UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

"EVAPOTRANSPIRACIÓN ESTIMADA POR BALANCE DE ENERGÍA USANDO INFORMACIÓN REMOTA Y RIEGO CON ALTERNANCIA DE HUMEDECIMIENTO Y SECADO EN ARROZALES, CHICLAYO"

TESIS PARA OPTAR EL TÍTULO DE INGENIERA AGRÍCOLA

ROXANA SARA PEÑA AMARO

LIMA – PERÚ

TESIS 2024_ ROXANA PEÑA

INFORME DE ORIGINALIDAD

INDICE	3% 13% FUENTES DE INTERNET	4% PUBLICACIONES	% TRABAJOS DEL ESTUDIANTE
FUENTE	S PRIMARIAS		
1	repositorio.unprg.edu.po Fuente de Internet	e	2%
2	repositorio.inia.gob.pe		2%
3	hdl.handle.net Fuente de Internet		1%
4	repositorio.lamolina.edu	i.pe	1%
5	repositorio.unap.edu.pe		1%
6	orcid.org Fuente de Internet		<1%
7	WWW.SCIEIO.CI Fuente de Internet		<1%
8	www.ittorreon.edu.mx		<1%
9	idoc.pub Fuente de Internet		<1%

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

"EVAPOTRANSPIRACIÓN ESTIMADA POR BALANCE DE ENERGÍA USANDO INFORMACIÓN REMOTA Y RIEGO CON ALTERNANCIA DE HUMEDECIMIENTO Y SECADO EN ARROZALES, CHICLAYO"

TESIS PARA OPTAR EL TITULO DE:

INGENIERA AGRÍCOLA

Presentado por:

BACH. ROXANA SARA PEÑA AMARO

Sustentado y aprobado por el siguiente jurado:

Ph.D. DAVID RICARDO ASCENCIOS TEMPLO Presidente Dra. LIA RAMOS FERNÁNDEZ Asesor

Dr. NÉSTOR MONTALVO ARQUIÑIGO Miembro

Dr. RAÚL ARNALDO ESPINOZA VILLAR Miembro

LIMA – PERÚ

2024

DEDICATORIA

"Dedicado a mis señores padres, Freddy Peña y Rosalía Amaro por el apoyo y confianza durante toda mi etapa de estudiante y hasta el momento de hoy, a mí hermana Samy, quien siempre estuvo apoyándome a pesar de la distancia."

AGRADECIMIENTO

Al Proyecto "Implementación de herramientas tecnológicas en el desarrollo de un sistema de precisión con sensores remotos para optimizar el uso del agua y reducir la emisión de gases de efecto invernadero en arrozales en beneficio de los agricultores de la región Lambayeque", de código: PE501078113-2022- PROCIENCIA y cuyo socio es el CDECACC - Centro de desarrollo de competencias para la adaptabilidad al cambio climático. Se tiene como colaboradores al INIA - Vista Florida de Chiclayo y al AGPRES que forma parte también al INIA.

A mi asesora Dra. Lia Ramos Fernández, por el asesoramiento durante el desarrollo de la tesis, y al grupo de investigación DANI "Teledetección y cambio climático aplicado a los recursos hídricos y la agricultura" por el apoyo recibido en la realización de la investigación. A José Luis, David, Christian y todas las personas que me dieron su apoyo en este viaje de muchas experiencias, que las mantendré vivas en el recuerdo.

ÍNDICE GENERAL

RESUMEN	viii
ABSTRACT	ix
I. INTRODUCCIÓN	1
1.1. Objetivo	3
II. REVISIÓN DE LITERATURA	4
2.1. Evapotranspiración	4
2.1.1. Evaporación	4
2.1.2. Transpiración	5
2.1.3. Factores que influyen en la evapotranspiración	6
2.2. Métodos para determinar la evapotranspiración	7
2.2.1. Balance hídrico	7
2.2.2. Balance de energía	7
2.3. Análisis de varianza no paramétrico	15
2.3.1. Test de Kruskal-Wallis	15
2.3.2. Prueba de Dunn	15
2.4. Antecedentes	15
III. METODOLOGÍA	18
3.1. Zona de estudio	18
3.1.1. Manejo de riego	19
3.1.2. Manejo del cultivo	20
3.1.3. Características del suelo	21
3.1.4. Colecta de imágenes multiespectrales y térmicas	22
3.2. Materiales y equipos	23
3.3. Procedimiento	24
3.3.1. Índice de área foliar (IAF) por método extractivo	24
3.3.2. Componentes del balance de energía para riego inundado (CF) y riego	
AWD	26
3.3.3. Evapotranspiración del cultivo (ETc) para riego inundado (CF) y riego	
AWD	30
IV. RESULTADOS Y DISCUSIÓN	35
4.1. Índice de área foliar (IAF) por método extractivo	35

4.2. Componentes del balance de energía para riego inundado (CF) y riego AWD.	37
4.2.1. Radiación neta (Rn)	38
4.2.2. Calor sensible del aire (H)	42
4.2.3. Flujo del calor del suelo (G)	46
4.2.4. Flujo de calor latente (LE)	48
4.3. Evapotranspiración del cultivo (ETc)	50
4.3.1. <i>ETc</i> por balance de energía	50
4.3.2. Comparación entre <i>ETc</i> por balance de energía y por balance hídrico	57
4.3.3. Eficiencia de uso de agua	58
4.3.4. <i>ETc</i> por balance energía y por balance hídrico en La Molina	60
V. CONCLUSIONES	63
VI. RECOMENDACIONES	64
VII. BIBLIOGRAFÍA	65
VIII. ANEXOS	73

