(r_m)$

f. Tasa de crecimiento reproductivo (GRR)

Es el número total promedio de huevos producidos por una hembra en toda su vida, medida en huevos / hembra / generación.

3.8. PARÁMETROS E ÍNDICES SIMULADOS PARA UN CONJUNTO DE TEMPERATURAS FLUCTUANTES

Para la validación del modelo fue necesario realizar una crianza a temperatura fluctuante, la cual fue llevada a cabo entre el 18 de octubre del año 2010 y el 11 de enero del año 2011, perteneciendo a la ubicación geográfica del CIP – La Molina, Lima Perú. En este tipo de simulación los submodelos escogidos para esta investigación, fueron utilizados para construir un modelo fenológico que permita calcular los parámetros para cualquier temperatura. La simulación se realizó para comprobar si el modelo estadístico era correcto.

3.9. ANÁLISIS ESTADÍSTICO DE LA TABLA DE VIDA DE D. quinculus

Para el análisis de normalidad se utilizó la prueba de Shapiro-Wilk; para la homogeneidad de variancias se utilizó la prueba de Levene que es una modificación de la prueba robusta de Brown-Forsythe y la prueba estadística de Kruskal-Wallis.

IV. RESULTADOS

D. quinculus es una especie que ha sido registrada en el Perú, en la zona cálida de la región Cusco.

4.1. EFECTO DE LA TEMPERATURA EN LA BIOLOGÍA DEL PREDADOR *D*. *quinculus*

Para el estudio de la influencia de la temperatura en la biología del predador, se determinó el tiempo de desarrollo, la tasa de desarrollo de los diferentes estados inmaduros: huevo, larva y pupa, la capacidad de oviposición, la proporción de sexos, la longevidad y la mortalidad de los individuos de *D. quinculus*.

4.1.1. a. PERÍODO DE INCUBACIÓN DE LOS HUEVOS DE D. quinculus

Se observó, que el período de incubación de los huevos disminuyó con el aumento de la temperatura, siendo a 18 °C el periodo más prolongado en comparación a las otras temperaturas estudiadas, se registró diferencias significativas para 18 °C, 20 °C y 25 °C, pero en 28 °C y 32 °C fueron estadísticamente similares, para ello se utilizó la prueba estadística de Kruskal–Wallis (Cuadro 1, Figura 5 y Anexo 1).

El período de incubación a 15 °C de temperatura no hubo eclosión, sin embargo el 15 por ciento de las posturas, presentaron a través del corium del huevo el desarrollo de ojos simples, distinguiéndose una puntuación oscura a cada lado de la cabeza, lo que nos indica que se había formado la larva, más no pudo salir por efecto de la temperatura.

Cuadro 1: Promedio en días del período de incubación de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

Temperatura	n	Período de Incubación
(°C)		(Dias) $(x \pm EE^{**})$
15*	0	$0.00 \pm NA$
18	53	8.43 ± 0.09 a
20	59	7.69 ± 0.21 b
25	63	$4.87 \pm 0.06 c$
28	71	4.25 ± 0.09 d
32	29	$4.48 \pm 0.09 \mathrm{d}$

* No se observó eclosión de los huevos para la temperatura de 15°C

** EE = Error estándar

Figura 5: Período de incubación del estado huevo en días de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

4.1.1. b. MODELOS PARA EL TIEMPO Y TASA DE DESARROLLO DEL HUEVO

El período de incubación de los huevos es inversamente proporcional al incremento de la temperatura, los huevos eclosionaron de forma completa entre los 18 °C hasta 32 °C, sin embargo, el porcentaje de eclosión aumentó conforme aumentó la temperatura.

Para el período de incubación del huevo existe una tendencia de diferir para cada temperatura, las curvas mostraron una clara separación en el orden de menor a mayor temperatura. La curva de 32 °C se muestra más cercana al cero en el eje del período de incubación, lo que significa que el período fue mucho menor, las siguientes curvas aparecen de forma decreciente hasta llegar a 18 °C, donde se observó un período de incubación mucho mayor (Figura 6, Cuadro 2). Las curvas y su pendiente común (Slope = 8.71), han sido estimadas con la función complementaria Cloglog. Siendo significativa (P < 0.05).

Cuadro 2: Tiempo de desarrollo observado y esperado de los huevos de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

Temperatura (°C)	Observado (Días)	Esperado (Días)
15*	0	. 0
18	8	7.763
20	9	7.677
25	5	4.396
28	4 .	3.853
32	4	3.741

No se observó eclosión de los huevos para la temperatura de 15°C

Para la tasa de desarrollo del huevo, se observó que cuando aumentó la temperatura, aumentó en forma directa la tasa de desarrollo del huevo, entre 28 °C y 32 °C se observó un quiebre de la curva y se inició una disminución, continuando esta tendencia conforme continua el aumento de la temperatura (Figura 7). El modelo fue Tb Model.

Figura 6: Frecuencia acumulada de desarrollo (%) de *D. quinculus* del estado de huevo para cinco temperaturas constantes, según el modelo de Cloglog. La línea horizontal en el 50% del eje Y, indica que el 50% de la población pasa a estado de larva I, las líneas verticales que se desprenden de esta indican el tiempo en que esto sucede.

Figura 7: Tasa de desarrollo del estado de huevo de *D. quinculus* a cinco temperaturas, según el modelo Tb Model. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo, la línea punteada roja hace referencia al modelo lineal.

Ln = Logaritmo neperiano

4.1.2. a. PERÍODO DE DESARROLLO LARVAL DE D. quinculus

Durante el período de desarrollo larval se observó que a 18 °C, el período fue el más prolongado en comparación a las otras temperaturas, determinando que el período de desarrollo larval es inversamente proporcional al incremento de la temperatura.

Con la prueba estadística de Kruskal–Wallis, se encontró diferencias significativas para las temperaturas de 18 °C, 20 °C y 32 °C, sin embargo estadísticamente fueron similares para 25 °C y 28 °C, (Cuadro 3, Figura 8 y Anexos 2, 3, 4, 5 y 6). Además, se observó que para la temperatura de 15 °C, ninguna postura pasó al estado larval.

Cuadro	3:	Duración	promedio	en	días,	del	estado	larval	de	D.	quinculus	Gordon
(Col.: Coccinellidae) a temperaturas constantes.												

	Tie	Tiempo de desarrollo de la larva (Días)							
Temperatura (°C)		$(\overline{x} \pm EE^{**})$							
	LI	LII	LIII	L IV	$\overline{\mathbf{x} \pm \mathrm{EE}^{**}}$				
15*	$0.00 \pm NA$	0.00 <u>+</u> NA	0.00 <u>+</u> NA	0.00 <u>+</u> NA	$0.00 \pm NA$				
18	4.00 <u>+</u> 0.17 a	3.23 <u>+</u> 0.18 a	3.06 <u>+</u> 0.14 a	9.00 <u>+</u> 0.19 a	12.48 ± 0.36 a				
20	3.36 <u>+</u> 0.14 b	2.53 <u>+</u> 0.09 b	2.76 <u>+</u> 0.09 a	8.08 <u>+</u> 0.29 b	10.63 <u>+</u> 0.43 b				
25	2.22 <u>+</u> 0.09 c	2.17 ± 0.09 c	1.75 <u>+</u> 0.08 c	4.27 <u>+</u> 0.17 c	7.76 <u>+</u> 0.18 c				
28	1.86 <u>+</u> 0.09 d	2.45 ± 0.09 bc	2.07 <u>+</u> 0.10 b	3.86 ± 0.15 cd	$7.31 \pm 0.25 c$				
32	1.41 <u>+</u> 0.11 e	1.41 <u>+</u> 0.09 d	1.66 <u>+</u> 0.15 c	3.41 <u>+</u> 0.27 d	4.34 <u>+</u> 0.22 d				

* No se observó eclosión de los huevos para la temperatura de 15°C

** EE = Error estándar

Figura 8: Período de desarrollo larval total en días de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

En el período de desarrollo larval por estadíos, se observó que:

Para la larva I, se presentó diferencias significativas en todas las temperaturas; en la larva II, se registró diferencias significativas a 18 °C, 20 °C, 25 °C y 32 °C, sin embargo se observó que a 28 °C, el desarrollo de la larva II fue estadísticamente similar, que a 20 °C y 25 °C (Cuadro 3).

En la larva III, se observó diferencias significativas a 28 °C con respecto a las demás temperaturas, sin embargo, bajo las temperaturas de 18 °C y 20 °C, se observó que fueron estadísticamente similares, lo mismo se observó bajo las temperaturas constantes de 25 °C y 32 °C; en la larva IV, se obtuvo diferencias significativas a 18 °C, 20 °C, 25 °C y 32 °C, sin embargo el desarrollo bajo condiciones de temperatura de 28°C fue estadísticamente similar a 25 °C y 32 °C (Cuadro 3).

4.1.2. b. MODELOS PARA EL TIEMPO Y TASA DE DESARROLLO DEL ESTADO LARVAL

Para el tiempo de desarrollo del estado larval, también se observó que al aumentar la temperatura, disminuyó el tiempo de desarrollo para los valores observados y esperados (Cuadro 4).

Las curvas de distribución del desarrollo larval a lo largo del tiempo (Log neperiano de los días) = Ln a las temperaturas de 18 °C, 20 °C, 25 °C, 28 °C y 32 °C, mostraron una clara separación de menor a mayor temperatura. La curva de 32 °C se muestra más cercana al cero en el eje del tiempo de desarrollo, lo que significa que el tiempo para desarrollarse fue mucho menor, las siguientes curvas aparecen de forma decreciente a 28 °C, 25 °C, 20°C, hasta llegar a 18 °C, donde se observó un tiempo de desarrollo mucho mayor (Figuras 9, 10, 11 y 12, Cuadro 4).

El modelo para el tiempo de desarrollo del estadío larval I, II y III fue Probit, las pendientes fueron de: 2.56, 2.69 y 2.36, para el estadío larval IV el modelo fue Logit con una pendiente de 5.99, siendo significativas (P < 0.05).

Cuadro 4: Tiempo de desarrollo observado y esperado de las larvas de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

Temperatura	C	bserva	do (Día	ls)	Esperado (Días)				
(°C)	LI	LI	L III	LIV	LI	Ĺ II	LIII	LIV	
15*	0	0	0	0	0	0	0	0	
18	4	3	3	9	3.333	2.494	2.435	8.212	
20	3	2	3	7	2.517	1.839	2.006	6.989	
25	2	2	2	4	1.539	1.636	1.242	3.593	
28	2	2	2	4	1.342	1.760	1.374	3.283	
32	1	1	2	4	0.888	0.851	1.064	2.923	

* No se observó eclosión de los huevos para la temperatura de 15°C

Larva 1

Tiempo de Desarrollo en Dias (Ln-días)

Figura 9: Frecuencia acumulada de desarrollo (%) de *D. quinculus* del estadío larva I para cinco temperaturas constantes, según el modelo Probit. La línea horizontal en el 50% del eje Y, indica que el 50% de la población pasa a estado de larva II, las líneas verticales que se desprenden de esta indican el tiempo en que esto sucede.

Ln = Logaritmo neperiano

Tiempo de Desarrollo en Días (Ln-días)

Figura 10: Frecuencia acumulada de desarrollo (%) de *D. quinculus* del estadío larva II para cinco temperaturas constantes, según el modelo Probit. La línea horizontal en el 50% del eje Y, indica que el 50% de la población pasa a estado de larva III, las líneas verticales que se desprenden de esta indican el tiempo en que esto sucede.

Larva III

Tiempo de Desarrollo en Días (Ln-días)

Figura 11: Frecuencia acumulada de desarrollo (%) de *D. quinculus* del estadío larva III para cinco temperaturas constantes, según el modelo Probit. La línea horizontal en el 50% del eje Y, indica que el 50% de la población pasa a estado de larva IV, las líneas verticales que se desprenden de esta indican el tiempo en que esto sucede.

Ln = Logaritmo neperiano

Tiempo de Desarrollo en Días (Ln-días)

Figura 12: Frecuencia acumulada de desarrollo (%) de D. quinculus del estadío larva IV para cinco temperaturas constantes, según el modelo Logit. La línea horizontal en el 50% del eje Y, indica que el 50% de la población pasa a estado de pupa, las líneas verticales que se desprenden de esta indican el tiempo en que esto sucede. Para las tasas de desarrollo de los estadíos larvales, con respecto a las temperaturas en estudio en *D. quinculus*, en las figuras 13, 14, 15 y 16, se observó que la tasa de desarrollo se incrementó al aumentar la temperatura hasta los 32 °C, luego al seguirse incrementando la temperatura, se observó un quiebre de la curva, iniciándose una disminución de la tasa de desarrollo, lo que indicó que el insecto fue afectado negativamente.

Se eligieron modelos que describieron apropiadamente el patrón de desarrollo, que es dependiente de la temperatura para esta especie entre 18 °C y 32 °C, siendo el modelo para los estadíos larvales I y II Hilbert & Logan 2 (Figura 13 y 14); para el estadío larval III, el modelo fue Logan 4 (Figura 15) y para el estadío larval IV el modelo fue Janish 1 (Figura 16); pero a 15°C no se presentó desarrollo larval.

Figura 13: Distribución acumulativa de la tasa de desarrollo del estadío de larva I de *D. quinculus* para cada temperatura según el modelo Hilbert & Logan 2. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo, la línea punteada roja hace referencia al modelo lineal.

Figura 14: Distribución acumulativa de la tasa de desarrollo del estadío de larva II de *D. quinculus* para cada temperatura según el modelo Hilbert & Logan 2. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo, la línea punteada roja hace referencia al modelo lineal.

Figura 15: Distribución acumulativa de la tasa de desarrollo del estadío de larva III de *D. quinculus* para cada temperatura según el modelo Logan 4. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo, la línea punteada roja hace referencia al modelo lineal.

Figura 16: Distribución acumulativa de la tasa de desarrollo del estadío de larva IV de *D. quinculus* para cada temperatura según el modelo Janish 1. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo, la línea punteada roja hace referencia al modelo lineal.

4.1.3. a. PERÍODO DE DESARROLLO PUPAL DE D. quinculus

A las temperaturas de 18 °C, 20 °C, 25 °C, 28 °C y 32 °C, los insectos llegaron al estado de pupa, se observó que el tiempo de desarrollo decreció con el incremento de la temperatura, se utilizó la prueba estadística de Kruskal–Wallis, encontrándose diferencias significativas para todas las temperaturas estudiadas, para el periodo pupal y también por sexos, pero en una misma temperatura, el período pupal fue estadísticamente similar entre hembras y machos (Cuadro 5, Anexo 7). A la temperatura de 15 °C no se registró desarrollo.

Temperatura	Pupa Total	Hembra	Macho
(°C)	$(\bar{x} \pm EE^{**})$	$(\bar{x} \pm EE^{**})$	$(\overline{x} \pm EE^{**})$
15*	0.00 <u>+</u> NA	0.00 <u>+</u> NA	0.00 <u>+</u> NA
18	9.83 ± 0.08 a	9.70 ± 0.12 a	$10.04 \pm 0.12 a$
20	7.76 ± 0.09 b	7.57 ± 0.16 b	7.89 <u>+</u> 0.09 b
25	$5.29 \pm 0.09 c$	$5.32 \pm 0.10 c$	5.26 <u>+</u> 0.14 c
28	4.75 ± 0.07 d	4.69 ± 0.09 d	4.81 ± 0.10 d
32	4.07 <u>+</u> 0.16 e	3.94 ± 0.19 e	3.91 <u>+</u> 0.21 e

Cuadro 5: Duración promedio en días del período pupal total y por sexo de *D*. *quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

* No se observó eclosión de los huevos para la temperatura de 15°C

** EE = Error estándar

El período pupal de las hembras fue menor comparado con el periodo pupal de los machos en las temperaturas en estudio, encontrándose diferencias significativas entre ellas, sin embargo, cuando las hembras fueron comparadas con los machos bajo la misma temperatura constante, estadísticamente fueron similares (Cuadro 5, Figura 17).

Figura 17: Duración promedio en días del período pupal de hembras y machos de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

4.1.3. b. MODELOS PARA EL TIEMPO Y TASA DE DESÀRROLLO DEL ESTADO PUPAL

Se presentaron las curvas de distribución del desarrollo pupal a lo largo del tiempo (Log neperiano de los días) = Ln a las temperaturas de 18 °C, 20 °C, 25 °C, 28 °C y 32 °C.

Se observó que cuando aumentó la temperatura, disminuyó el número de días del tiempo de desarrollo pupal (Cuadro 6), además para el tiempo de desarrollo las curvas mostraron una clara separación en el orden de menor a mayor temperatura, indicando que a mayor temperatura el tiempo de desarrollo para el estado pupal disminuyó (Figura 18). La curva de 32 °C se muestra más cercana al cero en el eje del tiempo de desarrollo, lo que significa que el tiempo para desarrollarse fue mucho menor, las siguientes curvas aparecen de forma decreciente de 28 °C hasta 18 °C, donde se observó un tiempo de desarrollo mucho mayor (Cuadro 6, Figura 18). Las curvas y su pendiente común (Slope = 15.83) ha sido estimada con la función complementaria Logit. Siendo significativa (P < 0.05).

Temperatura (°C)	Observado (Días)	Esperado (Días)
15*	0	0
18	10	9.30
20	8	7.22
25	5	4.77
28	5	4.21
32	4	3.37

Cuadro 6: Tiempo de desarrollo observado y esperado de las pupas de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

* No se observó eclosión de los huevos para la temperatura de 15°C

La tasa de desarrollo del estado pupal *de D. quinculus* con respecto a la temperatura, registró un incremento conforme aumentó la temperatura hasta los 32 °C, luego se observó un quiebre de la curva seguido por una disminución progresiva de la tasa de desarrollo pupal, a pesar que la temperatura continuó aumentando, lo cual indicó que el insecto fue afectado negativamente (Figura 19). El patrón de la tasa de desarrollo que es dependiente de la temperatura fue descrito apropiadamente con el modelo Logan 1.

Tiempo de Desarrollo en Dias (Ln-días)

Temperatura (grados celsius)

Figura 18: Frecuencia acumulada de desarrollo (%) de D. quinculus para el tiempo de desarrollo de pupa para cinco temperaturas constantes, según el modelo Logit. La línea horizontal en el 50% del eje Y, indica la línea en que el 50% de la población pasa a estado adulto, las líneas verticales que se desprenden de esta indican el tiempo en que esto sucede.

Ln = Logaritmo neperiano

Figura 19: Distribución acumulativa de la tasa de desarrollo del estado de pupa de D. quinculus, para cinco temperaturas constantes según el modelo Logan 1. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo, la línea punteada roja hace referencia al modelo lineal.