ÍNDICE DE TABLAS

Tabla 1: Valores de evapotranspiración (ET) de diferentes estudios presentados	17
Tabla 2: Características de la zona de estudio	19
Tabla 3: Descripción del manejo de riego por tratamiento	20
Tabla 4: Características físicas del suelo	21
Tabla 5: Características de las cámaras	22
Tabla 6: Plan de vuelo	23
Tabla 7: Materiales y equipos	23
Tabla 8: Herramientas computacionales utilizadas en la investigación	23
Tabla 9: Selección del píxel frío y caliente con los valores de NDVI, albedo,	
temperatura y las constantes de calibración $dT = a + b Ts$	43
Tabla 10: Relación entre ET_C y ET_O	53
Tabla 11: Resumen de resultados de los componentes del balance energético, ETc y	
otros resultados durante la fase vegetativa	54
Tabla 12: Resumen de resultados de los componentes del balance energético, ETc y	
otros resultados durante la fase reproductiva y de maduración	55
Tabla 13: Componentes del balance hídrico para cada técnica de riego (CF y AWD)	58
Tabla 14: Eficiencia de uso de agua para cada técnica de riego (CF y AWD)	59
Tabla 15: Beneficio neto para cada técnica de riego (CF y AWD)	59

ÍNDICE DE FIGURAS

Figura 1: Proceso de evaporación del cultivo	5
Figura 2: Proceso de transpiración del cultivo	6
Figura 3: Ubicación de las parcelas a nivel nacional	
Figura 4: (a) Momentos que se realizaron los vuelos con el UAV según DDS; (b) Fa	ise
fenológica del arroz de acuerdo a los días después de la siembra (DDS)	
Figura 5: Muestras de hojas de arroz extraídas para estimación del IAF en campo IN	JIA –
Vista Florida	
Figura 6: Toma de temperatura en cada cobertura	
Figura 7: Resumen gráfico con las técnicas de riego empleadas	
Figura 8: Secuencia del diagrama de flujo para estimar de la ETc por METRIC	32
Figura 9: Relación entre NDVI medido con GreenSeaker e IAF estimado por métod	0
extractivo de cinco fechas, realizados en campo	35
Figura 10: Variación espacial del IAF en fase vegetativa (38 a 92 DDS), fase	
reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de	9
arroz	
Figura 11: Condiciones meteorológicas según N° de vuelo realizado con el UAV de	
acuerdo al DDS	
Figura 12: Correlación entre las temperaturas captadas por el radiómetro Apogee	
MI-210 y la cámara térmica H20T	39
Figura 13: Diagrama de cajas de Rn para los tratamientos CF y AWD, durante los d	ías
de vuelo del UAV	40
Figura 14: Variación espacial de Rn en fase vegetativa (38 a 92 DDS), fase	
reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de	e
arroz	41
Figura 15: Diagrama de cajas del H para los tratamientos CF y AWD, durante los dí	ias
de vuelo del UAV	44
Figura 16: Variación espacial de H en fase vegetativa (38 a 92 DDS), fase reproduct	tiva
(103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz	45
Figura 17: Diagrama de cajas de G para los tratamientos CF y AWD, durante los día	lS
de vuelo del UAV	46
Figura 18: Variación espacial de G en fase vegetativa (38 a 92 DDS), fase reproduct	tiva
(103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz	

Figura 19: Diagrama de cajas de LE para los tratamientos CF y AWD, durante los días
de vuelos del UAV
Figura 20: Variación espacial del calor latente (LE) en fase vegetativa (38 a 92 DDS),
fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo
de arroz
Figura 21: Variación horaria de la evapotranspiración de referencia (ET_0) durante las
24 horas del día en las 13 fechas de vuelos del UAV50
Figura 22: Diagrama de cajas del ETc para los tratamientos CF y AWD, durante los días
de vuelos del UAV
Figura 23: Variación espacial de la ETc en fase vegetativa (38 a 92 DDS), fase
reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de
arroz
Figura 24: Correlación no paramétrica de Kruskal-Wallis y prueba estadística de Dunn
entre regímenes de riego basados en la ETC56
Figura 25: Relación de la evapotranspiración (ETc) por balance de energía entre la
técnica de inundación continua (CF) y la técnica de riego AWD (AWD5, AWD10 y
AWD20)
Figura 26: Relación entre ETc por balance de energía (método METRIC) y balance
hídrico (AquaCrop)
Figura 27: Variación espacial de la ETc, según fonología del cultivo
Figura 28: Relación entre ETc por balance de energía (método METRIC) y balance
hídrico (AquaCrop) para La Molina62

ÍNDICE DE ANEXOS

Anexo 1: Panel fotográfico de la visita de campo a las parcelas experimentales	
instaladas en la EEA "Vista Florida" del INIA -Chiclayo	.74
Anexo 2: Panel fotográfico de la visita de campo a las pozas experimentales instaladas	
en el AER de la UNALM - La Molina	.75
Anexo 3: Imágenes RGB procesadas en el software Pix4D	.76
Anexo 4: Data meteorológica de las 24 horas de cada día de vuelo realizado	.77
Anexo 5: Información de Cos 0 , distancia relativa entre la tierra y el sol (Dr), y	
temperatura del aire en cada instante de los vuelos del UAV	. 84
Anexo 6: Evapotranspiración de referencia (ETO) calculada de las 24 horas de los 13	
días de vuelos en campo	. 84
Anexo 7: Imágenes térmicas corregidas en °C	. 88
Anexo 8: Selección del píxel frío y caliente con valores de NDVI, albedo, temperatura	
y las constantes de calibración "a y b" de la Molina	. 89
Anexo 9: Resumen de resultados de los componentes del balance energético, ET_C y	
otros resultados, según su la fenológica del cultivo para la Molina	. 89
Anexo 10: Variación espacial de Rn en fase vegetativa (76 a 94 DDS), reproductiva	
(101 a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina	. 90
Anexo 11: Variación espacial de H en fase vegetativa (76 a 94 DDS), reproductiva (101	
a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina	.91
Anexo 12: Variación espacial de G en fase vegetativa (76 a 94 DDS), reproductiva (101	
a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina	. 92
Anexo 13: Variación espacial del LE en fase vegetativa (76 a 94 DDS), reproductiva	
(101 a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina	.93