4.1.4. LONGEVIDAD DE LOS ADULTOS Y ESTABLECIMIENTO DE LOS MODELOS TIEMPO Y TASA DE SENESCENCIA

Para el estudio de la longevidad, se consideró a los insectos adultos apareados provenientes de los ciclos de desarrollo, se utilizó la prueba estadística de Kruskal–Wallis y se encontró diferencias significativas sólo para la temperatura de 18 °C, siendo estadísticamente similares para las demás (Cuadro 7).

En general se observó que al aumentar la temperatura en 18 °C, 20 °C y 32 °C, la longevidad del insecto disminuyó de 43.13 a 25.08 y 22.28 días, sin embargo cuando la temperatura aumentó en 25 °C y 28 °C, la longevidad del insecto aumentó a 27.52 y 31.70 días, esto nos indicó que las temperaturas de 25 °C y 28 °C fueron favorables al insecto (Cuadro 7, Figura 20, Anexo 8).

Para el estudio de la longevidad de acuerdo al sexo, se observó que a 18 °C los machos fueron más longevos que las hembras.

En 20 °C las longevidades para ambos sexos fueron muy similares.

Al incrementarse las temperaturas a 25 °C, 28 °C y 32 °C, se observó que la longevidad de los machos disminuyó, siendo la longevidad de las hembras mayor; también se observó que a 25 °C y 28 °C, las hembras fueron más longevas que los machos, esto nos indicó que 25 °C y 28 °C fueron temperaturas óptimas para el insecto en estudio; a 32 °C la longevidad disminuyó en ambos sexos con respecto a 25 °C y 28 °C, lo cual nos indicó que la alta temperatura afectó negativamente al insecto (Cuadro 7, Figura 21, Anexo 8).

Las curvas de tiempo de desarrollo para la longevidad de hembras y machos son cercanas en 20 °C, 25 °C, 28 °C y 32 °C, sin embargo a 18 °C se observó más alejada de las demás del "eje Y", con un tiempo de desarrollo de longevidad más largo en comparación a las demás temperaturas en estudio, esto coincidió con lo observado en el análisis en ambos sexos (Figuras 21, 22 y 23, Cuadro 7).

Para la longevidad de las hembras el modelo fue Logit con una pendiente de 1.74 y para los machos el modelo fue Cloglog con una pendiente de 1.14, siendo significativa (P < 0.05) (Figuras 22 y 23).

Longevidad	Hembra	Macho
Total	$(\bar{x} \pm EE^{**})$	$(\bar{\mathbf{x}} \pm \mathbf{EE^{**}})$
0	$0.0 \pm NA$	0.0 <u>+</u> NA
43.13 a	39.07 <u>+</u> 4.22	47.35 <u>+</u> 5.80
25.08 b	24.78 <u>+</u> 3.71	25.28 <u>+</u> 4.36
27.52 b	30.64 <u>+</u> 5.74	25.03 <u>+</u> 4.17
31.70 b	34.97 <u>+</u> 7.32	28.53 <u>+</u> 4.62
22.28 b	23.44 <u>+</u> 4.61	20.36 ± 4.64
	Longevidad Total 0 43.13 a 25.08 b 27.52 b 31.70 b 22.28 b	LongevidadHembraTotal $(\bar{x} \pm EE^{**})$ 0 $0.0 \pm NA$ 43.13 a 39.07 ± 4.22 25.08 b 24.78 ± 3.71 27.52 b 30.64 ± 5.74 31.70 b 34.97 ± 7.32 22.28 b 23.44 ± 4.61

Cuadro 7: Longevidad promedio en días y por sexo de hembras y machos apareados de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

* No se observó eclosión de los huevos para la temperatura de 15°C

** EE = Error estándar

Para la tasa de senescencia del estado adulto se observó, para hembras y machos que entre las temperaturas de 15 °C y 30 °C, la velocidad de envejecimiento es más corta, es decir envejecen más lento, pero según el modelamiento no es claro que ocurriría exactamente a temperaturas extremas, sólo aproximamos una curva con fines prácticos para las simulaciones.

Para la tasa de senescencia del estado adulto de hembras y machos el modelo fue Hilbert & Logan 3 (Figuras 24 y 25).

Figura 20: Duración promedio en días de la longevidad total de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

Hembra Macho

Figura 21: Duración promedio en días de la longevidad de hembras y machos apareados de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

Hembra

Macho

Figura 22: Frecuencia acumulada de desarrollo (%) para la longevidad de las hembras (Ln días) de *D. quinculus* a cinco temperaturas constantes, según el modelo Logit. Cada línea de color es una temperatura. Los puntos de colores son los datos observados para cada temperatura; la línea negra que se intercepta con el 50% del "eje Y" indica que el 50% de la población de hembras muere, las líneas verticales que se desprenden de ésta indican el tiempo en que esto sucede.

Figura 23: Frecuencia acumulada de desarrollo (%) para la longevidad de los machos (Ln días) de *D. quinculus* a cinco temperaturas constantes, según el modelo Cloglog. Cada línea de color es una temperatura. Los puntos de colores son los datos observados para cada temperatura; la línea negra que se intercepta con el 50% del "eje Y" indica que el 50% de la población de los machos muere, las líneas verticales que se desprenden de ésta indican el tiempo en que esto sucede.

Ln = Logaritmo neperiano

Figura 24: Tasa de senescencia de las hembras vs la temperatura según el modelo Hilbert & Logan 3. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo.

Figura 25: Tasa de senescencia de los machos vs la temperatura según el modelo Hilbert & Logan 3. Los puntos azules son los datos observados, la línea roja es la línea predictiva del modelo.

4.1.5. CICLO DE VIDA VS. TEMPERATURA DEL PREDADOR D. quinculus

El ciclo de vida del insecto comprendió: el ciclo de desarrollo más la longevidad del insecto en estudio (Cuadros 8 y 9, Anexo 9); para el ciclo de desarrollo, se consideraron las temperaturas en las cuales los insectos sobrevivieron desde el estado de huevo hasta que el insecto adulto murió, excepto a la temperatura de 15 °C, donde se registró el número de días hasta que el huevo colapsó.

Se observó que el ciclo de desarrollo fue más prolongado a 18 °C con 37.19 y 36.24 días en hembras y machos, disminuyendo el período de tiempo a medida que aumentó la temperatura, se registró a 32 °C 16.17 y 16.91 días en hembras y machos.

Cuadro 8: Ciclo de desarrollo de acuerdo al sexo de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

Temperatura (°C)	n	Ciclo de desarrollo Hembra $(\bar{x} \pm EE^{**})$	Ciclo de desarrollo embra $(\overline{x \pm EE^{**}})$ n	
15*				
18	27	37.19 <u>+</u> 0.35	27	36.24 <u>+</u> 0.38
20	23	32.87 <u>+</u> 0.59	36	31.75 <u>+</u> 0.27
25	28	20.50 ± 0.25	34	21.32 ± 0.20
28	35	19.31 ± 0.29	36	19.16 ± 0.18
32	18	16.17 ± 0.20	11	16.91 <u>+</u> 0.28

* No se observó eclosión de los huevos para la temperatura de 15°C
** EE = Error estándar

El ciclo de vida muestra la supervivencia del insecto, que fue mayor a 18°C, disminuyendo a mayor temperatura hasta los 32°C, excepto a 28 °C donde se registró un incremento, esto nos indicó que 28 °C fue una temperatura favorable para el insecto en estudio, se utilizó la prueba estadística de Kruskal–Wallis y se observaron diferencias significativas para 32 °C con respecto a las demás temperaturas, pero estadísticamente similares para las temperaturas de 18 °C y 20 °C, así mismo para 20 °C y 28 °C, para 28 °C y 25 °C y finalmente para 15 °C y 25 °C (Cuadro 9, Anexo 9).

Temperatura	Ciclo de vida		Ciclo de vida	n	Ciclo de vida
(°C)	$(\overline{x} \pm EE^{**})$	л	(Hembra $\overline{x \pm} EE^{**}$)	11	(Macho x ± EE**)
15*	26.59 <u>+</u> 0.61 c				
18	51.91 <u>+</u> 3.64 a	27	76.26 <u>+</u> 4.31 a	27	83.59 <u>+</u> 5.76 a
20	41.15 ± 2.67 ab	23	57.65 <u>+</u> 3.84 b	36	57.03 <u>+</u> 4.35 b
25	35.11 <u>+</u> 2.77 c	28	51.14 <u>+</u> 5.76 c	34	46.35 ± 4.25 c
28	39.21 ± 3.56 bc	35	54.31 <u>+</u> 7.31 c	36	47.69 ± 4.62 c
32	16.61 ± 1.72 d	18	39.61 ± 4.66 c	11	37.27 ± 4.59 c

Cuadro 9: Ciclo de vida de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

* No se observó eclosión de los huevos para la temperatura de 15°C

** EE = Error estándar

Se observó que la supervivencia del insecto fue mayor a 18 °C, el día 25 la supervivencia disminuyó hasta el 58 por ciento, luego permaneció con una pendiente más estable hasta el día 41, con una supervivencia del 53 por ciento y progresivamente disminuyó hasta que el último insecto murió el día 123 (Figura 26, Anexo 9).

A 20 °C se observó, que para el día 31 la supervivencia llegó al 61 por ciento, luego disminuyó progresivamente hasta el día 68 con una supervivencia del 9 por ciento, el último insecto murió a los 157 días (Figura 26, Anexo 9).

A 25 °C se presentó una alta mortalidad en los primeros 28 días, con una supervivencia del 50 por ciento, posteriormente la supervivencia disminuyó, en el día 40 se observó una supervivencia del 30 por ciento, en el día 62 se registró una supervivencia del 10 por ciento, posteriormente el último insecto murió el día 129 (Figura 26, Anexo 9).

En 25 °C y 28 °C, la tendencia de supervivencia fue la misma, pero se observó que existieron dos insectos hembras muy longevas respecto a las demás, muriendo estas dos a los 191 y 206 días respectivamente (Figura 26, Anexo 9).
A 32 °C se presentó la menor supervivencia, se registró en los primeros catorce días 31 por ciento de supervivencia, posteriormente en el día 31 la supervivencia disminuyó al 15 por ciento y el último insecto murió en el día 82 (Figura 26, Anexo 9).

A 15 °C se registró la supervivencia del huevo, este fue observado hasta que colapsó, no pudiéndose determinar el periodo exacto de muerte del embrión.

Para el ciclo de vida de acuerdo al sexo, se registró para las hembras un promedio de: 76.26, 57.65, 51.14, 54.31 y 39.61 días, a las temperaturas de 18 °C, 20 °C, 25 °C, 28 °C y 32 °C, se utilizó la prueba estadística de Kruskal–Wallis y se encontró diferencias significativas para 18 °C y 20 °C, siendo la mayor supervivencia a 18 °C, para 25 °C, 28 °C y 32 °C estadísticamente fueron similares (Cuadro 9, Figura 27).

Para el ciclo de vida de los machos, se registró un promedio de: 83.59, 57.03, 46.35, 47.69 y 37.27 días, a las temperaturas de 18 °C, 20 °C, 25 °C, 28 °C y 32 °C, se utilizó la prueba estadística de Kruskal–Wallis y se encontró diferencias significativas para 18 °C y 20 °C, siendo la mayor supervivencia a 18 °C, para 25 °C, 28 °C y 32 °C, estadísticamente fueron similares (Cuadro 9, Figura 28).

Curvas de Kaplan- Meier

Figura 26: Análisis de la Supervivencia en días de D. quinculus Gordon (Col.: Coccinellidae) a seis temperaturas constantes.

Universidad Nacional Agraria Biblioteca Agrícola Nacional

43900

Figura 27: Análisis de la Supervivencia de las hembras en días de *D. quinculus* Gordon (Col.: Coccinellidae) a cinco temperaturas constantes.

Figura 28: Análisis de la Supervivencia de los machos en días de *D. quinculus* Gordon (Col.: Coccinellidae) a cinco temperaturas constantes.

4.1.6. MORTALIDAD DE LOS ESTADOS INMADUROS Y ESTABLECIMIENTO DE MODELOS PARA ESTA VARIABLE

La mortalidad registrada estuvo fuertemente influenciada por la temperatura, se observó que la mayor mortalidad se presentó en las temperaturas extremas, como lo registrado a 15 °C, donde no eclosionó ninguna postura y a 32 °C la mortalidad alcanzó el 71 por ciento, la temperatura que presentó menor porcentaje de mortalidad fue 28 °C, con 29 por ciento. También se observó que los primeros estadíos larvales y en la prepupa, se presentó la mayor mortalidad y el estado menos susceptible fue el de pupa con una mortalidad del 10 por ciento (Cuadro 10).

Cuadro 10: Porcentaje de la mortalidad de los estados inmaduros de *D. quinculus* Gordon (Col.: Coccinellidae) temperaturas constantes.

T		Huevo	Larva I	Larva II	Larva III	Larva	IV (%)	Pupa	Total
(°C)	п	(%)	(%)	(%)	(%)	F. A.*	F. P.**	(%)	(%)
15	100	100	100	100	100	100	100	100	100
18	100	6	6	5	5	5	18	2	47
20	100	0	11	6	8	2	11	3	41
25	100	0	1	15	9	2	10	0	37
28	100	0	11	4	1	3	5	5	29
32	100	0	32	12	13	11	3	0	71

* F. A. es la fase alimentaria de la larva IV

** F.P. es la fase post-alimentaria o prepupa de la larva IV

Para la mortalidad del estado de huevo se observó, que a la temperatura de 15 °C fue del 100 por ciento, se consideró la mortalidad como la no eclosión de los huevos, a 18 °C se registró el 6 por ciento de mortalidad, para las demás temperaturas las posturas eclosionaron (Cuadro 10). El modelo fue Wang 8 (Figura 29).

Figura 29: Mortalidad del estado de huevo, según el modelo Wang 8. La línea entera es la línea predictiva del modelo, los puntos son los datos observados.

Para el estadío larval I, la mayor mortalidad se observó a 32 °C con 32 por ciento y la menor a 25 °C con el 1 por ciento, lo que nos indicó que esta temperatura fue muy favorable al desarrollo del insecto, a 20 °C y 28 °C la mortalidad fue similar para ambas temperaturas con 11 por ciento (Cuadro 10), el modelo fue Polynomial 1 (Figura 30).

Para el estadío larval II, la mayor mortalidad se observó a 25 °C con 15 por ciento, seguida de 32 °C con el 12 por ciento de mortalidad, siendo desfavorables éstas temperaturas para este estadío larval II, para las demás temperaturas en estudio la mortalidad fue similar, registrándose la menor mortalidad a 28 °C con 4 por ciento, esto nos indicó que esta temperatura fue la más favorable para el estadío larval II (Cuadro 10). El modelo fue Wang 1 (Figura 31).

Figura 30: Mortalidad del estadío de la larva I según el modelo Polynomial 1. La línea entera es la línea predictiva del modelo, los puntos son los datos observados.

Figura 31: Mortalidad del estadío de la larva II según el modelo Wang 1. La línea entera es la línea predictiva del modelo, los puntos son los datos observados.

Para el estadío larval III, la mayor mortalidad se observó a 32 °C con 13 por ciento, seguida de 25 °C y 20 °C con 9 y 8 por ciento de mortalidad, registrándose la menor mortalidad a 28 °C con 1 por ciento, esto nos indicó que esta temperatura fue la más favorable para el estadío larval III, el modelo fue Wang 1 (Cuadro 10, Figura 32).

El estadío larval IV presenta dos fases, una alimentaria y otra post-alimentaria.

En la fase alimentaria la mayor mortalidad se observó a 32 °C con 11 por ciento, seguida de 18 °C con 5 por ciento de mortalidad, siendo similares para las demás temperaturas en estudio.

Para la fase post-alimentaria o prepupa de la larva IV, la mayor mortalidad fue observada a 18 °C con 18 por ciento, seguida de 20 °C y 25 °C con 11 y 10 por ciento de mortalidad, siendo similares para las demás temperaturas, el modelo fue Polynomial 1 (Cuadro 10, Figura 33).

Para el estado pupal la mayor mortalidad fue registrada a 28 °C con 5 por ciento, seguida de 20 °C y 18 °C con 3 y 2 por ciento de mortalidad, también se observó para 25 °C y 32 °C que no se presentó mortalidad en este estado, observando en general que la mortalidad fue baja en este estado de desarrollo (Cuadro 10). El modelo fue Polynomial 1, por ser la curva que mejor representó a los puntos observados (Figura 34).

En general se observó que la mayor mortalidad para los estados inmaduros de *D. quinculus* en todas las temperaturas fue en el estado larval I y el menor en el estado de pupa (Cuadro 10).

Figura 32: Mortalidad del estadío de la larva III según el modelo Wang 1. La lí zona cálida nea entera es la línea predictiva del modelo, los puntos son los datos observados.

Figura 33: Mortalidad del estadío de la larva IV según el modelo Polynomial 1. La línea entera es la línea predictiva del modelo, los puntos son los datos observados.

Figura 34: Mortalidad del estado de pupa según el modelo Polynomial 1. La línea entera es la línea predictiva del modelo, los puntos son los datos observados.

4.1.7. CAPACIDAD DE REPRODUCCIÓN Y ESTABLECIMIENTO DE UN MODELO PARA LA FRECUENCIA DE OVIPOSICIÓN

Para determinar la capacidad de oviposición de las hembras, se consideró el rango de temperaturas de 18 °C a 32 °C, porque los insectos desarrollaron y llegaron al estado adulto.

Para la oviposición se utilizó la prueba de Kruskal–Wallis y se encontró diferencias significativas para 25 °C, 28 °C y 32 °C, siendo estadísticamente similares a las temperaturas de 18 °C y 20 °C con respecto a 25 °C y 32 °C (Cuadro 11, Anexo 10), también se observó que la mayor oviposición se obtuvo a 28 °C con un promedio de 79.77 huevos y la menor a 32 °C con 3.54 posturas, también las temperaturas extremas afectaron la oviposición, se registró casos de hembras que no colocaron ninguna postura en toda su vida.

Temperatura		Oviposición	Pico de Ov	iposición	Proporción	
(°C)	Promedio		# Huevos	Día	- de sexo (H:M)	
18	27	11.40 bc	24	27	0:1	
20	23	7.97 bc	24	20	0.6:1	
25	28	51.80 b	78	17	0.9 : 1	
28	35	79.77 a	131	20	1.2 : 1	
32	18	3.54 c	10	35	** NA	

Cuadro 11: Promedio de huevos/hembra de *D. quinculus* Gordon (Col.: Coccinellidae) a temperaturas constantes.

* n : Es el número de hembras que llegó al estado adulto

** NA: No se pudo determinar la proporción de sexo

Se presentó las curvas de oviposición de las temperaturas estudiadas:

Para 28 °C se observó un patrón muy marcado, siendo la mayor oviposición en los primeros 32 días de vida de la hembra y con un promedio de 79.77 huevos, la oviposición fue muy desuniforme y presentó dos picos, el primero fue en el día veinte con 131 huevos y el segundo el día treinta y dos con 120 huevos (Cuadro 11, Figura 35).

Para 25 °C, se observó la misma tendencia de concentrar la mayor oviposición los primeros días de vida, pero el número de días varió a 42, con un promedio de 51.8 huevos (Cuadro 11, Figura 35).

Para 18 °C y 20 °C el número de posturas fue muy irregular, registrándose en promedio 11.40 y 7.97 huevos, además se observó que el período de oviposición fue más corto en comparación a 25 °C y 28 °C (Cuadro 11, Figura 35).

Para 32 °C la oviposición fue muy escasa, se presentó en promedio 3.54 huevos, además el período de oviposición fue el más corto de todas las temperaturas (Cuadro 11, Figura 35).

Figura 35: Número de huevos/día (promedio) de D. quinculus Gordon (Col.: Coccinellidae) a cinco temperaturas constantes.

 En la oviposición total se observó, que la mayor oviposición promedio se concentró en el rango de 25 °C a 28 °C, siendo muy irregular y escasa en las demás temperaturas, el modelo fue Janisch & Analytis (Cuadro 11, Figura 36).

La frecuencia de oviposición acumulada por hembra, fue utilizada para cuantificar el efecto de la temperatura, en la oviposición total de las hembras por día esta fluctúa en el rango de cero a uno, en forma acumulativa por día de oviposición, a 18 °C, 20 °C y 32 °C la oviposición fue heterogénea, siendo alterada la frecuencia de oviposicion que fue escasa, esto ocurrió desde el principio y a lo largo de toda su vida, también el período de oviposición fue menor, pero a 25 °C y 28 °C el efecto de la temperatura fue favorable, porque el número de posturas y período de oviposición fue mayor, ambas temperaturas siguieron la misma tendencia sobre la línea predictiva del modelo que fue Gamma (Cuadro 11, Figura 37).

La proporción de sexos también se vio afectada por la temperatura, se observó que a menor temperatura predominaron los machos y conforme aumentó la temperatura predominaron las hembras. A la temperatura extrema de 32 °C, solo un insecto logró completar su ciclo de desarrollo hasta adulto, pero murió en el proceso de esclerotización y no se pudo determinar el sexo del individuo (Cuadro 11).

Figura 36: Oviposición total (promedio) de *D. quinculus* Gordon (Col.: Coccinellidae) a cinco temperaturas constantes según el modelo Janisch & Analytis.

Figura 37: Oviposición relativa de *D. quinculus* Gordon (Col.: Coccinellidae) a cinco temperaturas constantes, según el modelo Gamma.

4.2 PARÁMETROS DE LA TABLA DE VIDA

Mediante el programa *ILCYM*, los parámetros de la tabla de vida fueron modelados a las temperaturas de 18 °C, 20 °C, 25 °C, 28 °C y 32 °C, se eligió la opción de simulación determinística y se observó valores negativos para las temperaturas de 18 °C, 20 °C, 30 °C y 32 °C en los parámetros tasa intrinseca de crecimiento (r_m) , esto se debió a la baja oviposición registrada y el otro parámetro que presentó valores negativos fue tiempo doble (D_t) , no siendo posible datos negativos para este parámetro, por este motivo en el rango de temperaturas de 23 °C a 29.5 °C, se simuló temperaturas con 0.5 °C de diferencia, para todos los parámetros simulados se escogió la ecuación cuadrática, por ser la que mejor representó los datos (Cuadro 12, Figura 38). Se eliminó de la simulación la temperatura de 15 °C, debido a que no se observó desarrollo a esta temperatura.

4.2.1. DESARROLLO DEL MODELO DE FENOLOGÍA

Se calculó los parámetros simulados en la tabla de vida por el modelo de fenología, la proporción para la reproducción fue de una hembra por un macho. Las temperaturas para el desarrollo del insecto fueron desde 23 °C hasta 29.5 °C. Los parámetros fueron los siguientes (Cuadro 12, Figura 38):

- a. Tasa intrínseca de crecimiento (*r_m*), la capacidad de un individuo para reproducirse fue mayor a 27 °C con una tasa de 0.04, esto indicó que fue la temperatura más favorable para el desarrollo del insecto, siendo el rango de temperaturas óptimas de 23°C a 29.5 °C con 0.02.
- b. Tasa de reproducción neta (R₀), la mayor tasa fue registrada a 27 °C con 4.78, el rango de temperaturas óptimas para el crecimiento de la población fue de 23 °C a 29.5°C, donde se observó valores mayores a la unidad, lo que significaría que la población estuvo aumentando, las demás temperaturas fueron desfavorables en esta investigación para el desarrollo del insecto, pues presentaron valores menores a la unidad, lo que significaría que la población estuvo disminuyendo.
- c. Tasa de crecimiento reproductivo (GRR), el número total promedio de huevos producidos por hembra en toda su vida (tasa) fue mayor a 27 °C con 25.18 huevos/ hembra/ generación y la menor tasa fue a 32 °C con 1.81 huevos/ hembra/ generación.

- d. Tiempo de generación (GL o T), indicó el tiempo estimado en días entre el nacimiento de una generación, hasta que las hembras alcanzaron el 50 por ciento de oviposición, el mayor GL fue a 24 °C con 48.56 días y el menor GL fue registrado a 32 °C con 24.25 días.
- e. Tasa de crecimiento finita (λ), representa el número de individuos que se agrega a la población por individuo y por unidad de tiempo. Esta unidad es el tiempo que demora una generación en nacer, hasta ovipositar el 50 por ciento de huevos a cada temperatura. El rango de temperaturas de 23 °C a 29.5 °C permiten el desarrollo de D. quinculus, siendo la mayor tasa registrada a la temperatura de 27 °C con 1.04 individuos y es el que aumentó más hembras por generación, se observó una tendencia a disminuir la tasa a temperaturas mayores.
- f. Tiempo doble (D_t), es el número en días para duplicar el número de la población, se observó valores positivos en el rango de temperaturas entre 23 °C a 29.5 °C, con 37.31 y 44.20 días, a temperaturas menores o mayores al rango indicado se observaron datos negativos y no son posibles valores negativos para este parámetro.

Temperatura			Pará	metros		·
(°C)	r _m	Ro	GRR	GL o T	λ	Dt
18	-0.0200	0.4068	2.6303	45.0790	0.9802	-34.7400
20	-0.0028	0.8852	4.6138	44.2859	0.9973	-251.7321
23	0.0186	2.4361	10.7212	47.9319	1.0187	37.3135
23.5	0.0209	2.7504	12.3031	48.4708	1.0211	33.2073
24	0.0236	3.1530	14.2149	48.5568	1.0239	29.3089
24.5	0.0259	3.4699	16.2135	47.9982	1.0263	26.7415
25	0.0301	4.0631	18.1736	46.6166	1.0305	23.0481
25.5	0.0334	4.4847	20.3978	44.9459	1.0340	20.7601
26	0.0360	4.7034	22.4141	43.0084	1.0367	19.2543
26.5	0.0382	4.7558	24.1824	40.8328	1.0389	18.1504
.27	0.0405	4.7765	25.1813	38.6432	1.0413	17.1294
27.5	0.0400	4.2827	24.2041	36.3848	1.0408	17.3383
28	0.0371	3.5894	22.4229	34.4185	1.0378	18.6677
28.5	0.0373	3.3438	18.9205	32.4033	1.0380	18.6067
29	0.0282	2.3717	14.8287	30.6496	1.0286	24.6000
29.5	0.0157	1.5809	11.1250	29.2053	1.0158	44.2005
30	-0.0007	0.9804	7.8748	27.8140	0.9993	-973.9614
32	-0.0926	0.1058	1.8135	24.2478	0.9115	-7.4825

Cuadro 12: Parámetros de la tabla de vida de *D. quinculus* Gordon (Col.: Coccinellidae) obtenidos mediante la simulación determinística por el modelo de fenología para dieciocho temperaturas constantes.

* No se observó desarrollo del insecto para la temperatura de 15°C

.

Figura 38: Parámetros obtenidos de la tabla de vida de *D. quinculus* Gordon (Col.: Coccinellidae), mediante la simulación determinística a temperaturas constantes. Los puntos azules son los puntos observados y simulados a temperaturas constantes. La línea roja es la línea de tendencia del modelo cuadrático.

4.2.2. PARÁMETROS PARA UN CONJUNTO DE TEMPERATURAS FLUCTUANTES

Para la validación del modelo se llevó a cabo una crianza a temperatura fluctuante, perteneciendo a la ubicación geográfica del CIP – La Molina, Lima Perú (Figura 39).

Figura 39: Temperaturas fluctuantes de la tabla de vida de *D. quinculus* Gordon (Col.: Coccinellidae), de octubre del 2010 a enero del 2011.

En los parámetros obtenidos de la temperatura fluctuante mediante el modelo fenológico, se observó que el insecto en estudio fue muy sensible a los cambios de temperatura (Cuadro 13), éstos completaron su ciclo de desarrollo de huevo a adulto, pero ninguna de las posturas llegaron a completar su ciclo de vida, se observó datos negativos en r_m y D_t, no siendo posibles estos valores para el último parámetro; R_o presentó una tasa de 0.77 hembras, un GRR de 4.77 huevos/ hembra/ generación, un GL 57.72 días y un lambda de 0.99 días.

	Parámetros							
	r _m	Ro	GRR	T(GL)	λ	Dt		
Observados	-0.005	0.770	4.766	57.721	0.995	-153.077		
Simulados	-0.057	0.111	0.967	50.33	0.945	-15.573		
Sinulauos	(<u>+</u> 0.051)	(<u>+</u> 0.146)	(<u>+</u> 1.446)	(<u>+</u> 9.537)	(<u>+</u> 0.048)	(<u>+</u> 11.501)		

Cuadro 13: Parámetros obtenidos de la tabla de vida de *D. quinculus* Gordon (Col.: Coccinellidae) para las temperaturas fluctuantes en La Molina, Lima – Perú.

Nota: Los números entre paréntesis indican el error estándar

Se presentó el tiempo de desarrollo de *D. quinculus* a temperatura fluctuante, se observó para el estado de huevo un promedio de 9.59 días y con una mortalidad del 15 por ciento para este estado, en el modelo de la tabla de vida a temperatura fluctuante (Cuadro 14, Figura 40), los puntos negros indican los datos observados de las posturas y la línea negra fue la curva estimada, observándose que los datos se ajustan dentro de la línea estimada por el modelo de simulación.

Para el estado larval el tiempo de desarrollo fue de 18.62 días con una mortalidad del 54.1 por ciento (Cuadro 14), los puntos rojos indican los datos observados y la línea roja fue la curva estimada (Figura 40), a pesar que los puntos observados no se ajustaron a la curva estimada, se observó que ambas siguieron la misma tendencia y dentro de los rangos establecidos de la línea esperada por el modelo de simulación, esto podría explicarse porque durante la crianza bajo condiciones medio ambientales, se presentó entre el noveno y décimo día una precipitación atípica de la zona (lluvia fuerte nocturna), que afectó la crianza produciéndose una alta mortalidad larval.

Para el estado de pupa se observó un tiempo de desarrollo de 8.77 días con una mortalidad de 69.2 por ciento, siendo la más alta de todos los estados inmaduros (Cuadro 14), los puntos verdes indican los puntos observados y la línea verde fue la curva estimada en el modelo de simulación (Figura 40), se observó que los datos estuvieron cerca a la curva estimada en el modelo, dentro de los rangos establecidos.

Cu	adro	o 14: T	iem	po de	desa	arro	llo, mortali	dad e ind	icador	de ajuste por ca	ida est	ado
de	la	tabla	de	vida	de	D.	quinculus	Gordon	(Col.:	Coccinellidae)	para	las
tem	per	aturas	fluc	tuant	es er	ı el (CIP - La Mo	olina, Lim	a – Per	ú.		

		Huevo	Larva	Pupa	Hembra	Macho
Tiempo de	Observado	9.588	18.615	8.771	38.43	38.43
Desarrollo	Simulado	9.166	18.614	9.419		
(Días)	Simulado	(± 0.224)	(± 0.301)	(± 0.244)	-	-
Mortalidad	Observado	0.15	0.541	0.692	-	-
(%)	Simulado	0.065	0.387	0.731	_	_
	Simulat	(± 0.029)	(± 0.094)	(± 0.093)		
Indicador de ajuste por cada estado	Distancia Euclidiana	34.903	92.984	31.926	26.306	8.793

Para el estado adulto se observó un tiempo de desarrollo de 38.43 días tanto para hembras como para machos (Cuadro 14) y se observó que sobrevivió un mayor número de hembras que de machos, las hembras están representadas por los puntos azules que fueron los puntos observados, notándose que se sobre estima la frecuencia de individuos pero no la amplitud de la longevidad de la hembras y la línea azul fue la curva estimada, observando los datos dentro del rango establecido (Figura 40); para el caso de los machos los puntos celestes fueron los datos observados los cuales están ajustados en la curva estimada que está representada por la línea celeste (Figura 40). Además el cuadro 14 presentó un indicador de ajuste por cada estado de desarrollo, siendo la distancia euclidiana menor en el estado de macho con 8.79, se observó en la Figura 40, que en los machos los puntos están muy cercanos a la curva de estimación; seguidos por la distancia de las hembras con un valor de 26.31 (Cuadro 14), donde se han observado valores sobrestimados (Figura 40); le sigue el estado de pupa con una distancia de 31.93 (Cuadro 14), se observa un buen ajuste de los datos (Figura 40); en el estado de huevo la distancia es de 34.90 (Cuadro 14) y los puntos observados se encuentran sobre la curva estimada (Figura 40); por el contrario el estado de larva fue el que presentó mayor distancia con un valor de 92.98 (Cuadro 14),

en la Figura 40 se ve una distancia entre los puntos observados y estimados, pero tienen la misma tendencia como se explicó anteriormente para el estado larval; por todos los valores registrados anteriormente de mortalidad, se dedujo que el estado menos susceptible en los insectos inmaduros para esta especie en particular fue la pupa, seguido del estado de huevo, siendo el más susceptible el estado larval y para los adultos las hembras sobrevivieron en mayor número en comparación a los machos.

Figura 40: Modelo obtenido de la tabla de vida de *D. quinculus* Gordon (Col.: Coccinellidae), a temperaturas fluctuantes en La Molina, Lima – Perú.

4.3. DESCRIPCIÓN DE LOS ESTADOS DE DESARROLLO DE D. quinculus.

D. quinculus presenta metamorfosis completa, por lo que se pudo observar el desarrollo de los estados de huevo, larva, pupa y adulto, los cuales se describen a continuación:

Huevo, se observó que los huevos fueron colocados en el envés de la hoja en forma horizontal, cerca de la población de la plaga que le sirvió de sustrato alimenticio, o dentro de las exuvias de las pupas de la mosca blanca *T. vaporariorum*, etc., cada huevo fue de forma cilíndrica con los extremos redondeados, cuando recién son ovipuestos fueron transparentes y lisos (Figura 41a), luego próximos a la eclosión, se tornaron a una coloración blanquecina, esto coincidió con lo reportado por García *et al.* 1998; Liu & Stansly, 1996. El periodo de incubación varió de acuerdo a la temperatura en que se realizó la crianza, observando que el periodo más corto fue a temperaturas elevadas.

Larva, todos los estadíos larvales de este insecto fueron del tipo campodeiforme, con el cuerpo alargado y la parte caudal del abdomen más angosta que la parte anterior del cuerpo; el último segmento abdominal, está adaptado para sujetarse a la superficie, mediante la secreción de una sustancia pegajosa, el cuerpo presentó tres pares de patas, esto también coincide con lo reportado por García *et al.* 1998.

Se observó cuatro estadíos larvales los cuales son descritos a continuación:

Estadío larval I, se observó que inicialmente la larva en vista lateral, presentó su cabeza y patas dobladas hacia el centro del cuerpo, luego estas se extendieron para ir en busca de alimento, la coloración del cuerpo de la larva fue inicialmente blanca, pero después de alimentarse se tornó a una coloración amarilla (Figura 41b), esto también coincidió con lo reportado por García *et al.* 1998.

Cuando la larva estuvo a punto de mudar, dejó de alimentarse y buscó un lugar apropiado para que se produzca la muda, se sujetó con el último segmento abdominal de su cuerpo a una superficie y se adhirió a esta secretando una sustancia pegajosa. No se observó un lugar específico, mudando en medio de la población de la mosca blanca, sobre el envés de la hoja o en el haz, en la superficie de la placa petri, etc.

Estadío larval II, fue de color amarillo más intenso que el primer estadío larval, presentó una gran cantidad de setas en la región cefálica y torácica. La cabeza fue más pequeña respecto al cuerpo (Figura 41c), esto también coincidió con lo reportado por García *et al.* 1998.

77

Estadío larval III, presentó una coloración amarilla más intensa con setas en el dorso del cuerpo. Cada uno de los segmentos de la larva comenzó a tener una coloración oscura, debido a la formación horizontal de líneas sobre los segmentos del cuerpo (Figura 41d). Las larvas del tercer estadío se alimentaron continuamente de los estadios inmaduros de la plaga e incluso adultos, esto también coincidió con lo reportado por García *et al.* 1998.

Estadío larval IV, se notó una diferencia muy marcada, entre el tamaño de la cabeza respecto al tamaño del cuerpo de la larva, la coloración amarillenta del cuerpo se tornó oscura, debido a que las líneas oscuras sobre los segmentos del cuerpo, aumentaron su grosor formando franjas (Figura 41e).

Las larvas próximas a empupar, dejaron de alimentarse y moverse, fijaron su último segmento abdominal a la superficie, mediante una secreción pegajosa, entraron al estado de prepupa (Figura 41f), en el cual se observó un incremento en el ancho del cuerpo, esto también coincidió con lo reportado por García *et al.* 1998.

Pupa, emergió por la parte anterior de la prepupa, la pupa formada salió de la exuvia larval aproximadamente hasta la mitad, la otra mitad quedó unida a la exuvia larval. Las pupas fueron de forma ovalada, tipo exarate, de color crema y presentaron gran cantidad de setas en la región cefálica y torácica y escasas en la región abdominal, con la presencia de finas gotas en los extremos terminales de estas, además claramente se pudo diferenciar el cuerpo del futuro insecto adulto, los ojos compuestos se observaron de forma redondeada y de color negro (Figura 41g), esto también coincidió con lo reportado por García *et al.* 1998; Liu & Stansly, 1996.