ÍNDICE DE ABREVIATURAS

Acrónimo

AWD	Alternate Wetting and Drying (Alternancia de humedecimiento
	y secado)
CF	Continuous Flooding (Inundación continua)
DDS	días después de la siembra
EEA	Estación Experimental Agraria
ET _C	Evapotranspiración del cultivo
ETo	Evapotranspiración de referencia
G	Flujo de calor del suelo
Н	Flujo de calor sensible al aire
INIA	Instituto Nacional de Innovación Agraria
IAF	Índice de Área Foliar
LE	Flujo de calor latente
METRIC	Mapping Evapotranspiration at high Resolution with Internali-
	zed Calibration
NDVI	Índice de Vegetación de Diferencia Normalizada
\mathbb{R}^2	Coeficiente de determinación
Rn	Radiación neta
SENAMHI	Servicio Nacional de Meteorología e Hidrología del Perú
UAV	Unmanned Aerial Vehicle (Vehículo Aéreo No Tripulado)
UNALM	Universidad Nacional Agraria la Molina

RESUMEN

En vista de la escasez actual de agua, es de vital importancia llevar a cabo investigaciones sobre nuevas técnicas de riego que puedan ayudar a optimizar el manejo de este recurso en los cultivos. Por lo tanto, se propone evaluar la evapotranspiración como indicador de las pérdidas de agua en el cultivo de arroz, con el objetivo de lograr un riego eficiente sin afectar su rendimiento. En cuanto a la metodología utilizada, se realizaron diferentes regímenes de riego, incluyendo el riego de alternancia de humedecimiento y secado (AWD (AWD₅, AWD₁₀ y AWD₂₀)) y el riego por inundación continua (CF). Durante las diferentes etapas fenológicas, se midieron índices de vegetación en el campo y se capturaron imágenes térmicas y multiespectrales con un vehículo aéreo no tripulado (UAV), realizando un total de 13 monitoreos. Como resultado, se obtuvieron valores promedio de 5,24 \pm 0,28 y 5,45 \pm 0,31 mm d⁻¹ para la evapotranspiración del cultivo (ET_C) en los sistemas de riego por AWD y CF, respectivamente. Requiriendo como valor de riego promedio de 14363,3 m³ ha⁻¹ para AWD y como valor de riego de 19970 m³ ha⁻¹ para CF. Esto representa un ahorro de agua entre 27,54 a 28,49% y una reducción del rendimiento entre 2,07 a 15,41%. Lo que se traduce en un incremento en la eficiencia del uso de agua entre 18,30 a 36,38% para la tecnología de riego AWD. Dado que estos resultados brindan información importante para mejorar la gestión del riego, se aconseja usar el modelo propuesto para minimizar el efecto negativo en la productividad de la cosecha.

Palabras clave: UAV, METRIC, inundación continúa (CF), AWD, imágenes multiespectrales, imágenes térmicas, arrozales.

ABSTRACT

In view of the current water shortage, it is vitally important to carry out research on new irrigation techniques that can help optimize the management of this resource in crops. Therefore, it is proposed to evaluate evapotranspiration as an indicator of water losses in rice cultivation, with the objective of achieving efficient irrigation without affecting its performance. Regarding the methodology used, different irrigation regimes were carried out, including alternating wetting and drying (AWD (AWD₅, AWD₁₀ y AWD₂₀)) irrigation and continuous flooding irrigation (CF). During the different phenological stages, vegetation indices were measured in the field and thermal and multispectral images were captured with an unmanned aerial vehicle (UAV), performing a total of 13 monitoring sessions. As a result, average values of 5,24 \pm 0,28 and 5,45 \pm 0,31 mm d⁻¹ were obtained for crop evapotranspiration (ET_c) in the AWD and CF irrigation systems, respectively. Requiring an average irrigation value of 14363.3 m³ ha⁻¹ for AWD and an irrigation value of 19970 m³ ha⁻¹ for CF. This represents a savings in irrigation water between 27.54 to 28.49% and a reduction in yield between 2.07 to 15.41%. Which translates into an increase in water use efficiency between 18,30 to 36,38% for AWD irrigation technology. Since these results provide important information to improve irrigation management, it is advisable to use the proposed model to minimize the negative effect on crop productivity.

Keywords: UAV, METRIC, continuous flooding (CF), AWD, multispectral imaging, thermal imaging, rice paddies.

I. INTRODUCCIÓN

Aunque el arroz es el alimento básico y en la mayoría necesario para más de la mitad de la población global, su cultivo demanda una considerable cantidad de agua (Vijayakumar *et al.*, 2022). La Organización para la Agricultura y la Alimentación (FAO) menciona que el cultivo de arroz representa entre 34 a 43% del uso mundial de agua de riego. El arroz cumple un rol esencial en la garantía de la alimentación en numerosos países que están en vías de desarrollo, y la escasez de agua puede llevar a una disminución en su producción, lo que afectaría directamente la seguridad alimentaria, como señala Surendran *et al.* (2021).