Adulto, para emerger presionó la parte anterior de la cabeza, se observó que este fue de tamaño diminuto. Algunos adultos al emerger fueron de color blanco o de color negro característico, mientras que la mayoría presentó una coloración dorada, los adultos recién emergidos no pudieron moverse y fueron inactivos por algunas horas, hasta completar su esclerotización, que dio el color oscuro característico, posteriormente fueron en busca de alimento, esto también coincidió con lo reportado por García *et al.* 1998; Liu & Stansly, 1996.

El adulto presentó ojos compuestos de color negro, aparato bucal masticador con un par de palpos y un par de mandíbulas fuertes; el cuerpo fue de forma semiesférica oval, de color marrón oscuro, de élitros lisos y brillantes, presentaron tres pares de patas generalmente de color amarillo. Los sexos son separados, la hembra presentó la cabeza marrón oscuro o

negra (Figura 41h) y el macho presentó la cabeza marrón clara (Figura 41i), esto también coincidió con lo reportado por Liu & Stansly, 1996.

Figura 41: Descripción de los estados y estadíos de desarrollo de *D. quinculus*a) Huevo; b) Larva I; c) Larva II; d) Larva III; e) Larva IV; f) Prepupa; g) Pupa;
h) Adulto Hembra; i) Adulto Macho.

4.4. DESCRIPCIÓN DE LA ESPECIE DE D. quinculus.

La descripción encontrada de la genitalia femenina, se conformó por el receptaculum seminis o espermateca el cual incluye el ducto espermático, el infundibulum de forma de embudo y las valvas (Figura 42), a su vez la cápsula de la espermateca de *Delphastus*, especialmente en el grupo *pusillus*, está fuertemente modificada, siendo la modificación más resaltante un apéndice muy modificado o cuerno, que es una estructura parecida a un bulbo que no lleva pico, pero si tiene una fila de cinco o más espículas pequeñas (Figura 43a y 43b), de ahí deriva el nombre en Latín Quingue que significa "cinco", además observamos que el ramus de la cápsula de la espermateca es pequeño (Figura 43a) tal como lo describe Gordon (1994).

Figura 42: Vista general de la genitalia femenina de *D. quinculus*

Figura 43: Espermateca de *D. quinculus*a) Vista general; b) Detalle del apéndice de la espermateca

V. DISCUSION

5.1. TABLA DE VIDA DE D. quinculus

5.1.1. TEMPERATURA Y SU INFLUENCIA EN EL TIEMPO Y TASA DE DESARROLLO PARA LOS ESTADOS INMADUROS DE D. quinculus

Las temperaturas influenciaron en el tiempo de desarrollo de cada uno de los estados inmaduros (huevo, larva y pupa), observándose que a mayor temperatura, el tiempo de desarrollo fue menor, esto también fue observado en los datos biológicos publicados por Hemachandra *et al.* 1996 en *D. pusillus* a (17 °C, 20 °C, 23 °C y 26 °C) registrando datos similares y también por Stathas *et al.* 2011, en el coccinélido predador *Harmonia axyridis* (Pallas) a cuatro temperaturas constantes (15 °C, 20 °C, 25 °C y 30 °C), estas observaciones se cumplen en numerosos insectos controladores y también plagas (Pervez y Omkar, 2004; Sporleder, 2004; Valencia, 2008; Ramírez, 2008).

Se estima también que a temperaturas extremas bajas (15 °C) la viabilidad de los huevos disminuye significativamente y no logra su desarrollo completo, lo cual es similar con numerosas investigaciones en insectos, tanto en plagas como en controladores, por ejemplo en el parasitoide *Copidosoma koehleri*, no logró su desarrollo completo a 10 °C (Horne y Horne 1991), esto se debe a que el desarrollo de los insectos ocurre dentro de un rango específico de temperaturas (Wagner *et al.* 1984). Así mismo Pervez y Omkar, 2004 investigó el efecto de la viabilidad de los huevos del coccinélido predador *Propylea dissecta* bajo cinco temperaturas constantes (20 °C, 25 °C, 27 °C, 30 °C y 35 °C), donde reporta que dicha viabilidad se reduce significativamente a temperaturas extremas, como por ejemplo a 20 °C el cual posiblemente se haya dado por efecto de inhibición en la espermatogénesis o la mortalidad de los huevos no viables ya que parecían estar desecados, siendo la viabilidad más alta de los huevos a 27 °C, lo que indicaría que es la temperatura óptima para la producción de su progenie.

En este trabajo *D. quinculus* bajo temperaturas de 25 °C y 28 °C, presentaron ciclos de desarrollo de 20.50 y 19.31 días, sin embargo en otros estudios de la misma especie por otros autores (García y López–Ávila, 1998; Heinz *et al*; 1994), presentaron una diferencia en los tiempos de desarrollo bajo las mismas condiciones de temperatura, registrando un ciclo de desarrollo a 25 °C y 28 °C de 29.2 y 21 días respectivamente, estas diferencias puedan deberse a las diferentes metodologías de crianza y a la manipulación de los insectos que se realizo durante el experimento; por otro lado estudios biológicos de otras especie en estudio como por ejemplo: *Serangium montazerii* con un ciclo de desarrollo a 25 ± 1°C y 23-33 °C, fueron de 19.98 y 17.35 días respectivamente (Firas, 2008); *Nephaspis oculatus* con ciclo de desarrollo a 28 ± 3 °C fue de 18.9 días (Liu *et al.* 1997), *N. amnícola* Wingo con un ciclo de desarrollo de 23-26 °C fue de 26.0 días (Harvey *et al.* 1985).

5.1.2. ANÁLISIS DEL CICLO DE VIDA VS. TEMPERATURA, SUPERVIVENCIA Y MORTALIDAD DE LOS ESTADOS INMADUROS DEL PREDADOR D. quinculus

Por otro lado, se observó que la mortalidad de los primeros estadios larvales fue alta en todas las temperaturas estudiadas (Cuadro 10, Figuras 26, 27 y 28), aumentando la mortalidad de los inmaduros con el incremento de la temperatura, conforme se aproximaron a temperaturas extremas hasta llegar al 100 por ciento de mortalidad. Esto coincidió con lo reportado por García et al. 2005, en D. pusillus, donde mencionó una alta mortalidad en los primeros estadios larvales y aquellos individuos que superaron estas etapas juveniles, tuvieron mayor probabilidad de vida al reducirse la mortalidad natural, esto fue evidente con la estabilidad de la curva de sobrevivencia tipo IV (Propuesta por caracteriza porque la mortalidad Rabinovich 1980), que se natural afecta fundamentalmente a los individuos jóvenes de una población (Figura 44).

Figura 44: Curva de sobrevivencia obtenida para *Delphastus pusillus* (LeConte) y curvas de sobrevivencia propuestas por Rabinovich (1980) (I–IV). FUENTE: García *et al.* (2005).

82

En esta investigación *D. quinculus* durante el estado de pupa presentó una baja mortalidad o ausencia de ella (Cuadro 10); Las diferencias de mortalidad entre los diferentes estados de desarrollo, se debió a las diferentes tasas metabólicas que existen entre ellas, una elevada tasa tiene una reacción mejor ante un estrés térmico, Mahroof *et al.* 2003, investigó al coleóptero *Tribolum castaneum* (Herbst) y midió la tasa de consumo de oxígeno, indicando que el estado que tiene mayor tasa metabólica, tiene mayor tolerancia a temperaturas extremas siendo menor la mortalidad, pero lo reportado por Mahroof se opone a lo registrado para *D. quinculus*, porque la menor mortalidad fue registrado en el estado de pupa y en el estudio de Mahroof fue registrado para la larva I como el más tolerante a temperaturas extremas.

5.1.3. TEMPERATURA Y CAPACIDAD DE REPRODUCCIÓN DE D. quinculus

D. quinculus presenta en la fecundidad, tendencias específicas diferentes en las temperaturas estudiadas, presentando un patrón muy marcado de oviposicion entre 25 °C y 28 °C, este comportamiento se observa en el tercio inicial de la vida del insecto (Figura 35), estando el período de oviposición casi terminado antes de que el tiempo de vida de las hembras llegara a su punto medio, esto coincidió con lo reportado por Fenemore (1977), García *et al.* 2005; Pervez y Omkar, 2004; Sporleder *et al.* 2004.

Para *D. quinculus* se observó las mayores oviposiciones a 25 °C y 28 °C (Cuadro 11), respecto a las demás temperaturas, pero la oviposición registrada fue mucho menor, comparado a los trabajos realizados en *D. pusillus* (actualmente *D. quinculus*) por otros autores como Hoelmer *et al.* 1993, a 28 °C con 183.2 huevos, estas diferencias podrían deberse a la diferente humedad relativa utilizada y a la metodología de crianza durante los experimentos realizados. Para *N. oculatus* a 26.7 °C se reportó 229.12 huevos (Liu *et al.* 1997) y *N. amnícola*, a 23-26 °C se reportó 212 posturas (Harvey *et al.* 1985); estos resultados más altos son registrados para este género.

Por otro lado en *D. quinculus* se registraron evidencias donde la temperaturas extremas afectan la oviposición, se presentaron casos de hembras que no colocaron huevos, coincidiendo con lo reportado por Hoelmer *et al.* 1993 y Pervez y Omkar 2004, en este ultimo por ejemplo al estudiar las tablas de vida del predador *Propylea dissecta*, reportó que a temperaturas extremas (20°C), la fecundidad fue reducida y se debió a la disminución de su metabolismo o que hubo menos ovariolos en los coccinélidos bajo esta temperatura, así

mismo, reporto que a temperatura extrema alta (27 °C), se observó una disminución drástica de la fecundidad, debido a la eficiente conversión de la biomasa de las presas en la progenie del predador, siendo más en la hembras jóvenes que en las de mayor edad, invirtiendo más en la reproducción incluso a costo de reducir su longevidad potencial.

En esta investigación para *D. quinculus* se encontró que la frecuencia acumulada de la oviposición a una temperatura dada, está bien descrita por la función Gamma, coincidiendo con lo reportado por Sporleder *et al.* 2004.

5.1.4. LONGEVIDAD Y SENESCENCIA DE LOS ESTADOS MADUROS DE *D. quinculus*

Para D. quinculus se observó que a temperaturas extremas la longevidad fue afectada en ambos sexos observándose una disminución, las hembras de D. quinculus viven más que los machos a temperaturas por encima de los 20 °C (Cuadro 7), los períodos observados fueron casi la mitad de la longevidad de otros estudios biológicos realizados en D. pusillus (actualmente denominado D. quinculus) por autores como: Hoelmer et al. 1993, quien reportó que a 28 °C presento una longevidad de 60.5 días en hembras y 44.8 días en machos; Heinz et al. 1994, a 27 °C reportó una longevidad de 64 días en hembras y 36 días en machos; y García et al. 1998 a 25 °C, reportó una longevidad de 90 días; estas diferencias puedan deberse a las diferentes metodologías de crianza, a la humedad relativa, aunque en este trabajo no se ha evaluado el efecto de la humedad y también al tipo de planta en la cual se desarrollo la plaga. Así mismo Liu et al. 1997 registro que N. oculatus, a 26.7 °C tuvo una longevidad de 67.5 días en hembras y 56.1 días en machos, a diferencia de lo reportado para N. amnicola por Harvey et al. 1985 entre 23-26 °C, con una longevidad del adulto muy variable con 162 días en hembras y 349 días en machos; así mismo en otras investigaciones en Propylea dissecta, también se observó que las hembras viven más que los machos, esto puede ser atribuido a su mayor voracidad y el aumento de sus necesidades de alimentos, mejoran su condición física y que el aumento del gasto de energía en busca de pareja y la vulnerabilidad a los ataques de patógenos/ parásitos son las posibles razones de una esperanza de vida menor en los machos (Pervez y Omkar, 2004).

En esta investigación para *D. quinculus* se observó una disminución de posturas al final de su ciclo de vida (Figura 35), esto también fue observado en *P. dissecta* y está vinculado

con la disminución del consumo de alimentos, la asimilación, la velocidad de locomoción y la fertilidad (Pervez y Omkar, 2004).

Se observó en *D. quinculus* que a temperaturas extremas la mortalidad aumenta (Cuadro 10), durante su etapa de senescencia, las hembras y machos mostraron un patrón biológico, el cual explica que a temperaturas extremas, la velocidad de envejecimiento aumentaría, sin embargo experimentalmente no se pudo determinar tales valores. Además la senescencia está correlacionada con la longevidad del adulto, pues es la inversa de la longevidad.

5.2. PARÁMETROS DE LA TABLA DE VIDA

5.2.1. PARÁMETROS OBSERVADOS PARA LAS TEMPERATURAS CONSTANTES

Al comparar los parámetros estimados de *D. quinculus,* con los registros obtenidos para otros insectos entomófagos, se puede tener una idea del comportamiento del enemigo natural sobre la especie hospedera/ presa.

En esta parte del trabajo se presentan los parámetros de la tabla de vida observados, la tasa intrínseca de crecimiento (r_m) y la tasa de crecimiento finito (λ) fueron los mismos valores a 25 °C y 28 °C con $r_m = 0.03$ y $\lambda = 1.03$, (Cuadro 15). García *et al.* 2005, reportó los mismos valores para estos parámetros, $r_m = 0.03$ y $\lambda = 1.03$, pero no indicó la temperatura con la cual realizó su investigación. La igualdad de estos parámetros se podría explicar porque éstos son considerados intrínsecos de la especie y están regidos por factores genéticos. Al respecto Rabinovich, 1980, indicó que r_m es la tasa intrínseca de crecimiento natural y es un parámetro genéticamente determinado y refleja una capacidad potencial de multiplicación de la población (García *et al.* 2005). Para otras especies se encontraron valores mayores como en *N. oculatus* $r_m = 0.08$ a 26.7 °C, Liu *et al.* 1997; *Orius laevigatus* $r_m = 0.11$ a 25 °C, Cocuzza *et al.* 1997; y *Eretmocerus californicus* con $r_m = 0.09$ a 26 °C, López y Botto 1997 (Cuadro 16). A temperaturas extremas en *D. pusillus* la tasa se vuelve negativa por el bajo número de posturas en un tiempo prolongado.

5

En *D. quinculus*, se observó que los valores de la tasa reproductiva neta (R_o) aumentaron al incrementar la temperatura hasta 25 °C, siendo $R_o = 4.06$ y posteriormente disminuyó; al

seguir incrementando la temperatura hasta la temperatura extrema de 32 °C, el valor de $R_0 = 0.10$ fue bajo (Cuadro 15), comparado con el de *P. dissecta* $R_0 = 124.11$ a 35 °C Pervez y Omkar 2004, que tuvo el mismo comportamiento (Cuadros 15, 16 y 17), también en otros coccinélidos como: *Propylea Japonica* (Thunberg) registró un $R_0 = 67.6$ a 25 °C (Chi y Yang, 2003); *Scymnus frontalis* (Fabr.) $R_0 = 33.1$ a 26 °C (Gibson *et al.* 1992); y *N. osculatus* $R_0 = 33.1$ a 26 °C (Ren *et al.* 2002); así mismo valores altos de Ro en rango de temperaturas de 25 °C a 35 °C, también fueron reportados para *N. includens* por Canhilal *et al.* 2001, todos estos autores fueron mencionados por Pervez y Omkar, 2004. En esta investigación para *D. quinculus* en el rango de temperaturas de 25 °C a 28°C (Cuadro 15), la población se encuentra en crecimiento debido a que los valores observados son mayores a la unidad, para las demás temperaturas la población está disminuyendo porque los valores son menores a la unidad García *et al.* 2005.

D. quinculus presentó las mayores tasas de crecimiento reproductivo (GRR), a 25 °C y 28 °C con GRR = 18.17 y 22.42 huevos (Cuadro 15). A diferencia de los estudios realizados en otras especies de coccinélidos como *N. oculatus* con GRR = 229.12 a 26.7°C (Liu *et al.* 1997); *O. laevigatus* GRR = 67.80 a 25 °C (Cocuzza *et al.* 1997) (Cuadro 16) esto se explicaría en el caso de *N. oculatus* y *O. laevigatus* por tratarse de especies diferentes.

La duplicación de la población (D_t) en *D. quinculus* se observó para 25 °C y 28 °C con un D_t = 23.04 y 18.66 días respectivamente y no para las demás temperaturas que presentaron valores negativos (Cuadro 15); valores menores se registraron en *N. oculatus* con D_t = 8.89 a 26.7 °C (Liu *et al.* 1997); y *O. laevigatus* D_t = 6.60 días a 25°C (Cocuzza *et al.* 1997) (Cuadro 16), esto puede deberse a que son especies diferentes y también porque en *N. oculatus* fue estudiada a una mayor temperatura.

86

Tempe	eratura			Parámetros					
(°C)		r _m	Ro	GRR	T(GL)	λ	Dt		
	18	-0.020	0.407	2.630	45.079	0.980	-34.740		
	20	-0.003	0.885	4.614	44.286	0.997	-251.732		
tante	25	0.030	4.063	18.174	46.617	1.031	23.048		
Cons	28	0.037	3.589	22.423	34.419	1.038	18.668		
	32	-0.093	0.106	1.814	24.248	0.912	-7.483		
Fluct	uante	-0.005	0.770	4.766	57.721	0.995	-153.077		

Cuadro 15: Parámetros observados de la tabla de vida de *D. quinculus* (Col.: Coccinellidae), a las temperaturas de 18, 20, 25, 28 y 32 °C y una temperatura fluctuante (a condiciones medioambientales).

El tiempo generacional (T o GL) en *D. quinculus* fue de 46.61 y 34.4 días a 25 °C y 28 °C; un valor mayor fue registrado en *N. oculatus* T = 51.27 a 26.7 °C (Liu *et al.* 1997); pero valores menores se registraron en *O. laevigatus* con T = 28.2 a 25 °C (Cocuzza *et al.* 1997); y *E. californicus* con T = 23.7 a 26 °C (López y Botto 1997) (Cuadros 15 y 16). En esta investigación a temperaturas extremas en *D. quinculus* con T = 24.24 a 32 °C fue corto, lo mismo se observó en *P. dissecta* con T = 22.94 a 35 °C (Pervez y Omkar, 2004), esta reducción se debió a la disminución en la supervivencia de las hembras y a la baja fecundidad neta Pervez y Omkar, 2004 (Cuadros15 y 17).

Cuadro 16: Parámetros de la tabla de vida de los predadores *Nephaspis oculatus* (Coleoptera: Coccinellidae), *Orius laevigatus* (Hemiptera: Anthocoridae) y el parasitoide *Eretmocerus californicus* (Hymenoptera: Aphelinidae).