La gestión de las malas hierbas, así como también el método de riego son elementos esenciales para el desarrollo y producción del arroz (Loor *et al.*, 2017), pues la disminución del recurso hídrico destinados al cultivo de arroz puede alterar a su control de malezas y dar como resultado una menor productividad agrícola. Sin embargo, el uso excesivo de este recurso también puede aumentar la salinización y el encharcamiento, lo que a su vez disminuye aún más la productividad agrícola, tal como advierte Surendran *et al.* (2021).

Es imprescindible conocer el requerimiento de agua en los cultivos para poder planificar adecuadamente el riego y optimizar la utilización del agua para aumentar su eficiencia. Además, proporcionar la cantidad adecuada de agua de riego para cubrir totalmente sus requerimientos en cada fase de crecimiento, es vital para su evolución. En este sentido, uno de los indicadores más relevantes es la evapotranspiración (ET).

De acuerdo con Sánchez (2001), existen dos categorías principales de métodos para determinar la evapotranspiración. Por un lado, se encuentran los métodos directos de medición, los cuales se centran en el uso de lisímetros y sensores de humedad del suelo. Por otro lado, están los métodos indirectos de estimación. Si bien los métodos de medición directa proporcionan valores más precisos y confiables, su implementación puede ser complicada debido a la necesidad de instrumentos específicos.

El modelo METRIC (*Mapping Evapotranspiration at high Resolution with Internalized Calibration*) es una herramienta que calcula la Evapotranspiración (ET) utilizando imágenes de satélite para realizar un balance de energía (Santos *et al.*, 2010). Además, la utilización de imágenes de resolución alta facilita una selección más efectiva de la superficie (incluyendo suelo y vegetación) en áreas heterogéneas, lo que a su vez potencia la eficacia del modelo METRIC (Ortega *et al.*, 2016).

Los UAV (Vehículo Aéreo No Tripulado) son sistemas tecnológicamente avanzados, altamente eficientes y económicos en comparación con otras opciones como los satélites y los sistemas aéreos tripulados (Padua *et al.*, 2017). La incorporación de cámaras multiespectrales y térmicas en un UAV ha mejorado significativamente la determinación del flujo energético, en la cubierta vegetal como también en suelo. Esto ha ayudado a mejorar la exactitud de los modelos que estiman la evapotranspiración (Ortega *et al.*, 2016).

Actualmente se están investigando tecnologías innovadoras para mejorar la gestión del riego y la optimización del uso del agua en la siembra de arroz. Sin embargo, además de la eficiencia, es importante analizar el impacto de estas tecnologías en términos de costos, efectividad y rendimiento. El cultivo tradicional de arroz utiliza inundaciones continuas, que son altamente productivas, pero requieren grandes cantidades de agua y tienen impactos negativos dentro del entorno natural (Kumar *et al.*, 2021).

El método de irrigación AWD (alternancia de humedecimiento y secado), desarrollada por IRRI (*International Rice Research Institute*), se define como un régimen de riego para reducir el agua deliberadamente durante las etapas del cultivo (Han *et al.*, 2018). Entonces, el riego AWD se muestra como una alternativa prometedora ya que permite ahorrar agua de manera realista utilizando técnicas amigables con el medio ambiente y económicamente viables.

De acuerdo con la proporción de extracción y accesibilidad del agua en todo el mundo, Perú experimenta una escasez de agua de nivel medio a alto (20 a 40%), según Hussain *et al.*, (2022). Por otro lado, en 2022, la producción de arroz llegó a 2,4 millones de toneladas (19 mil se exportaron, 116 mil se importaron y se consumió un total de 2,6 millones de

toneladas). Las regiones de Lambayeque y La Libertad son las que tienen la producción más alta (INEI, 2022). Además, en enero de 2023, la producción de arroz en cáscara llegó a las 220 mil 101 toneladas, logrando un aumento de 5,0% con referencia al mismo mes del año anterior (2022).

Por lo expuesto, es necesario adquirir datos precisos sobre la evaluación de la ET para una gestión de riego más eficiente en áreas de arroz del norte de Perú, fundamentada en dos principios claves: 1°) Equilibrio energético, utilizando el modelo METRIC con imágenes multiespectrales y térmicas, adquiridas a través de un UAV. 2°) Estimar la ET_C para diferentes condiciones de manejo de riego.

1.1. Objetivo

Se tiene como objetivo general, proponer una técnica de ahorro de agua a partir del monitoreo de la evapotranspiración obtenida de imágenes multiespectrales y térmicas en arrozales de la región Lambayeque - Chiclayo, la cual se cumplirá con los objetivos específicos que a continuación se mencionan:

- Estimar el índice de área foliar (IAF), concretado con las mediciones obtenidas en campo por el método extractivo.
- Determinar la radiación neta (Rn), el flujo del calor sensible del aire (H), el flujo de calor del suelo (G) y el calor latente (LE) para la ecuación de balance de energía por riego inundado (CF) y riego con alternancia de humedecimiento y secado (AWD).
- Estimar la evapotranspiración del cultivo (ET_C) por balance de energía a través del modelo METRIC para riego inundado (CF) y riego AWD.