T	Especie	Especie presa/			Parán	netros			
(°C)	benéfica	Hospedera	r _m	Ro	GRR	T(GL)	Λ	Dt	
26.7	N. oculatus ¹	B. argentifolii	0.08	54.27	229.12	51.27	1.08	8.89	
25	O. laevigatus ²	E. occidentalis	0.11	2.86	67.80	28.20	1.11	6.60	
26	E. californicus ³	T. vaporariorum	0.09	100.80		23.70	·		

FUENTE: ¹ Liu et al. (1997), ² Cocuzza et al. (1997), ³López y Botto (1997).

87

Cuadro 17: Parámetros de la tabla de vida de *Propylea dissecta* (Coleoptera: Coccinellidae) un predador de *Aphis gossypii* (Hemiptera: Aphididae) a temperaturas constantes.

Especie	benéfica	Parámetros							
	issecta	<i>r_m</i>	Ro	T(GL)	λ	Dt			
	20	0.13	228.64	42.10	1.14	5.37			
(C)	25	0.18	320.79	32.50	1.19	3.90			
thura	27	0.21	431.15	28.43	1.24	3.25			
mpera	30	0.21	341.00	27.50	1.24	3.27			
Ter	35	0.21	124.11	22.94	1.23	3.30			

FUENTE: Pervez y Omkar (2004).

5.2.1. PARÁMETROS SIMULADOS PARA LAS TEMPERATURAS CONSTANTES

La simulación determinística fue en las temperaturas para el crecimiento poblacional y están comprendidas entre los 23 °C y 29.5 °C (Cuadro 12), porque la tasa de reproducción neta (R_o) es siempre positiva, estando la temperatura óptima comprendida entre los 25 °C y 27.5 °C porque la temperatura es estable y alta, esto es reafirmado con los parámetros tasa de crecimiento finito (λ) y el tiempo doble (D_t).

A 20 °C y 30 °C se muestran tasas positivas y negativas lo que nos indica inestabilidad a la predicción. La variabilidad mostrada en la tasa intrínseca de crecimiento (r_m) a 32 °C, se debe a que la tasa de reproducción neta (R_o) presenta una baja fecundidad y alta mortalidad (Cuadro 12). La tasa de reproducción neta (R_o), es la razón por la cual los otros parámetros modelados muestran también la forma de campana (Figura 38). No sólo tasa intrínseca de crecimiento (r_m), que depende de la tasa de reproducción neta (R_o), sino la tasa de crecimiento finito (λ) y el tiempo doble (D_t) en sus fórmulas; siendo el tiempo generacional (T o GL) independiente de R_o

Ċ,

Aunque los datos simulados no son reales nos muestran una idea de cómo puede comportarse el insecto si un régimen de temperaturas no cambian en un período largo de tiempo (un año).

5.2.3. PARÁMETROS DE LA TABLA DE VIDA E ÍNDICES PARA LAS TEMPERATURAS FLUCTUANTES

La simulación hecha a temperaturas fluctuantes con las registradas en el CIP en el año 2010 – 2011, nos dio una idea del funcionamiento del modelo que se ha realizado, porque se esperó que a temperaturas extremas los parámetros: Tasa de reproducción neta (R_0), tasa intrínseca de crecimiento (r_m), tasa de crecimiento finito (λ) y tasa de crecimiento reproductivo (GRR) tengan valores bajos, por el contrario el tiempo de generación (GL o T) tenga valores altos (Cuadro 15), además los índices nos permitieron conocer si es pósible el establecimiento de *D. quinculus* en áreas con variaciones térmicas como las registradas en el CIP (La Molina, Lima) para el desarrollo de poblaciones moderadas.

Por los resultados obtenidos se observó que el desarrollo del insecto no prosperó (Cuadro 15), por lo tanto se pudo concluir que *D. quinculus* es muy sensible a los cambios de temperatura.

D. quinculus es un buen agente de control biológico para la mosca blanca *T. vaporariorum* (López –Ávila *et al.* 2001), porque presenta altas tasas de consumo de presas, las hembras son altamente fecundadas (Heinz *et al.* 1994; García – González *et al.* 2005), tienen compatibilidad con parasitoides porque los escarabajos y los parasitoides atacan a la plaga en diferentes estadíos y porque las moscas parasitadas, son evitadas en la predación, a favor de moscas blancas sanas, también tienen compatibilidad con cultivares de plantas resistentes (Heinz *et al.* 1994; Heinz y Zalom, 1996; Hoelmer *et al.* 1994) y presentan alta adaptabilidad ecológica que es un factor muy importante para ser considerado como un buen agente potencial de control biológico.

.89

VI. CONCLUSIONES

- 1. La temperatura es un factor biótico que afecta el desarrollo de D. quinculus.
- Los umbrales de temperatura de cada uno de los estados del ciclo de desarrollo y del adulto de *D. quinculus*, difieren entre sí. El umbral de temperatura mínima de todos los estados es de 18 °C.
- 3. La mayor mortalidad de *D. quinculus* se presenta en el primer estadío larval.
- 4. La longevidad de las hembras de D. quinculus es mayor que en los machos.
- 5. El rango óptimo de temperatura para el establecimiento y reproducción de *D. quinculus* está entre de 25 °C a 28 °C, la fertilidad de la hembra tiende a descender con la disminución o aumento de las temperaturas extremas diferentes al rango antes mencionado.
- 6. Las temperaturas mayores a 28 °C, tienen un efecto negativo en la senescencia de los adultos en *D. quinculus*.
- La temperatura tiene un marcado efecto en la fecundidad, la mayor tasa de oviposición de *D. quinculus*, se obtiene en el rango de temperaturas entre 25 °C a 28 °C.

- 8. La proporción sexual de la progenie de *D. quinculus* se ve afectada por la temperatura, predominando la presencia de machos a bajas temperaturas y de hembras a temperaturas mayores.
- 9. *D. quinculus* es un controlador biológico que puede ser usado en las regiones cuyas temperaturas promedio están por encima de los 25 °C.
VII. RECOMENDACIONES

- Una vez obtenidas las crianzas masivas del predador, estas deben ser liberadas en campo, principalmente en zonas donde se encuentren colonizando las especies de T. vaporariorum y B. tabaci ya que son las especies más apetecibles por este controlador.
- 2. Realizar pruebas de eficacia de predación de *D. quinculus* a diferentes especies de mosca blanca.
- 3. Realizar un estudio de interpolación del controlador y plaga, para una mejor predicción del predador hacia su hospedero en el futuro.

I. REFERENCIAS BIBLIOGRÁFICAS

5

- Alba, V. 1952. El amarillamiento de las venas de la papa, una enfermedad causada por virus. Tesis. Universidad Nacional de Colombia. Medellín. 41 p.
- Arnett, RHJr; Thomas, MC; Skelley PE and Frank JH (Eds). 2002. American Beetles, volume II: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press LLC, Boca Raton, FL.
- Bellows, JRTS; Van Drische, RG; Elkinton, JS. 1992. Life table construction and analysis in the evaluation of natural enemies. Annual Review of Entomology. 37: 587-614.
- Butirica, P. 1971. Estudios de transmisión del amarillamiento de las venas de la papa.
 Informe anual. Programa de Fitopatología ICA. Bogotá, Colombia. pp. 111-113.
- Caballero, R. 1994. Clave de campo para inmaduros de moscas blancas de Centroamérica (Homoptera: Aleyrodidae). Escuela Agrícola Panamericana, Zamorano, Honduras. 4p.
- Cardona, C; Rodríguez, I; Bueno, J; Tapia, X; CIAT (Centro Internacional de Agricultura Tropical). 2005. Biología y Manejo de la Mosca Blanca Trialeurodes vaporariorum en Habichuela y Frijol. Publicación CIAT Nº 345.
- Cisneros, F. 1995. Control de Plagas Agrícolas. Segunda Edición. Auspiciado por AGCIS Elecronics. Lima-Perú. Pág. 313.
- 8. Cividanes, FJ. 2002. Tabelas de vida de fertilidade de Brevicoryne brassicae (L.) (Hemiptera: Aphididae) em condicoes de campo. Neotropical Entomology. Brasil. 31(3): 419-427

- Cocuzza, GE; De Clerq, P; Lizzio, S; Van De Viere, M; Tirry, L; Degheele, D; Vacante, V. 1997. Life table and predation activity of *Orius laevigatus* and *O. albidipennis* at three constant temperatures. Entomologia esperimentalis *et* applienta. 85: 189-197.
- 10. Dávila, W. 2011. Influencia de la temperatura sobre el ciclo biológico de Apanteles subandinus Blanchard (Hymenoptera: Braconidae), parasitoide de Phthorimaea operculella Zeller. Tesis para obtener el grado de Licenciado en Biología. Universidad Nacional Federico Villareal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología.
- Díaz, J. 1966. Incidencia del virus del amarillamiento de venas en papa en el Ecuador y su transmisión a través de los tubérculos. Revista Turrialba. Vol. 16 (1): 15-24.
- 12. Díaz Lema, MC; Pulgarín Navarro, JM. 1989. Relaciones Insecto-Patógeno en el problema del amarillamiento de las venas de la papa. Trabajo de investigación para obtener el título de Ingeniero Agrónomo. Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias Seccional Medellín.
- Escobar, U; Peláez, L. 1986. Resistencia de las especies silvestres de tomate Lycopersicum hirsutum y L. pennelli, a la mosca blanca de los invernaderos T. vaporariorum, Tesis de grado Ing. Agrónomo. Universidad Nacional de Colombia. Medellín. 56 p.
- Fenemore, PG. 1977. Oviposition of potato tuber moth, *Phthorimaea operculella* Zell. (Lepidoptera: Gelechidae) fecundity in relation to mated state, age, and pupal weight. N. Zealand J. Zool. 4: 187-191.
- 15. Firas Ahmad Al-Zyoud, 2007. Prey species preference of the predator Serangium parcesetosum sicard (Col., Coccinellidae) and its interaction with another natural enemy. Pakistan Journal of Biological Sciences, 10: 2159-2165.
- 16. _____. 2008. Biology and predation potential of the Indian ladybird Serangium montazerii on Bernisia tabaci. Jordan Journal of Agricultural Sciences, Volume 4, No.1.

- García, J; López-Ávila, A. 1998. Biología y hábitos alimenticios de *Delphastus pusillus* (Coleoptera: Coccinellidae) predador de moscas blancas. Revista Colombiana de Entomología Vol. 24 Nos. 3-4, p. 95-102.
- 18. ____; Benítez, E; López-Ávila, A. 2005. Tabla de vida de Delphastus pusillus (Coleoptera: Coccinellidae) en la mosca blanca Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Revista Colombiana de Entomología 31 (2): 155 160.
- (GBIF) Global Biodiversity Information Facility. *Delphastus pusillus*. Santa Barbara Museum of Natural History. USA, California. Record create 2007- 10- 10, modified 2013-01- 10; University of Alberta Entomology Collection (UASM). Mexico, Durango. Record create 2013- 03- 19, modified 2013- 04- 19. University of Alberta Entomology Collection (UASM). USA, Maryland. Record create 2013- 03- 17, modified 2013- 04- 19. University of Alberta Entomology Collection (UASM). USA, Massachutts. Record create 2013- 03-19, modified 2013- 04- 19. Lund Museum of Zoology. Spain, Canary Islands. Record create 2011- 12- 01, modified 2011- 12- 01. On line:

http://www.discoverlife.org/mp/20m?act=make_map&kind=Delphastus+pusillus

- Gerling, D. 2000. Whiteflies revisited. XXI International Congress of Entomology. Abstract book. Brazil. August. 20-26 pp. 64-67.
- 21. González, G; Vanderberg, N. 2007. Los Coccinellidae de Perú (on line) http://www.coccinellidae.cl./paginas/WebPeru/Paginas/Sticholotidinae Peru.php
- 22. _____. 2008. Los Coccinellidae de Chile. 2008. http://www.coccinellidae.cl/inicio.php.
- 23. _____. 2010. Los Coccinellidae de Paraguay [online]. http://www.coccinellidae.cl/Paginas/paginasWebPar
- 24. ______. López, R; Kondo, T. 2012. First report of *Delphastus quinculus* Gordon and Diomus seminulus (Mulsant) (Coleoptera: Coccinellidae) feeding on eggs and first-instars nymphs of *Crypticerya multicicatrices* Kondo and Unruh (Hemiptera: Monophlebidae) Insecta Mundi 0268.
- Gordon, RD. 1970. A review of the genus *Delphastus* Casey (Coleoptera: Coccinellidae).
 Proc. Ent., Soc. Wash., Vol. 72, N° 3.September.pp. 356-369.

- 26. _____. 1985. The Coccinellidae (Coleoptera) of America north of Mexico. Journal of the New York Entomological Society 93(1): 1-912.
- 27. ______. 1994. South American Coccinellidae (Coleoptera) part III: Taxonomic revision of The western Hemisphere genus *Delphastus* Casey. Frustula entomol. N.s. XVII (XXX): 71 133.
- Harvey, A; Yoshida, R. 1985. Life history and feeding behavior of *Nephaspis amnícola* Wingo Proceedings, Hawaiian Entomological Society. Vol. 25, March 1. pp 155 160.
- Heinz, K; Parrella, M. 1994. Biological control of *Bemisia argentifolii* (Homoptera: Aleyrodidae) infesting *Euphorbia pulcherrima:* Evaluations of releases of *Encarsia luteola* (Hymenoptera: Aphelinidae) and *Delphastus pusillus* (Coleoptera: Coccinellidae). Environmental Entomology, Vol. 23, N° 5, October
- 30. ______. Natwick, E; Brazzle, J; Nelson, J; Pickett, C; Parrella, M. 1994. Predatory beetle may suppress silver leaf whitefly. California Agriculture. (United States) 8(2): 35 -40.
- 31. _____; Zalom FG. 1996. Performance of the predator *Delphastus pusillus* on *Bemisia* resistant and susceptible tomato lines. Entomología Experimentalis et Applicata 81: 345 352, pp. 345 352.
- 32. Hemachandra, KS; Copland, MJW. 1996. Influence of temperature on development and oviposition of *Delphastus pusillus*, a coccinellid predator of *Trialeurodes vaporariorum*. Tropical Agricultural Research Vol. 8, 412 - 418.
- Hoelmer, K.A; Osborne, LS; Yokomi, RK. 1993. Reproduction and feeding behavior of *Delphastus pusillus* (Coleoptera: Coccinellidae), a predador of *Bemisia tabaci* (Homoptera: Aleyrodidae). Journal Economic Entomology 86(2): 322-329.
- 34. _____. 1994. Interactions of the Whitefly Predador *Delphastus pusillus* (Coleoptera: Coccinellidae) with Parasitized Sweet potato Whitefly (Homoptera: Aleyrodidae). Environmental Entomology, Volume 23, Number 1, February 1994, pp. 136-139(4).
- 35. Hoelmer, K; Pickett, CH. 2003. Geographic origin and taxonomic history of *Delphastus* spp. (Coleoptera: Coccinellidae) in Commercial Culture. Biocontrol Science and Technology. Vol. 13, N° 5, 529 -/535 August.

- 36. Horne, PA; Horne, JA. 1991. The effects of temperature and host density on the development and survival of *Copidosoma koehleri*. Entomologia Experimentalis et Applicata.59: 289-292.
- 37. ICA (Instituto Colombiano Agropecuario). Boletín de sanidad vegetal 41. ISBN 958
 8214-38-6.
- Kazak, C; Yildiz, S; Sekeroglu, E. 2002. Biological characteristics and life tables of *Neoseiulus umbraticus* Chant (Acari, Phytoseiidae) at three constant temperatures. Anzeiger fur Schadlingskunde. Turquia 75(5): 118-121.
- 39. Liu, T; Stansly, P. 1996. Morphology of Nephaspis oculatus and Delphastus pusillus (Coleoptera: Coccinellidae), predadors of Bemisia argentifolii (Homoptera: Aleyrodidae).
 Proc. Entomol. Soc. Wash. 98 (2), 1996, pp. 292 300.
- 40. _____. Hoelmer, K; Osborne, L. 1997. Life History of *Nephaspis oculatus* (Coleoptera: Coccinellidae), a predator of *Bemisia argentifolii* (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 90(6): 776-782.
- 41. López –Ávila, A; Cardona Mejía, C; García González, J; Rendón, F; Hernández, P.
 2001. Reconocimiento e identificación de enemigos naturales de mosca blanca (Homoptera: Aleyrodidae) en Colombia y Ecuador. Revista Colombiana de Entomología. 27(3-4): 137-141.
- 42. Lopez, SN; Botto, NE. 1997. Biology of a South American population of *Eretmocerus* sp. (Hymenoptera: Aphelinidae) attacking the greenhouse whitefly. Biological control. 9 (1): 1-5.
- **43.** Mahroof, R; Subramanyam, B; Throne, JE; Menon, A. 2003. Time-mortality relationships for *Tribolium castaneum* (Coleoptera: Tenebrionidae) life stages exposed to elevated temperatures. J. Econ. Entomol. 96(4): 1345–1351.
- 44. Martin, JH. 1987. An identification guide to common whitefly pest species of the World (Homoptera Aleyrodidae). Tropical Pest Management. 33, 298 322.
- **45. Miró, JJ; Castillo, PS. 2010.** Especies de "mariquitas" (Coleoptera: Coccinellidae) en los frutales de Tumbes. Revista Peruana de Entomología 46: 21-29.

- 46. Morales, F; Cardona, C; Bueno, J; Rodríguez, I; CIAT (Centro Internacional de Agricultura Tropical). 2006. Manejo Integrado de enfermedades de plantas causadas por virus transmitidos por moscas blancas. Tropical White Fly IPM Project, Department for International Development (DFID). Impreso en Colombia Agosto 2006. 43P. ISBN: 958-694-085-3.
- 47. Navarro, R; Zapata, JL; Tamayo, PJ. 1984. Observaciones sobre la transmisión del virus del amarillamiento de venas en papa (VAVP). ASCOLFI INFORMA. (Bogotá). Vol. 10 (4): 34 Jul. Agosto.
- **48. Ouvrad, D. & Martin JH. 2013.** The White-files-Taxonomic Checklist of the world's whiteflies (Insecta: Hemiptera: Aleyrodidae).
- 49. Pervez, A. and Omkar. 2004. Temperature-Dependent life attributes of an aphidophagous ladybird *Propylea dissecta*. Biocontrol Science and Technology. Vol. 14 Nº 6, 587-594.
- 50. Rabinovich, JE. 1980. Introducción a la ecología de poblaciones animales. Capítulo 5.
 Editorial CECSA. Caracas (Venezuela), 313.
- 51. Ramírez, ML. 2008. Efecto de la temperatura sobre el desarrollo, longevidad y fecundidad de *Chrysocharis flacilla* Walker (HYM: Eulophidae) parasitoide de *Lyriomyza huidobrensis* Blanchard (DIP: Agromyzidae) mosca minadora de la papa. Tesis para optar el grado de Biólogo. Universidad Nacional Agraria La Molina.
- Richards, OW; Davies, RG. 1984. Tratado de Entomología Imms. Volumen 2: Clasificación y biología. Ediciones Omega, S. A. Platón 26, Barcelona. España.
- **53.** Saldarriaga, A. 1987. Estudio integral del amarillamiento de venas en la región papera del Oriente Antioqueño. Informe anual. Proyecto cooperativo. ICA CIP. Medellín.33 p
- 54. _____. 1988. La mosca de los invernaderos *T. vaporariorum*, un transmisor del amarillamiento de venas en papa. Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias Medellín. 30 p.
- 55. _____; Álvarez, AM; Jaramillo, JE. 1988. Efecto del amarillamiento de venas transmitido por *T.vaporariorum* (Westwood) en papa. Rev. Colombiana de Entomología, 14 (2), 3-8.