II. REVISIÓN DE LITERATURA

2.1. Evapotranspiración

La evapotranspiración (ET) se considera un componente clave en el ciclo hidrológico y un factor fundamental en el riego, la estimación del rendimiento de los cultivos, la silvicultura y la gestión ambiental que consume alrededor del 50% de la irradiación neta y devuelve el 70% de la precipitación total a la atmósfera (Guo *et al.*, 2017), (Pan *et al.*, 2018). El entendimiento del ET_C es crucial para comprender el uso del agua por parte de las plantaciones, planificar el riego de manera adecuada, gestionar correctamente los recursos hídricos, maximizar la producción de cultivos y conservar el agua de manera eficiente.

La ET vincula directamente el balance energético con el balance hídrico, una conexión que depende del agua disponible, la energía y la presión de vapor (Dong *et al.*, 2020). Combina dos procesos diferentes: la transpiración de la planta y la evaporación de la superficie terrestre, donde el agua pasa de la fase líquida a la fase gaseosa, ya sea de manera directa o por las plantas (Durán, 2017). Durante las primeras etapas del crecimiento de la planta, la evaporación es el usual medio de pérdida de agua, pero a medida que la cobertura de la planta se comienza a completar, la transpiración se manifiesta como el proceso dominante (Allen *et al.*, 2007). Los procedimientos de evaporación y transpiración pueden ocurrir juntos en determinadas condiciones, son difíciles de separar.

2.1.1. Evaporación

Es el procedimiento a través del cual el agua en su estado líquido vuelve a vapor y se desprende de la superficie donde sucede la evaporación. Por lo que, este proceso se lleva a cabo en varios lugares, como lagos, suelos, ríos, caminos y vegetación húmeda, donde las moléculas de agua líquida se transforman en vapor. Esta transformación necesita energía, la cual tiene como suministro principal la radiación solar directa, aunque la temperatura ambiental también contribuye en una menor proporción.

La evaporación es impulsada por la diferencia de la presión entre el vapor de agua en la superficie que está evaporándose y el vapor de agua en el ambiente circundante. Conforme ocurre la evaporación, el aire alrededor se va saturando de manera gradual, lo que ralentiza el procedimiento hasta detenerse por completo si no hay transferencia de aire húmedo hacia la atmósfera o si no se retira de alrededor de la superficie en la que ocurre la evaporación. La velocidad del viento juega un papel significativo en reemplazar el aire saturado con aire más seco. En general, la evaporación se ve dominada por la radiación solar, la medición del calor en el ambiente, el nivel de humedad y la rapidez del viento (Gao *et al.*, 2017), (Liu *et al.*, 2021). La Figura 1 da a conocer de manera gráfica el proceso de evaporación que se da en los campos de cultivos.

Figura 1: Proceso de evaporación del cultivo

2.1.2. Transpiración

Hace referencia al método donde el agua se transporta y se evaporada desde la tierra hasta la atmósfera mediante las plantas.

Las estomas, que son diminutas aberturas en las hojas, permiten la transmisión de gases y vapor de agua, lo que provoca que las plantas pierdan agua. Aunque las raíces absorben agua y nutrientes, gran parte de la mayoría del agua absorbida se evapora a través de la transpiración, dejando solo una fracción mínima en los tejidos de la planta.

La transpiración está influenciada por factores climáticos, como la humedad y las condiciones del suelo, así como por la estructura y fisiología de la planta. La transpiración, al igual que la evaporación directa, se rige por la energía recibida, el gradiente de presión de vapor y la velocidad del viento. Entonces, la cantidad de luz solar, la temperatura atmosférica, la humedad y la velocidad del viento también influyen en la transpiración (Gao *et al.*, 2017), (Liu *et al.*, 2021). La Figura 2 da a conocer de manera gráfica el proceso de transpiración que ocurre en las hojas del cultivo.

Figura 2: Proceso de transpiración del cultivo

2.1.3. Factores que influyen en la evapotranspiración

a. Factores de cultivo

El término "tipo y variedad del cultivo" se refiere a las diferentes características que influyen en la tasa de ET de los cultivos, a lo largo de su desarrollo. Estas características incluyen la resistencia a la transpiración, la rugosidad, el reflejo y la altura de la planta. Además, la cubierta terrestre y las propiedades de las raíces de la planta también juegan un papel importante en la ET. Es importante tener en cuenta que, aunque distintas variedades de plantas se hallan en entornos ecológicos parecidos, los valores de ET pueden variar debido a estos factores mencionados anteriormente (Allen *et al.*, 2006).

b. Factores climáticos

Los factores climáticos son fundamentales para la evapotranspiración, entre ellos, los más importantes son: radiación del sol, temperatura del ambiente, humedad del ambiente y rapidez del viento. Existen diversos métodos creados para calcular la evaporación basándose en estos factores (Allen *et al.*, 2006).

c. Condiciones y manejo ambiental

El crecimiento de la planta y la evapotranspiración se ven restringidos por elementos como la alta concentración de sal o la pobreza de nutrientes en el suelo, el uso insuficiente de fertilizantes, la presencia de capas endurecidas del suelo terrestre, la falta de prevención de plagas y enfermedades, y una gestión inadecuada del suelo (Allen *et al.*, 2006). Pan *et al.* (2018) señala que la deposición de nitrógeno actúa como un estimulante eficaz de la transpiración, que es parte del proceso de ET.

2.2. Métodos para determinar la evapotranspiración

2.2.1. Balance hídrico

El análisis del balance de agua nos permite planificar en el ámbito de la agricultura de cultivos, las tareas de regadío necesarias para satisfacer las demandas mencionadas y lograr una producción agrícola óptima (Vieira *et al.*, 2016).

La amplitud de almacenamiento del suelo y los elementos del clima, como el calor, el nivel de humedad, la exposición al sol, la insolación y la velocidad del viento, están relacionados con el balance hídrico (Pérez, 1967). Además, la habilidad de las plantas para absorber agua del terreno varía según el tipo de especie y la succión total. Por lo tanto, tanto las plantas como el suelo tienen su propia capacidad para proporcionar y extraer agua a diferentes niveles de succión matricial (Butler y Prescott, 1965).

2.2.2. Balance de energía

Moguel *et al.* (2001) sugiere que entender el balance energético en los cultivos nos facilita la comprensión y manejo de las corrientes de energía y materia, además de cómo afectan la productividad de las plantas.

El modelo METRIC (Allen *et al.*, 2007) viene ser la versión modificada del modelo SEBAL (*Surface Energy Balance Algorithm for Land*) que calcula el ET_{C} con el análisis del balance energético en la superficie, centrado en datos obtenidos vía satélite (Bastiaanssen *et al.*, 1998). Pero la insuficiencia de precisión espacial para investigaciones a nivel de lotes y la pobreza de información en tiempo real (Niu *et al.*, 2020), permitió el uso de los UAV para el desarrollo de imágenes de resolución alta, exentos de fallos atmosféricos y en tiempo real, lo que hace más sencillo el monitoreo de plantaciones homogéneas (Pintér *et al.*, 2022).

La evapotranspiración (ET_C) se establece como el residuo de la ecuación de equilibrio energético en la superficie, mediante el flujo de calor latente (LE) (Niu *et al.*, 2020). A partir de la siguiente ecuación, se calcula LE.

$$LE = Rn - G - H \quad \dots \dots \quad (1)$$

a. Radiación neta (Rn)

Es la sustracción entre la radiación entrante y radiación saliente de longitudes de ondas cortas y ondas largas que se refiere al equilibrio entre la energía absorbida, reflejada y expulsada por el suelo terrestre. Este equilibrio se puede entender como la discrepancia entre la radiación neta de onda corta que entra y la radiación neta de onda larga que sale (Allen *et al.*, 2006).

Rn simboliza la energía radiante presente en la superficie, que se fracciona en H, G y en LE. Para calcular la radiación, se resta la radiación que salen de todos los flujos radiantes que entran, incluyendo la energía proveniente del sol y el calor (Ecuación 2) (Allen *et al.*, 2007).

$$R_n = R_{s\downarrow} - aR_{s\downarrow} + R_{L\downarrow} - R_{L\uparrow} - (1 - \varepsilon_0)R_{L\downarrow} \quad \dots \dots (2)$$

Donde: R_n es medido en W m⁻². En cuanto a $R_{s\downarrow}$, se refiere a la radiación incidente de onda corta. Por otro lado, *a* indica el albedo. $R_{L\downarrow}$ representa la radiación de onda larga incidente, medida también en vatios por metro cuadrado, mientras que $R_{L\uparrow}$ denota la radiación de onda larga expulsada. Finalmente, ε_0 es la emisividad térmica del suelo.

 $R_{S\downarrow}$ se determina a través del uso de la constante solar, el ángulo en el que los rayos solares golpean la Tierra, una distancia proporcional entre la Tierra y el Sol, y una transmisividad

atmosférica que se calcula. $R_{L\downarrow}$ se calcula usando una versión modificada de la ecuación de Stefan-Boltzmann que incluye la transmisividad atmosférica y una temperatura de referencia seleccionada para la superficie.

 $R_{L\uparrow}$, se determina mediante la ecuación de Stefan-Boltzmann con la emisividad (ε_0) de la superficie terrestre y la temperatura de la tierra calculada previamente. Para determinar las temperaturas de la superficie, se emplean datos de imágenes de resolución alta en la banda térmica. Usualmente, Rn es positiva durante el día, sin embargo, es negativa durante la noche. En condiciones normales, el valor total diario de Rn es mayormente siempre positivo durante todo el día, a excepción de situaciones extremas en latitudes altas (Allen *et al.*, 2002).

• Cálculo de la capacidad de emisión de calor de la superficie ($\boldsymbol{\varepsilon}_0$)

Se realiza a partir del IAF, si el IAF supera el valor de 3, entonces el ε_0 se tomará como 0,98. En caso contrario, se aplicará la ecuación propuesta por Allen *et al.*, (2007).

 $\varepsilon_0 = 0.95 + 0.01 * IAF$ $IAF \le 3 \dots \dots (3)$

Dónde: ε_0 es la emisividad térmica de la superficie de la tierra.

• Transmisividad atmosférica (T_{SW})

La fórmula propuesta por Bastiaanssen *et al.* (1995) se utiliza para determinar la transmisividad atmosférica.

$$T_{SW} = 0.75 + 2 * 10^{-5} * Z \dots \dots (4)$$

Donde: Z representa la altura por encima del nivel del mar, medida en metros. Esto es lo que se conoce como el modelo digital de superficie (DSM).

• Radiación de onda larga incidente (RL↓)

Se refiere al flujo descendente de radiación térmica que proviene de la atmósfera. Frecuentemente, se aplica la ecuación de Stefan-Boltzman para su cálculo, tal como lo sugieren Allen *et al.* (2007).

$$R_{L\downarrow} = \varepsilon_a * \sigma * (T_a)^4 \quad \dots \dots (5)$$

Dónde: ε_a representa a la emisividad atmosférica, σ viene ser la constante de Stefan-Boltzmann 5,67 x 10⁻⁸ W m⁻² K⁻⁴, T_a es la temperatura del aire (ambiente) cerca de la superficie en °K.