- **56.** Savoiskaya, GI. 1960. Morphology and taxonomy of coccinellid larvae from southeast Kazakhstan. Entomol. Rev. (Engl. Trans. Entomol. Obozr.) 39: 80-88.
- 57. SENASA (Servicio Nacional de Sanidad Agraria) 2001. Documento Interno de Capacitación en Control Biológico. Ensayo de Investigación de D. catalinae alimentado con N. glauca.
- Snodgrass, RE; Eickwort. 1935. Principles of insect morphology. McGraw Hill, New York. 667 pp.
- **59.** Southwood, TR. 1978. Ecological methods with particular reference to the study of insect population. Ed. Chapman and Hall. London.
- Sporleder, M; kroschel, J; Gutierrez, M; Lagnaoui, A. 2004. A temperature based simulation model for the potato tuberworm, *Pthorimaea operculella* Zeller (Lepidoptera: Gelechiidae). Environmental Entomology 33 (3): 477 486.
- 61. _____. Simon, R; Gonzáles, J; Carhuapoma, P; Juárez, H; De Mendiburu, F; kroschel, J. 2009. *ILCYM*. Insect Life Cycle Modeling. Programa para el desarrollo de modelos de fenología basados en la temperatura con aplicaciones regionales y evaluaciones de riesgo de plagas. Centro Internacional de la Papa, Lima, Perú. PP. 62.
- 62. ______. Simon, R; Gonzáles, J; Carhuapoma, P; Juárez, H; Tonnang, H; kroschel, J. 20012. *ILCYM*. Insect Life Cycle Modeling. Programa para el desarrollo de modelos para la fenología de insectos basado en la temperatura con aplicaciones regionales y evaluaciones de riesgo de plagas. Centro Internacional de la Papa, Lima, Perú. PP. 87.
- 63. Stathas, GJ; Kontodimas, DC; Eliopoulos, PA. 2011. Consumption of Dysaphis crataegi (Hemiptera: Aphididae) by larvae of the predator Harmonia axyridis (Coleoptera: Coccinellidae). In Proceedings of 14th Panhellenic Entomological Congress, Nafplion, Greece: 304-305.
- 64. Stathas, GJ; Kontodimas, DC; Karamaouna, F; Kampouris, S. 2011. Thermal requirements and effect of temperature and prey on the development of the predator *Harmonia* axyridis. Environmental Entomology, Vol. 40 N° 6, pp 1541 1545.

99

- **65.** Stenseth, C. 1985. Whitefly and its parasite *Encarsia formosa* in biological pest control the glasshouse experience. Ed. N. W. Hussey & N. Scopes. Londres. 358p.
- 66. Tamayo, PJ; Navarro, R. 1984. Aumenta la incidencia del virus del amarillamiento de venas de la papa en Antioquia, ASCOLFI INFORMA. Vol. 10 (5): 40-42.
- 67. Valencia, L. 2000. La Mosca Blanca en la agricultura peruana Lima, Perú. 133 p. Primera edición Octubre.
- 68. Valencia, G. 2008. Efecto de la temperatura sobre el desarrollo, longevidad y fecundidad de *Phaedrotoma scabriventris* (NIXON) (HYM.: Braconidae) parasitoide de *Liriomyza huidobrensis* (Blanchard) (DIP.: Agromyzidae). Tesis para optar el Titulo de Biólogo. Universidad Nacional Agraria La Molina. Facultad de Ciencias Departamento de Biología.
- 69. Wagner, T; Wu, H; Sharpe, P; Coulson, R. 1984. Modeling Distribution of Insect Development Time: A Literature Review and Application of the Weibull Function. *Annals of the Entomological Society of America* 77: 475-487.
- Yang, T; Chi, H. 2006. Life tables and development of *Bemisia argentifolii* (Homoptera: Aleyrodidae) at different temperatures. Review Journal of Economic Entomology. Vol 99 (3) 691 698.

IX. ANEXOS

ANEXO 1: ANÁLISIS DEL HUEVO

Análisis de Normalidad de Residuales Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.9105, p-value = $9.593e^{-12}$

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana

Dato: vars [, k]

Prueba estadística = 15.536, p-value = $1.881e^{-11}$

Comparaciones Múltiples

Estudio:

Pruebas de Kruskal-Wallis

Valor: 191.9601

Grados de libertad: 4

P valor de la prueba Chi cuadrado: 0

Promedio de los rangos

Vars	k	repetición
18	224.82075	53
20	203.87288	59
25	107.57937	63
28	69.25352	71
32	79.70690	29

t-Student : 1.968789 Alpha : 0.05

Diferencia minina significante (LSD): 16.80614

Media harmónica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	224.820754716981
b	20	203.872881355932
с	25	107.579365079365
d	32	79.7068965517241
d	28	69.2535211267606

Verdaderos promedios por tratamiento

Tratamiento		x
1	18	8.433962
2	20	7.694915
3	25	4.873016
5	32	4.482759
4	28	4.253521

ANEXO 2: ANÁLISIS CICLO DE VIDA VS. TEMPERATURA: LARVA COMPLETA

Análisis de Normalidad de Residuales

Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.945, p-value = 1.422e⁻¹²

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: Tiempo de vida Prueba estadística = 11.2229, p-value = $1.017e^{-08}$

<u>Comparaciones Múltiples</u> Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 250.5977 Grados de libertad: 4 P valor de la prueba Chi cuadrado: 0

Tiempo de vida	repetición
388.0213	94
329.9600	100
222.2900	100
211.0450	100
94.6150	100
	Tiempo de vida 388.0213 329.9600 222.2900 211.0450 94.6150

t-Student : 1.964827

Alpha : 0.05

Diferencia minina significante (LSD): 28.00405

Media harmonica del tamaño de la celda: 98.7395

		U
Grupos	Tratamientos	Promedio de los rangos
a	18	388
b	20	330
c	25	222.3
c	28	211
d	32	94.62

Promedio con la misma letra no son significativamente diferentes

Promedios por cada Temperatura Evaluada

	Temperatura	Promedio	Error Estándar
1	18	12.47872	0.3562459
2	20	10.63000	0.4296240
3	25	7.76000	0.1804148
4	28	7.31000	0.2468775
5	32	4.34000	0.2225745

ANEXO 3: ANÁLISIS DE LA LARVA I

Análisis de Normalidad de Residuales

Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.9716, p-value = 2.786e⁻⁰⁵

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: vars [, k]

Prueba estadística = 6.6536, p-value = $4.035e^{-05}$

Comparaciones Múltiples Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 138.3023 Grados de libertad: 4 P valor de la prueba Chi cuadrado: 0

Promedio de los rangos

Vars	k	repetición
18	213.18868	53
20	186.92373	59
25	118.88095	63
28	91.07042	71
32	57.48276	29

t-Student : 1.968789 Alpha : 0.05 Diferencia minina significante (LSD): 21.36732 Media harmonica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
а	18	213.188679245283
b	20	186.923728813559
с	25	118.880952380952
d	28	91.0704225352113
e	32	57.4827586206897

Verdaderos promedios por tratamiento

Fratamiento		. X
1	18	4.000000
2	_ 20	3.355932
3	25	2.222222
4	28	1.859155
5	32	1.413793

ANEXO 4: ANÁLISIS DE LA LARVA II

Análisis de Normalidad de Residuales

Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.8394, p-value = $3.285e^{-16}$

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: vars [, k]

Prueba estadística = 1.2124, p-value = 0.3058

Comparaciones Múltiples Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 76.51107 Grados de libertad: 4 P valor de la prueba Chi cuadrado: 9.992007e⁻¹⁶

· .

Promedio de los rangos

18192.660385320149.440685925118.047626328141.54930713249.4827629	Vars	k	repetición
20149.440685925118.047626328141.54930713249.4827629	18	192.66038	53
25118.047626328141.54930713249.4827629	20	149.44068	59
28141.54930713249.4827629	25	118.04762	63
32 49.48276 29	28	141.54930	71
	32	49.48276	29

t-Student : 1.968789

Alpha : 0.05

ς.

.

Diferencia minina significante (LSD): 24.96103

Media harmonica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes -

Grupos	Tratamientos	Promedio de los rangos
а	18	192.660377358491
b	20	149.440677966102
bc	28	141.549295774648
c	25	118.047619047619
d	32	49.4827586206897

Verdaderos promedios por tratamiento

Tratamiento		X
1	18	3.226415
2	20	2.525424
4	28	2.450704
3	25	2.174603
5	32	1.413793

ANEXO 5: ANÁLISIS DE LA LARVA III

<u>Análisis de Normalidad de Residuales</u> Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.9361, p-value = 1.576e⁻⁰⁹

<u>Análisis de Homogeneidad de Variancias</u> Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: vars [, k] Prueba estadística = 1.0571, p-value = 0.3782

Comparaciones Múltiples Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 86.30974 Grados de libertad: 4 P valor de la prueba Chi cuadrado: 0

Promedio de los rangos

Vars	k	repetición
18	193,20755	53
20	181.68644	59
25	94.46032	63
28	120.33803	71
32	86.05172	29

t-Student : 1.968789

Alpha : 0.05

Diferencia minina significante (LSD): 24.8685

Media harmonica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	193.207547169811
a	20	181.686440677966
b	28	120.338028169014
с	25	94.4603174603175
с	32	86.051724137931

Verdaderos promedios por tratamiento

Tratamiento		х
1	18	3.056604
2	20	2.762712
4	28	2.070423
3	25	1.746032
5	32	1.655172

ANEXO 6: ANALISIS DE LA LARVA IV

.

Análisis de Normalidad de Residuales

Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.8958, p-value = 7.887e⁻¹³

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana

Dato: vars [, k]

Prueba estadística = 1.3635, p-value = 0.2469

Comparaciones Múltiples Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 191.1911 Grados de libertad: 4

P valor de la prueba Chi cuadrado: 0

Promedio de los rangos

Vars	k	repetición
18	231.61321	53
20	201.62712	59
25	97.21429	63
28	80.72535	71
32	66.29310	29

t-Student : 1.968789 Alpha : 0.05 Diferencia minina significante (LSD): 17.22697

Media harmonica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	231.61320754717
b	20	201.627118644068
с	25	97.2142857142857
cd	28	80.7253521126761
d	32	66.2931034482759

Verdaderos promedios por tratamiento

Tratamiento		х
1	18	9.000000
2	20	8.084746
3	25	4.26984 1
4	28	3.859155
5	32	3.413793

ANEXO 7: ANALISIS DE LA PUPA

Análisis de Normalidad de Residuales Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.9473, p-value = $2.232e^{-08}$

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana

Dato: vars [, k]

Prueba estadística

Prueba estadística = 1.3445, p-value = 0.2537

<u>Comparaciones Múltiples</u> Estudio: Pruebas de Kruskal-Wallis

Vinculado o no vinculado

Valor: 232.9607

Grados de libertad: 4

P valor de la prueba Chi cuadrado: 0

Promedio de los rangos

Vars	k	repetición
18	248.07547	53
20	193.10169	59
25	106.91270	63
28	76.08451	71
32	43.84483	29

t-Student : 1.968789 Alpha : 0.05 Diferencia minina significante (LSD): 11.96465 Media harmonica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	248.075471698113
b	20	193.101694915254
с	25	106.912698412698
đ	28	76.0845070422535
e	32	43.8448275862069

Verdaderos promedios por tratamiento

Fratamiento		х
1	18	9.830189
2	20	7.762712
3	25	5.285714
4	28	4.746479
5	32	4.068966

Pupas que serán machos:

ANALISIS CICLO DE VIDA vs TEMPERATURA: Pupa

Análisis de Normalidad de Residuales

Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.9775, p-value = 0.01803

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana

Dato: Tiempo de vida

Prueba estadística = 0.9942, p-value = 0.413

Comparaciones Múltiples

Estudio:

Pruebas de Kruskal-Wallis

Vinculado o no vinculado

Valor: 123.4953

Grados de libertad: 4

P valor de la prueba Chi cuadrado: 0

Temperatura Promedio de los rangos		Repetición	
	Tiempo de vida		
18	130.70370	27	
20	99.50000	36	
25	51.17647	34	
28	39.02778	36	
32	16.72727	11	

.

t-Student : 1.977178

Alpha : 0.05

Diferencia minina significante (LSD): 8.864507

Media harmonica del tamaño de la celda: 23.48372

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	130.7
b	20	99.5
c	25	51.18
d	28	39.03
e	32	16.73

Promedios por cada Temperatura Evaluada

	Temperatura	Promedio	Error Estándar
1	18	10.037037	0.12496702
2	20	7.888889	0.09576573
3	25	5.264706	0.13555737
4	28	4.805556	0.10404093
5	32	3.909091	0.21125364

<u>Pupas que serán hembras:</u> ANALISIS CICLO DE VIDA vs TEMPERATURA: Pupa

<u>Análisis de Normalidad de Residuales</u> Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.9282, p-value = 3.123e⁻⁰⁶

<u>Análisis de Homogeneidad de Variancias</u> Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: Tiempo de vida Prueba estadística = 1.7034, p-value = 0.1533

<u>Comparaciones Múltiples</u> Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 112.4915 Grados de libertad: 4 P valor de la prueba Chi cuadrado: 0

Temperatura	Promedio de los rangos	Repetición	
	Tiempo de vida		
18	117.44444	27	
20	93.19565	23	
25	57.37500	28	
28	38.48571	35	
32	21.00000	18	

t-Student : 1.978971 Alpha : 0.05 Diferencia minina significante (LSD): 7.714349

Media harmonica del tamaño de la celda: 24.95551

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	117.4
b	20	93.2
c	25	57.38
d	28	38.49
e	32	21

Promedios por cada Temperatura Evaluada

	Temperatura	Promedio	Error Estándar
1	18	9.703704	0.11712139
2	20	7.565217	0.16425767
3	25	5.321429	0.10355546
4	28	4.685714	0.08955003
5 .	32	3.944444	0.18911943

ANEXO 8: ANALISIS DE LA LONGEVIDAD

Análisis de Normalidad de Residuales

Prueba de normalidad de Shapiro-Wilk

Dato: residuales

W = 0.8306, p-value $< 2.2e^{-16}$

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: vars [, k] Prueba estadística = 1.7434, p-value = 0.1407

Comparaciones Múltiples
Estudio:
Pruebas de Kruskal-Wallis
Vinculado o no vinculado
Valor: 19.80482
Grados de libertad: 4
P valor de la prueba Chi cuadrado: 0.0005457088

Promedio de los rangos

Vars	k	repetición
18	180.8396	53
20	128.2203	59
25	126.8016	63
28	132.4648	71
32	117.4828	29

t-Student: 1.968789 Alpha: 0.05 Diferencia minina significante (LSD): 30.41551 Media harmonica del tamaño de la celda: 49.87165

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	180.839622641509
b	28	132.464788732394
b	20	128.220338983051
b	25	126.801587301587
b	. 32	117.48275862069

Verdaderos promedios por tratamiento

	Tratamiento	х
1	18	43.13208
4	28	31.70423
3	25	27.52381
2	20	25.08475
5	32	22.27586

ANEXO 9: ANALISIS CICLO DE VIDA vs TEMPERATURA: ciclo de desarrollo

<u>Análisis de Normalidad de Residuales</u> Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.801, p-value $< 2.2e^{-16}$

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: Tiempo de vida Prueba estadística = 22.7492, p-value $< 2.2e^{-16}$

Comparaciones Múltiples Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 113.3055 Grados de libertad: 5 P valor de la prueba Chi cuadrado: 0

I

Temperatura	Promedio de los rangos	Repetición	
	Tiempo de vida		
. 15	287.485	100	
18	377.310	100	
20	361.005	100	
25	309.385	100	
28	321.520	100	
32	146.295	100	

t-Student : 1.963966

Alpha : 0.05

Diferencia minina significante (LSD): 43.5254

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
a	18	377.3
ab	20	361
bc	28	321.5
с	25	309.4
с	15	287.5
d	32	146.3

Promedios por cada Temperatura Evaluada

	Temperatura	Promedio	Error Estándar
2	18	51.91	3.6380452
3	20	41.15	2.6721298
5	28	39.21	3.5645362
4	25	35.11	2.7650742
1	15	26.59	0.6052122
6	32	16.61	1.7249152

Período del ciclo de vida cuando son machos:

ANALISIS CICLO DE VIDA vs TEMPERATURA:

Análisis de Normalidad de Residuales Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.8523, p-value = 1.043e⁻¹⁰

<u>Análisis de Homogeneidad de Variancias</u> Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: Tiempo de vida Prueba estadística = 1.6802, p-value = 0.158

<u>Comparaciones Múltiples</u> Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 40.75657 Grados de libertad: 4

P valor de la prueba Chi cuadrado: 3.018539 e⁻⁰⁸

Femperatura	Promedio de los rangos	Repetición	
	Tiempo de vida		
18	110.66667	27	
20	83.38889	36	
25	57.05882	34	
28	57.04167	36	
32	41.50000	11	

t-Student : 1.977178

Alpha : 0.05

Diferencia minina significante (LSD): 20.6371

Media harmonica del tamaño de la celda: 23.48372

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
а	18	110.7
b	20 ·	83.39
с	25	57.06
С	28	57.04
с	32	41.5

Promedios por cada Temperatura Evaluada

	Temperatura	Promedio	Error Estándar
1	18	83.59259	5.762453
2	20	57.02778	4.347502
4	28	47.69444	4.622893
3	25	46.35294	4.245766
5	32	37.27273	4.592664

<u>Período del ciclo de vida cuando son hembras:</u> ANALISIS CICLO DE VIDA vs TEMPERATURA

Análisis de Normalidad de Residuales Prueba de normalidad de Shapiro-Wilk Dato: residuales

W = 0.7904, p-value = 2.119e⁻¹²

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana

Dato: Tiempo de vida

Prueba estadística = 0.9344, p-value = 0.4463

Comparaciones Múltiples Estudio: Pruebas de Kruskal-Wallis Vinculado o no vinculado Valor: 31.45772 Grados de libertad: 4 P valor de la prueba Chi cuadrado: 2.468932e⁻⁰⁶

Temperatura	Promedio de los rangos	Repetición	
	Tiempo de vida		
18	97.07407	27	
20	76.04348	23	
25	6.32143	28	
28	55.60000	35	
32	41.83333	18	

t-Student : 1.978971 Alpha : 0.05 Diferencia minina significante (LSD): 18.8036 Media harmonica del tamaño de la celda: 24.95551 Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos		
a	18	97.07		
b	20	76.04		
c	25	56.32		
c	28	55.6		
с	32	41.83		

Promedios por cada Temperatura Evaluada

•

÷

.