La estimación de ε_a se realiza a través de la aplicación de la ecuación propuesta por Bastiaanssen (1995).

$$\varepsilon_a = 0.85 * (-Ln(T_a))^{0.09} \dots \dots (6)$$

• Radiación de onda larga saliente ($R_{L\uparrow}$)

El flujo de radiación térmica que va desde la superficie terrestre hacia el exterior (la atmósfera), conocido como radiación de onda larga saliente, se calcula utilizando la ecuación de Stefan - Boltzmann. Esta radiación se mide en W m⁻²:

$$R_{L\uparrow} = \varepsilon_0 * \sigma * (T_S)^4 \dots \dots (7)$$

Dónde: Ts representa a la temperatura superficial, en °K.

• Distancia relativa entre la tierra y el sol (dr)

Allen *et al.* (2006) explican que la variable dr está determinada por la ecuación $1/(dt^{-s})^2$. Representa el distanciamiento relativo entre la Tierra y el Sol, medida en unidades astronómicas (AU). Una AU equivale a 1,496 x 10^8 kilómetros. Esta distancia se puede observar en la mitad de cada imagen.

$$Dr = 1 + 0.033 * \cos\left(DOY * \frac{2\pi}{365}\right) \dots \dots (8)$$

Dónde: DOY se refiere al día juliano y su ángulo, calculado como (DOY * $2\pi/365$), se presenta en radianes. Los valores de dr que son adimensionales, se encuentran dentro de un rango que va desde 0,97 hasta 1,03.

• Radiación de onda corta entrante ($R_{S\downarrow}$)

Se calcula teniendo en cuenta diversos factores como el tiempo, la fecha, la ubicación, la pendiente del terreno y el aspecto. Para realizar estos cálculos se consideran condiciones de

cielo despejado, pues es requisito indispensable para utilizar la imagen (Allen et al., 2007).

$$R_{S\downarrow} = Gsc * cos(\theta) * dr * T_{SW} \dots \dots (9)$$

En la ecuación, $R_{S\downarrow}$ representa la radiación de onda corta incidente o que entra; Gsc es la representación de la constante atmosférica solar; y finalmente, $\cos(\theta)$ es el coseno de la incidencia solar.

El cálculo del coseno de incidencia solar $(\cos\theta)$ se realiza teniendo en cuenta las correcciones por pendiente y aspecto del terreno. Cada píxel de la imagen se ajusta según la orientación de la pendiente para determinar la cantidad de radiación recibida. La influencia de la disposición del terreno y la ubicación del sol en la radiación se explica mediante la siguiente ecuación, según un estudio realizado por Allen *et al.* (2006).

$$\cos(\theta) = \sin(\delta)\sin(\phi)\cos(i) - \sin(\delta)\cos(\phi)\sin(i)\cos(a) + \cos(\delta)\cos(\phi)$$
$$\cos(i)\cos(\omega) + \cos(\delta)\sin(\phi)\sin(i)\cos(a)\cos(\omega) + \cos(\delta)\sin(i)$$
$$\sin(a)\sin(\omega) \dots \dots (10)$$

Dónde:

 ϕ es latitud del área de estudio ingresa como grilla en radianes,

i es la pendiente del área de estudio ingresa en radianes,

a es el azimut y se encuentra en el meta dato de cada imagen,

 ω ángulo de horas de sol estimado en base al instante del vuelo con el UAV,

 δ es la declinación solar calculado en base al día juliano (D) y se estima con la siguiente expresión:

$$\delta = 23,45 \ x \ sen\left(\frac{360 \ x \ (284 + D)}{365}\right) \ \dots \dots (11)$$

Todas las variables antes mencionadas deben estar en radianes.

b. Flujo de calor del suelo (G)

De acuerdo con Allen *et al.* (2007), se refieren a la tasa a la que se acumula el calor en el suelo y la vegetación a través del proceso de conducción. En el marco de las aplicaciones del modelo de balance de energía METRIC, normalmente se estima G como una proporción

G Rn⁻¹. Su origen depende de la variación de temperatura en la capa más superficial del suelo. Este cambio de temperatura se ve alterado de la presencia de vegetación y el IAF. Además, la radiación neta tiene un impacto tanto en la temperatura de la superficie como en el gradiente de temperatura del suelo. Con base en estos factores, es posible calcular G utilizando la proporción G Rn⁻¹. La fórmula para calcular el flujo de calor en el suelo está representada por la ecuación (12), según Bastiaanssen (2000).

$$G Rn^{-1} = \frac{T_s - 273,15}{a} (0,0038a + 0,0074a^2)(1 - 0,98NDVI^4) x Rn$$
$$G = \frac{T_s - 273,15}{a} (0,0038a + 0,0074a^2)(1 - 0,98NDVI^4) x Rn \dots \dots (12)$$

Donde:

 T_s se refiere a la temperatura en la superficie expresada en Kelvin, *a* representa el albedo, mientras que NDVI es una medida conocida como el índice de vegetación de diferencia normalizada que se utiliza para evaluar la vegetación en un área determinada.

c. Flujo de calor sensible del aire (H)

Se refiere a la pérdida de calor del aire mediante los procesos de convección y conducción, que sucede como resultado de una diferencia de temperatura. Para calcular este parámetro, se hace uso de la ecuación sugerida por Allen *et al.* (2002).

$$H = \frac{\rho \, x \, C_p \, x \, dT}{r_{ah}} \quad \dots \dots (13)$$

Donde:

 ρ representa la densidad del aire en kilogramos por metro cúbico $(kg m^{-3})$. C_p es la designación para la capacidad de calor específico del aire, cuyo valor es 1004 $J kg^{-1}K^{-1}$. dT se refiere a la variación de la temperatura entre dos alturas diferentes, especificadas como $T_1 - T_2$ y las alturas son indicadas como $z_1 y z_2$. Finalmente, r_{ah} simboliza la resistencia aerodinámica en el transporte de calor sensible desde la superficie hasta una altura de referencia, y se mide en segundos por metro $(s m^{-1})$.