	Temperatura	Promedio	Error Estándar	
1	18	76.25926	4.312109	
2	20	57.65217	3.836896	
4	28	54.31429	7.305434	
3	25	51.14286	5.756688	
5	32	39.61111	4.661859	

Análisis de su	pervivencia	de los macho	os: Temperatura	a 18 °C
----------------	-------------	--------------	-----------------	---------

,

·

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
41	27	1	0.9630	0.0363	0.89430	1.000
44	26	1 ·	0.9259	0.0504	0.83223	1.000
45	25	2	0.8519	0.0684	0.72786	0.997
46	23	2	0.7778	0.0800	0.63576	0.952
53	21	1	0.7407	0.0843	0.59259	0.926
54	20	1	0.7037	0.0879	0.55093	0.899
59	19	1	0.6667	0.0907	0.51059	0.870
61	18	1	0.6296	0.0929	0.47146	0.841
76	17	1	0.5926	0.0946	0.43344	0.810
79	16	1	0.5556	0.0956	0.39647	0.778
88	15	2	0.4815	0.0962	0.32552	0.712
91	13	1	0.4444	0.0956	0.29152	0.678
93	2	2	0.3704	0.0929	0.22649	0.606
97	10	1	0.3333	0.0907	0.19553	0.568
104	9	1	0.2963	0.0879	0.16568	0.530
112	8	1	0.2593	0.0843	0.13704	0.490
118	7	1	0.2222	0.0800	0.10973	0.450
119	6	2	0.1481	0.0684	0.05996	0.366

Sigue...

Continuación...

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
120	4	1	0.1111	0.0605	0.03823	0.323
121	3	1	0.0741	0.0504	0.01952	0.281
122	2	1	0.0370	0.0363	0.00541	0.253
123	1	1	0.0000	Na	NA	NA

:

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
35	36	1	0.9722	0.0274	0.92000	1.000
36	35	2	0.9167	0.0461	0.83069	1.000
37	33	1	0.8889	0.0524	0.79194	0.998
38	32	2	0.8333	0.0621	0.72007	0.964
40	30	1	0.8056	0.0660	0.68611	0.946
42	29	1	0.7778	0.0693	0.65317	0.926
44	28	3	0.6944	0.0768	0.55916	0.862
45	25	2	0.6389	0.0801	0.49977	0.817
48	23	2	0.5833	0.0822	0.44261	0.769
49	21	1	0.5556	0.0828	0.41480	0.744
50	20	3	0.4722	0.0832	0.33432	0.667
51	17	3	0.3889	0.0812	0.25822	0.586
53	14	2	0.3333	0.0786	0.21001	0.529
55	12	2	0.2778	0.0747	0.16404	0.470
57	10	1	0.2500	0.0722	0.14198	0.440
58	9	1	0.2222	0.0693	0.12061	0.409
67	8	1	0.1944	0.0660	0.10001	0.378
68	7	2	0.1389	0.0576	0.06158	0.313

Análisis de supervivencia de los machos: Temperatura 20 °C

Sigue...

Continuación...

.

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
70	5	1	0.1111	0.0524	0.04411	0.280
77	4	1	0.0833	0.0461	0.02820	0.246
110	.3	1	0.0556	0.0382	0.01445	0.214
133	2	1	0.0278	0.0274	0.00402	0.192
157	1	1	0.0000	NA	NA	NA

.

•

3
Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
21	34	. 1	0.9706	0.0290	0.91543	1.000
24	33	1	0.9412	0.0404	0.86532	1.000
26	32	2	0.8824	0.0553	0.78044	0.998
27	30	1	0.8529	0.0607	0.74183	0.981
28	29	1	0.8235	0.0654	0.70486	0.962
30	28	1	0.7941	0.0693	0.66920	0.942
31	27	3	0.7059	0.0781	0.56820	0.877
32	24	1	0.6765	0.0802	0.53616	0.853
33	23	1	0.6471	0.0820	0.50481	0.829
34	22	1	0.6176	0.0833	0.47412	0.805
35	21	1	0.5882	0.0844	0.44403	0.779
36	20	2	0.5294	0.0856	0.38562	0.727
37	18	1	0.5000	0.0857	0.35726	0.700
41	17	1	0.4706	0.0856	0.32946	0.672
43	16	1	0.4412	0.0852	0.30222	0.644
44	15	3	0.3529	0.0820	0.22390	0.556
45	12	1	0.3235	0.0802	0.19899	0.526
46	11	1	0.2941	0.0781	0.17473	0.49

Análisis de supervivencia de los machos: Temperatura 25 °C

a	• •
Confin	uación
Contin	

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
47	10	1	0.2647	0.0757	0.15117	0.464
51	9	1	0.2353	0.0727	0.12836	0.431
53	. 8	2	0.1765	0.0654	0.08537	0.365
61	6	1	0.1471	0.0607	0.06545	0.330
62	5	1	0.1176	0.0553	0.04686	0.295
86	4	1	0.0882	0.0486	0.02995	0.260
101	3	1	0.0588	0.0404	0.01533	0.226
117	2	1	0.0294	0.0290	0.00427	203
120	1	1	0.0000	NA	NA	NA

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%Cl
20	36	1	0.9722	0.0274	0.92000	1.000
21	35	1	0.9444	0.0382	0.87251	1.000
25	34	1	0.9167	0.0461	0.83069	1.000
26	33	1	0.8889	0.0524	0.79194	0.998
27	32	1	0.8611	0.0576	0.75524	0.982
28	31	2	0.8056	0.0660	0.68611	0.946
29	29	3	0.7222	0.0747	0.58978	0.884
30	26	1	0.6944	0.0768	0.55916	0.862
31	25	1	0.66 6 7	0.0786	0.52917	0.840
32	24	2	0.6111	0.0812	0.47092	0.793
33	22	1	0.5833	0.0822	0.44261	0.769
34	21	3	0.5000	0.0833	0.36066	0.693
36	18	1	0.4722	0.0832	0.33432	0.667
37	17	2	0.4167	0.0822	0.28309	0.613
39	15	1	0.3889	0.0812	0.25822	0.586
41	14	1	0.3611	0.0801	0.23385	0.558
50	13	1	0.3333	0.0786	0.21001	0.529
51	12	1	0.3056	0.0768	0.18673	0.500

\sim		•	,	
Co	ntini	12C10	on	_
~ ~				

.

•

T	iempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
	56	11	1	0.2778	0.0747	0.16404	0.470
	57	10	1	0.2500	0.0722	0.14198	0.440
	63	9	1	0.2222	0.0693	0.12061	0.409
	65	8	1	0.1944	0.0660	0.10001	0.378
	68	7	1	0.1667	0.0621	0.08028	0.346
	77	6	1	0.1389	0.0576	0.06158	0.313
	83	5	1	0.1111	0.0524	0.04411	0.280
	88	4	2	0.0556	0.0382	0.01445	0.214
	128	2	1	0.0278	0.0274	0.00402	0.192
	131	1	1	0.0000	NA	NA	NA

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
21	11	1	0.9091	0.0867	0.7541	1.000
23	10	1	0.8182	0.1163	0.6192	1.000
25	9	1	0.7273	0.1343	0.5064	1.000
30	8	1	0.6364	0.1450	0.4071	0.995
31	7	1	0.5455	0.1501	0.3180	0.936
33	6	1	0.4545	0.1501	0.2379	0.868
34	5	1	0.3636	0.1450	0.1664	0.795
40	4	1	0.2727	0.1343	0.1039	0.716
43	3	1	0.1818	0.1163	0.0519	0.637
64	2	1	0.0909	0.0867	0.0140	0.589
66	1	1	0.0000	NA	NA	NA

.

Análisis de supervivencia de los machos: Temperatura 32 °C

-

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
42	27	1	0.9630	0.0363	0.89430	1.000
45	26	2	0.8889	0.0605	0.77791	1.000
48	24	1	0.8519	0.0684	0.72786	0.997
50	23	1	0.8148	0.0748	0.68071	0.975
54	22	1	0.7778	0.0800	0.63576	0.952
56	21	1	0.7407	0.0843	0.59259	0.926
57	20	1	0.7037	0.0879	0.55093	0.899
58	19	1	0.6667	0.0907	0.51059	0.870
65	18	1	0.6296	0.0929	0.47146	0.841
66	17	1	0.5926	0.0946	0.43344	0.810
71	16	1	0.5556	0.0956	0.39647	0.778
77	15	1	0.5185	0.0962	0.36050	0.746
79	14	1	0.4815	0.0962	0.32552	0.712
82	13	2	0.4074	0.0946	0.25850	0.642
83	11	2	0.3333	0.0907	0.19553	0.568
92	9	1	0.2963	0.0879	0.16568	0.530
93	8	1	0.2593	0.0843	0.13704	0.490
96	7	2	0.1852	0.0748	0.08394	0.409
104	5	3	0.0741	0.0504	0.01952	0.281
111	2	1	0.0370	0.0363	0.00541	0.253
116	1	1	0.0000	NA	NA	NA

Análisis de supervivencia de las hembras: Temperatura 18 °C

~

÷

.

133 ·

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
33	23	1	0.9565	0.0425	0.87671	1.000
35	22	1	0.9130	0.0588	0.80485	1.000
37	21	1	0.8696	0.0702	0.74227	1.000
38	20	1	0.8261	0.0790	0.68484	0.996
43	19	1	0.7826	0.0860	0.63096	0.971
48	18	2	0.6957	0.0959	0.53088	0.912
49	16	1	0.6522	0.0993	0.48389	0.879
50	15	1	0.6087	0.1018	0.43862	0.845
54	14	1	0.5652	0.1034	0.39496	0.809
56	13	2	0.4783	0.1042	0.31209	0.733
57	11	1	0.4348	0.1034	0.27284	0.693
58	10	1	0.3913	0.1018	0.23504	0.651
59	9	1	0.3478	0.0993	0.19876	0.609
60	8	1	0.3043	0.0959	0.16407	0.565
66	7	1	0.2609	0.0916	0.13112	0.519
67	6	1	0.2174	0.0860	0.10011	0.472
68	5	1	0.1739	0.0790	0.07137	0.424
, 69	4	1	0.1304	0.0702	0.04541	0.375
71	3	. 1	0.0870	0.0588	0.02313	0.327
87	2	1	0.0435	0.0425	0.00639	0.296
117	1	1	0.0000	NA	NA	NA

.

Análisis de supervivencia de las hembras: Temperatura 20 °C

.

Análisis de supervivencia de las hembras: Temperatura 25 °C

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
23	28	1	0.9643	0.0351	0.89794	1.000
24	27	1	0.9286	0.0487	0.83792	1.000
25	26	1	0.8929	0.0585	0.78534	1.000
26	25	2	0.8214	0.0724	0.69114	0.976
27	23	1	0.7857	0.0775	0.64753	0.953
29	22	1	0.7500	0.0818	0.60560	0.929
30	21	1 .	0.7143	0.0854	0.56511	0.903
31	20	1	0.6786	0.0883	0.52588	0.876
32	19	2	0.6071	0.0923	0.45071	0.818
35	17	1	0.5714	0.0935	0.41462	0.788
36	16	1	0.5357	0.0942	0.37947	0.756
38	15	1	0.5000	0.0945	0.34523	0.724
40	14	1	0.4643	0.0942	0.31188	0.691
43	13	1	0.4286	0.0935	0.27943	0.657
47	12	1	0.3929	0.0923	0.24789	0.623
51	11	1	0.3571	0.0906	0.21728	0.587
52	10	1	0.3214	0.0883	0.18765	0.551
54	9	ľ	0.2857	0.0854	0.15907	0.513
59	8	2	0.2143	0.0775	0.10543	0.436
76	6	1	0.1786	0.0724	0.08069	0.395
81	5	1	0.1429	0.0661	0.05766	0.354
100	4	1	0.1071	0.0585	0.03678	0.312

.

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
104	3	1	0.0714	0.0487	0.01879	0.272
123	2	1	0.0357	0.0351	0.00521	0.245
129	1	1	0.0000	NA	NA	NA

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
22	35	1	0.9714	0.0282	0.91777	1.000
24	34	2	0.9143	0.0473	0.82609	1.000
25	32	1	0.8857	0.0538	0.78634	0.998
27	31	2	0.8286	0.0637	0.71266	0.963
28	29	2	0.7714	0.0710	0.64414	0.924
29	27	1	0.7429	0.0739	0.61130	0.903
32	26	1	0.7143	0.0764	0.57926	0.88 1
33	25	1	0.6857	0.0785	0.54794	0.858
34	24	1	0.6571	0.0802	0.51729	0.835
35	23	3	0.5714	0.0836	0.42890	0.761
36	20	1	0.5429	0.0842	0.40055	0.736
37	19	1	0.5143	0.0845	0.37272	0.710
38	18	2	0.4571	0.0842	0.31861	0.656
40	16	1	0.4286	0.0836	0.29234	0.628
43	15	1	0.4000	0.0828	0.26659	0.600
44	14	1	0.3714	0.0817	0.24138	0.572
47	13	1	0.3429	0.0802	0.21673	0.542
49	12	1	0.3143	0.0785	0.19266	0.513
58	11	1	0.2857	0.0764	0.16921	0.482
59	10	1	0.2571	0.0739	0.14643	0.452
62	9	1	0.2286	0.0710	0.12437	0.420
65	8	1	0.2000	0.0676	0.10310	0.388

Análisis de supervivencia de las hembras: Temperatura 28 °C

Sigue...

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
67	7	1	0.1714	0.0637	0.08275	0.355
76	6	1	0.1429	0.0591	, 0.06346	0.322
78	5	1	0.1143	0.0538	0.04544	0.287
85	4	1	0.0857	0.0473	0.02905	0.253
144	3	1	0.0571	0.0392	0.01488	0.219
191	2	1	0.0286	0.0282	0.00414	0.197
206	1	1	0.0000	NA	NA	NA

ī

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
17	18	1	0.9444	0.0540	0.84434	1.000
19	17	1	0.8889	0.0741	0.75494	1.000
23	16	3	0.7222	0.1056	0.54231	0.962
29	13	1	0.6667	0.1111	0.48089	0.924
30	12	2	0.5556	0.1171	0.36752	0.840
31	10	1	0.5000	0.1179	0.31502	0.794
32	9	1	0.4444	0.1171	0.26516	0.745
35	8	1	0.3889	0.1149	0.21793	0.694
41	7	1	0.3333	0.1111	0.17344	0.641
43	6	1	0.2778	0.1056	0.13188	0.585
51	5	- 1	0.2222	0.0980	0.09364	0.527
61	4	1	0.1667	0.0878	0.05932	0.468
70	3	1	0.1111	0.0741	0.03008	0.410
73	2	1	0.0556	0.0540	0.00827	0.373
82	1	1	0.0000	NA	NA	NA

Análisis de supervivencia de las hembras: Temperatura 32 °C

1

Análisis de varianza

ANALISIS TIEMPO DE VIDA vs TEMPERATURA: Hembra

<u>Análisis de Normalidad de Residuales</u> Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.7719, p-value = 5.388e⁻¹³

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: Tiempo de vida Prueba estadística = 0.9514, p-value = 0.4368

Comparaciones Múltiples

Estudio:

Pruebas de Kruskal-Wallis

Vinculado o no vinculado

Valor: 8.349552

Grados de libertad: 4

P valor de la prueba Chi cuadrado: 0.07958099

Femperatura	Promedio de los rangos	Repetición
	Tiempo de vida	
18	84.20370	27
20	61.76087	23
25	61.89286	28
28	63.38571	. 35
32	55.58333	18

t-Student : 1.978971

Alpha : 0.05

Diferencia minina significante (LSD): 20.89081

Media harmonica del tamaño de la celda: 24.95551

Promedio con la misma letra no son significativamente diferentes

Grupos	Tratamientos	Promedio de los rangos
а	18	84.2
ab	28	63.39
b	25	61.89
b	20	61.76
b	32	55.58

Promedios por cada temperatura evaluada

	Temperatura	Promedio	Error Estándar
1	18	39.07407	4.222759
4	28	34.97143	7.321602
3	25	30.64286	5.742309
2	20	24.78261	3.704477
5	32	23.44444	4.609044

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
11	100	2	0.98	0.0140	0.95294	1.0000
12	98	3	0.95	0.0218	0.90823	0.9937
14	95	. 1	0.94	0.023	0.89459	0.9877
18	94	2	0.92	0.0271	0.86833	0.9747
20	92	2	0.90	0.0300	0.84308	0.9608
21	90	10	0.80	0.0400	0.72532	0.8824
22	80	3	0.77	0.0421	0.69178	0.8571
23	77	2	0.75	0.0433	0.66976	0.8399
24	75	5	0.70	0.0458	0.61571	0.7958
25	70	9	0.61	0.0488	0.52152	0.7135
26	61	5	0.56	0.0496	0.47069	0.6663
27	56	4	0.52	0.0500	0.43075	0.6277
28	52	10	0.42	0.0494	0.33360	0.5288
29	42	19	0.23	0.0421	0.16069	0.3292
30	23	6	0.17	0.0376	0.11025	0.2621
31	17	1	0.16	0.0367	0.10211	0.2507
32	16	9	0.07	0.0255	0.03426	0.1430
37	7	1	0.06	0.0237	0.02762	0.1303
39	6	3	0.03	0.0171	0.00984	0.0914
40	3	1	0.02	0.0140	0.00507	0.0789
41	2	2	0.00	NA	NA	NA

Análisis de supervivencia de la población: Temperatura 15 °C

n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
100	1	0.99	0.00995	0.97069	1.0000
99	1	0.98	0.01400	0.95294	1.0000
98	4	0.94	0.02375	0.89459	0.9877
94	2	0.92	0.02713	0.86833	0.9747
92	1	0.91	0.02862	0.85560	0.9679
91	3	0.88	0.03250	0.81856	0.9461
88	2	0.86	0.03470	0.79461	0.9308
86	4	0.82	0.03842	0.74805	0.8989
82	2	0.80	0.04000	0.72532	0.8824
80	2	0.78	0.04142	0.70289	0.8656
78	1	0.77	0.04208	0.69178	0.8571
77	2	0.75	0.04330	0.66976	0.8399
75	2	0.73	0.04440	0.64797	0.8224
73	9	0.64	0.04800	0.55251	0.7413
64	6	· 0.58	0.04936	0.49090	0.6853
58	3	0.55	0.04975	0.46065	0.6567
55	1	0.54	0.04984	0.45064	0.6471
54	1	0.53	0.04991	0.44068	0.6374
53	1	0.52	0.04996	0.43075	0.6277
52	1	0.51	0.04999	0.42086	0.6180
51	4	0.47	0.04991	0.38169	0.5787
47	2	0.45	0.04975	0.36233	0.5589
45	1	0.44	0.04964	0.35272	0.5489
44	1	0.43	0.04951	0.34314	0.5389
43	1	0.42	0.04936	0.33360	0.5288
42	2	0.40	0.04899	0.31464	0.5085
40	1	0.39	0.04877	0.30522	0.4983
	n.risk 100 99 98 94 92 91 88 86 82 80 78 77 75 73 64 58 55 54 55 54 55 54 55 54 53 52 51 47 45 44 43 42 40	n.riskn.event1001991984942921913882864822802781772752739646583551541531541531541531441431422401	n.riskn.eventSupervivencia10010.999910.989840.949420.929210.919130.888820.868640.828220.808020.787810.777720.757520.737390.646460.585510.545410.535510.515140.474720.454510.434310.424220.404010.39	n.riskn.eventSupervivenciastd.err10010.990.009959910.980.014009840.940.023759420.920.027139210.910.028629130.880.032508820.860.034708640.820.038428220.800.040008020.780.041427810.770.042087720.750.043307520.730.044407390.640.048006460.580.049365830.550.049755510.540.049915310.520.049915310.510.049914720.450.049754510.430.049514310.420.049644410.430.049514310.420.049364010.390.04877	n.riskn.eventSupervivenciastd.errlower 95%CI10010.990.009950.970699910.980.014000.952949840.940.023750.894599420.920.027130.868339210.910.028620.855609130.880.032500.818568820.860.034700.794618640.820.038420.748058220.800.040000.725328020.780.041420.702897810.770.042080.691787720.750.043300.669767520.730.044400.647977390.640.048000.552516460.580.049360.490905830.550.049750.460655510.520.049960.430755210.510.049910.381694510.520.049950.362334510.430.049510.343144310.420.049360.333604220.400.048990.314644010.390.048770.30522

.

Análisis de supervivencia de la población: Temperatura 18 °C

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
57	39	1	0.38	0.04854	0.29584	0.4881
58	38	1	0.37	0.04828	0.28650	0.4778
59	37	1	0.36	0.04800	0.27721	0.4675
61	36	1	0.35	0.04770	0.26796	0.4572
65	35	1	0.34	0.04737	0.25875	0.4468
66	34	1	0.33	0.04702	0.24959	0.4363
71	33	1	0.32	0.04665	0.24047	0.4258
76	32	1	0.31	0.04625	0.23140	0.4153
77	31	1	0.30	0.04583	0.22238	0.4047
79	30	2	0.28	0.04490	0.20449	0.3834
82	28	2	0.26	0.04386	0.18680	0.3619
83	26	2	0.24	0.04271	0.16933	0.3402
88	24	2	0.22	0.04142	0.15211	0.3182
91	22	1	0.21	0.04073	0.14359	0.3071
92	21	1	0.20	0.04000	0.13514	0.2960
93	20	3	0.17	0.03756	0.11025	0.2621
96	17	2	0.15	0.03571	0.09407	0.2392
97	15	1	0.14	0.03470	0.08613	0.2276
104	14	4	0.10	0.03000	0.05554	0.1800
111	10	1	0.09	0.02862	0.04826	0.1678
112	9	1	0.08	0.02713	0.04116	0.1555
116	8	1	0.07	0.02551	0.03426	0.1430
118	7	1	0.06	0.02375	0.02762	0.1303
119	6	2	0.04	0.01960	0.01531	0.1045
120	4	1	0.03	0.01706	0.00984	0.0914
121	3	1	0.02	0.01400	0.00507	0.0789
122	2	1	0.01	0.00995	0.00142	0.0703
123	1	1	0.00	NA	NA	NA

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
9	100	1	0.99	0.00995	5 0.97069	1.0000
10	99	5	0.94	0.02375	0.8945	0.9877
11	94	4	0.90	0.03000	0.84308	0.9608
12	9 0	1	0.89	0.03129	0.83074	0.9535
13	89	4	0.85	0.03571	0.78282	0.9229
14	85	1	0.84	0.03666	0.77113	0.9150
15	84	2	0.82	0.03842	0.74805	0.8989
16	82	2	0.80	0.04000	0.72532	0.8824
17	80	2	0.78	0.04142	0.70289	0.8656
18	78	1	0.77	0.04208	0.69178	0.8571
19	77	3	0.74	0.04386	0.65884	0.8312
20	74	1	0.73	0.04440	0.64797	0.8224
21	73	4	0.69	0.04625	0.60505	0.7869
22	69	2	0.67	0.04702	0.58390	0.7688
23	67	1	0.66	0.04737	0.57339	0.7597
24	66	1	0.65	0.04770	0.56293	0.7505
30	65	2	0.63	0.04828	0.54214	0.7321
31	63	2	0.61	0.04877	0.52152	0.7135
33	61	2	0.59	0.04918	0.50107	0.6947
34	59	1	0.58	0.04936	0.49090	0.6853
35	58	2	0.56	0.04964	0.47069	0.6663
36	56	2	0.54	0.04984	0.45064	0.6471
37	54	2	0.52	0.04996	0.43075	0.6277
38	52	3	0.49	0.04999	0.40120	0.5985
40	49	1	0.48	0.04996	0.39142	0.5886
42	48	1	0.47	0.04991	0.38169	0.5787
43	47	1	0.46	0.04984	0.37199	0.5688

Análisis de supervivencia de la población: Temperatura 20 °C

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
44	46	3	0.43	0.04951	0.34314	0.5389
45	43	2	0.41	0.04918	0.32410	0.5187
48	41	4	0.37 [°]	0.04828	0.28650	0.4778
49	37	2	0.35	0.04770	0.26796	0.4572
50	35	4	0.31	0.04625	0.23140	0.4153
51	31	3	0.28	0.04490	0.20449	0.3834
53	28	2	0.26	0.04386	0.18680	0.3619
54	26	1	0.25	0.04330	0.17804	0.3511
55	25	2	0.23	0.04208	0.16069	0.3292
56	23	2	0.21	0.04073	0.14359	0.3071
57	21	2	0.19	0.03923	0.12677	0.2848
58	19	2	0.17	0.03756	0.11025	0.2621
59	17	1	0.16	0.03666	0.10211	0.2507
60	16	1	0.15	0.03571	0.09407	0.2392
66	15	1	0.14	0.03470	0.08613	0.2276
67	14	2	0.12	0.03250	0.07058	0.2040
68	12	3	0.09	0.02862	0.04826	0.1678
69	9	1	0.08	0.02713	0.04116	0.1555
70	8	1	0.07	0.02551	0.03426	0.1430
71	7	1	0.06	0.02375	0.02762	0.1303
77	6	1	0.05	0.02179	0.02128	0.1175
87	5	1	0.04	0.01960	0.01531	0.1045
110	4	1	0.03	0.01706	0.00984	0.0914
117	3	1	0.02	0.01400	0.00507	0.0789
133	2	1	0.01	0.00995	0.00142	0.0703
157	1	1	0.00	NA	NA	NA

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
8	100	2	0.98	0.01400	0.95294	1.0000
9	98	6	0.92	0.02713	0.86833	0.9747
10	92	4	0.88	0.03250	0.81856	0.9461
11	88	7	0.81	0.03923	0.73665	0.8907
12	81	2	0.79	0.04073	0.71407	0.8740
13	79	4	0.75	0.04330	0.66976	0.8399
14	75	3	0.72	0.04490	0.63716	0.8136
16	72	1	0.71	0.04538	0.62641	0.8047
17	71	1	0.70	0.04583	0.61571	0.7958
18	70	1	0.69	0.04625	0.60505	0.7869
19	69	3	0.66	0.04737	0.57339	0.7597
21	66	2	0.64	0.04800	0.55251	0.7413
22	64	1	0.63	0.04828	0.54214	0.7321
23	63	2	0.61	0.04877	0.52152	0.7135
24	61	3	0.58	0.04936	0.49090	0.6853
25	58	1	0.57	0.04951	0.48078	0.6758
26	57	4	0.53	0.04991	0.44068	0.6374
27	53	2	0.51	0.04999	0.42086	0.6180
28	51	1	0.50	0.05000	0.41101	0.6083
29	50	1	0.49	0.04999	0.40120	0.5985
30	49	2	0.47	0.04991	0.38169	0.5787
31	47	4	0.43	0.04951	0.34314	0.5389
32	43	3	0.40	0.04899	0.31464	0.5085
33	40	1	0.39	0.04877	0.30522	0.4983
34	39	1	0.38	0.04854	0.29584	0.4881
35	38	2	0.36	0.04800	0.27721	0.4675
36	36	3	0.33	0.04702	0.24959	0.4363

Análisis de supervivencia de la población: Temperatura 25 °C

Sigue...

43900

147

Universidad Nacional Agraria 31b110(@ca Agríccola Nacional

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
37	33	1	0.32	0.04665	0.24047	0.4258
38	32	1	0.31	0.04625	0.23140	0.4153
40	31	1	0.30	0.04583	0.22238	0.4047
41	30	1	0.29	0.04538	0.21341	0.3941
43	29	2	0.27	0.04440	0.19561	0.3727
44	27	3	0.24	0.04271	0.16933	0.3402
45	24	1	0.23	0.04208	0.16069	0.3292
46	23	1	0.22	0.04142	0.15211	0.3182
47	22	2	0.20	0.04000	0.13514	0.2960
51	20	2	0.18	0.03842	0.11847	0.2735
52	18	1	0.17	0.03756	0.11025	0.2621
53	17	2	0.15	0.03571	0.09407	0.2392
54	15	1	0.14	0.03470	0.08613	0.2276
59	14	2	0.12	0.03250	0.07058	0.2040
61	12	1	0.11	0.03129	0.06299	0.1921
62	11	1	0.10	0.03000	0.05554	0.1800
76	10	1	0.09	0.02862	0.04826	0.1678
81	9	1	0.08	0.02713	0.04116	0.1555
86	8	1	0.07	0.02551	0.03426	0.1430
100	7	1	0.06	0.02375	0.02762	0.1303
101	6	1	0.05	0.02179	0.02128	0.1175
104	5	1	0.04	0.01960	0.01531	0.1045
117	4	1	0.03	0.01706	0.00984	0.0914
120	3	1	0.02	0.01400	0.00507	0.0789
123	2	1	0.01	0.00995	0.00142	0.0703
129	1	1	0.00	NA	NA	NA

.

`

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
5	100	5	0.95	0.02179	0.90823	0.9937
6	95	5	0.90	0.03000	0.84308	0.9608
7	90	4	0.86	0.03470	0.79461	0.9308
8	86	1	0.85	0.03571	0.78282	0.9229
9	85	1	0.84	0.03666	0.77113	0.9150
12	84	2	0.82	0.03842	0.74805	0.8989
13	82	2	0.80	0.04000	0.72532	0.8824
14	80	3	0.77	0.04208	0.69178	0,8571
15	77	1	0.76	0.04271	0.68074	0.8485
16	76	1	0.75	0.04330	0.66976	0.8399
18	75	1	0.74	0.04386	0.65884	0.8312
19	74	1	0.73	0.04440	0.64797	0.8224
20	73	1	0.72	0.04490	0.63716	0.8136
21	72	2	0.70	0.04583	0.61571	0.7958
22	70	2	0.68	0.04665	0.59445	0.7779
24	68	2	0.66	0.04737	0.57339	0.7597
25	66	2	0.64	0.04800	0.55251	0.7413
26	64	1	0.63	0.04828	0.54214	0.7321
27	63	3	0.60	0.04899	0.51127	0.7041
28	6	4	0.56	0.04964	0.47069	0.6663
29	56	4	0.52	0.04996	0.43075	0.6277
30	52	1	0.51	0.04999	0.42086	0.6180
31	51	1	0.50	0.05000	0.41101	0.6083
32	50	3	0.47	0.04991	0.38169	0.5787
33	47	2	0.45	0.04975	0.36233	0.5589
34	45	4	0.41	0.04918	0.32410	0.5187
35	41	3	0.38	0.04854	0.29584	0.4881

Análisis de supervivencia de la población: Temperatura 28 °C

<u>a</u>	• •
1 Contin	1100100
A ADHIII	
~ ~ ~ IIIII	TWEEPACITOLS

,

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
36	38	2	0.36	0.04800	0.27721	0.4675
37	36	3	0.33	0.04702	0.24959	0.4363
38	33	2	0.31	0.04625	0.23140	0.4153
39	31	1	0.30	0.04583	0.22238	0.4047
40	30	. 1	0.29	0.04538	0.21341	0.3941
41	29	1	0.28	0.04490	0.20449	0.3834
43	28	1	0.27	0.04440	0.19561	0.3727
44	27	1	0.26	0.04386	0.18680	0.3619
47	26	1	0.25	0.04330	0.17804	0.3511
49	25	1	0.24	0.04271	0.16933	0.3402
50	24	1	0.23	0.04208	0.16069	0.3292
51	23	1	0.22	0.04142	0.15211	0.3182
56	22	1	0.21	0.04073	0.14359	0.3071
57	21	1	0.20	0.04000	0.13514	0.2960
58	20	1	0.19	0.03923	0.12677	0.2848
59	19	1	0.18	0.03842	0.11847	0.2735
62	18	1	0.17	0.03756	0.11025	0.2621
63	17	1	0.16	0.03666	0.10211	0.2507
65	16	2	0.14	0.03470	0.08613	0.2276
67	14	1	0.13	0.03363	0.07830	0.2158
68	13	1	0.12	0.03250	0.07058	0.2040
76	12	1	0.11	0.03129	0.06299	0.1921
77	11	1	0.10	0.03000	0.05554	0.1800
78	10	1	0.09	0.02862	0.04826	0.1678
83	9	1	0.08	0.02713	0.04116	0.1555
85	8	1	0.07	0.02551	0.03426	0.1430
88	7	2	0.05	0.02179	0.02128	0.1175
128	5	1	0.04	0.01960	0.01531	0.1045

Sigue...

··•

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper 95%CI
131	4	1	0.03	0.01706	0.00984	0.0914
144	3	1	0.02	0.01400	0.00507	0.0789
191	2	1	0.01	0.00995	0.00142	0.0703
206	· 1	1	0.00	NA	NA	NA

Análisis de supervivencia de la población: Temperatura 32 °C

Tiempo	n.risk	n.event	Supervivencia	std.err	lower 95%CI	upper95%CI
5	100	11	0.89	0.03129	0.83074	0.9535
6	89	23	0.66	0.04737	0.57339	0.7597
7	66	9	0.57	0.04951	0.48078	0.6758
8	57	6	0.51	0.04999	0.42086	0.6180
9	51	9	0.42	0.04936	0.33360	0.5288
10	42	6	0.36	0.04800	0.27721	0.4675
11	36	4	0.32	0.04665	0.24047	0.4258
14	32	1	0.31	0.04625	0.23140	0.4153
17	31	2	0.29	0.04538	0.21341	0.3941
18	29	1	0.28	0.04490	0.20449	0.3834
19	28	1	0.27	0.04440	0.19561	0.3727
21	27	1	0.26	0.04386	0.18680	0.3619
23	26	4	0.22	0.04142	0.15211	0.3182
25	22	1	0.21	0.04073	0.14359	0.3071
29	21	1	0.20	0.04000	0.13514	0.2960
30	20	3	0.17	0.03756	0.11025	0.2621
31	17	2	0.15	0.03571	0.09407	0.2392
32	15	1	0.14	0.03470	0.08613	0.2276
33	14	1	0.13	0.03363	0.07830	0.2158
34	13	1	0.12	0.03250	0.07058	0.2040
35	12	1	0.11	0.03129	0.06299	0.1921
40	11	1	0.10	0.03000	0.05554	0.1800
41	10	1	0.09	0.02862	0.04826	0.1678
43	9	2	0.07	0.02551	0.03426	0.1430
51	7	1	0.06	0.02375	0.02762	0.1303
61	6	1	0.05	0.02179	0.02128	0.1175
64	5	1	0.04	0.01960	0.01531	0.1045
66	4	1	0.03	0.01706	0.00984	0.0914
70	3	1	0.02	0.01400	0.00507	0.0789
73	2	1	0.01	0.00995	0.00142	0.0703
82	1	1	0.00	NA	NA	NA

ANEXO 10: ANALISIS DE LA OVIPOSICIÓN

<u>Análisis de Normalidad de Residuales</u> Prueba de normalidad de Shapiro-Wilk Dato: residuales W = 0.7484, p-value = 5.296e⁻¹⁶

Análisis de Homogeneidad de Variancias

Prueba robusta Brown-Forsythe modificada tipo Levene- basada en la desviación absoluta de la mediana Dato: vars [, k] Prueba estadística = 9.7353, p-value = $4.097e^{-07}$

Comparaciones Múltiples

Estudio:

Pruebas de Kruskal-Wallis

Vinculado o no vinculado

Valor: 27.74636

Grados de libertad: 4

P valor de la prueba Chi cuadrado: 1.403969e⁻⁰⁵

Promedio de los rangos

Vars	k ·	repetición
18	84.74286	35
20	75.68571	35
25	93.82857	35
28	120.30000	35
32	65.44286	35

t-Student: 1.974017

Alpha: 0.05

Diferencia minina significante (LSD): 20.55438

Promedio con la misma l	letra no son	significativamente	diferentes
		•	

Grupos	Tratamientos	Promedio de los rangos
a	28	120.3
b	25	93.8285714285714
bc	18	84.7428571428571
bc	20	75.6857142857143
с	32	65.4428571428571

Verdaderos promedios por tratamiento

,

Tratamier	nto	х
4	28	79.771429
3	25	51.800000
.1	18	11.400000
2	20	7.971429
5	32	3.542857

.

,