• Resistencia aerodinámica (r_{ah})

Es necesario realizar varias repeticiones para obtener el valor de r_{ah} , tomando en cuenta las

consecuencias de la volatilidad del clima. Se emplea la ecuación (14) para determinar el valor inicial de r_{ah} , manifestando que las condiciones atmosféricas son neutrales.

$$r_{ah} = \frac{\ln\left(\frac{Z_2}{Z_1}\right)}{u_* x k} \dots \dots (14)$$

Donde:

 $z_1 y z_2$ representan las alturas en metros por encima de la superficie (normalmente, z_1 se establece en 0,1 m, cerca del suelo, y z_2 en 2,0 m, que es la altura de la vegetación) según Bastiaanssen *et al.* (1998). Por otro lado, k es la representación de la constante de Von Karma, establecida en 0,41. Finalmente, u_* es la rapidez de la fricción que se mide en metros por segundo al cuadrado inverso ($m s^{-1}$).

La rapidez de fricción se halla utilizando el perfil logarítmico del viento en condiciones de estabilidad neutra:

$$u_* = \frac{k u_{200}}{\ln\left(\frac{200}{Z_{om}}\right)} \dots \dots (15)$$

Donde:

 u_{200} se refiere a la rapidez del viento, medida en $m s^{-1}$, a un alto de 200 metros. Z_{om} representa al coeficiente de rugosidad y es medido en metros (m).

Para determinar la rapidez del viento a una altura de 200 m, se utiliza una fórmula que no toma en cuenta los efectos producidos por rugosidad de la superficie de la tierra:

$$u_{200} = u_* \frac{\ln\left(\frac{200}{Z_{om}}\right)}{k} \dots \dots (16)$$

El coeficiente de rugosidad de la superficie (Z_{om}) se relaciona con el alto del cultivo por encima del plano, que se establece como cero y se identifica con el punto donde la rapidez del viento se torna cero al terminar la cubierta vegetativa (Nuñez, 2009). Para calcular Z_{om} , se emplea una relación empírica sugerida por Bastiaanssen, (2000).

$$Z_{om} = 0,12 \ x \ h \ \dots \dots (17)$$

Donde:

h se refiere al alto que alcanza el cultivo situado debajo de la estación meteorológica.

• Diferencia de temperatura (dT)

En el proceso de calcular la diferencia de temperatura (dT) cerca de la superficie, se establece una relación lineal entre dT y T_s para cada píxel.

$$dT = b + aT_s \dots \dots (18)$$

Donde:

 T_s se refiere a la temperatura en la superficie, mientras que *a* y *b* son los coeficientes que determinan la correlación.

Para determinar los coeficientes se emplean dos puntos de referencia denominados "píxel frío" y "píxel caliente". El píxel frío se identifica como una zona agrícola completamente cubierta y bien irrigada, donde se considera que la temperatura de la superficie y la del aire son prácticamente iguales. En contraste, el píxel caliente se selecciona de una región seca y carente de vegetación, donde se presume que la evapotranspiración es nula.

• Densidad del aire (ρ)

La determinación de la densidad del aire se lleva a cabo mediante la aplicación de ecuaciones estándar que consideran a ley universal de los gases y la presión atmosférica, como fue evidenciado por Allen *et al.* (2002):

$$\rho_{air} = \frac{1000P}{1,01(T_s - dT)R} \dots \dots (19)$$

Donde:

La densidad del aire se denota como ρ_{air} , mientras que *R* representa la constante específica del gas, que es 287 *J* $kg^{-1} K^{-1}$. $T_s - dT$ se usa para referirse a la temperatura del aire en las proximidades de la superficie en un pixel específico. Por otro lado, *p* simboliza el promedio de la presión atmosférica en la elevación del pixel, que se determina mediante un cálculo exponencial, según Walter *et al.* (2001).

$$p = 101,3 \left(293 - \frac{0,0065z}{293}\right)^{5,26} \dots \dots (20)$$

Donde:

Environmental & Water Resources Institute (EWRI) utiliza 293 como la temperatura estándar del aire (en grados Kelvin) en su estandarización de la ET. Z se utiliza para indicar el alto con respecto al nivel del mar.

2.3. Análisis de varianza no paramétrico

2.3.1. Test de Kruskal-Wallis

Se trata de una ampliación de la prueba U de Mann-Whitney y constituye un sustituto sobresaliente al ANOVA de factor único completamente aleatorio. La técnica de Kruskal-Wallis, desarrollada por William Kruskal y W. Allen Wallis, es un método no paramétrico que se utiliza para verificar si hay o no una variación estadísticamente relevante entre las medias o medianas de tres o más grupos independientes y da la opción de descartar esta suposición de igualdad cuando el valor de p sea superior a 0,05 (Soto, 2013).

2.3.2. Prueba de Dunn

El método de Dunn es el método adecuado para realizar comparaciones múltiples no paramétricas por pares cuando se descarta un análisis de Kruskal-Wallis.

2.4. Antecedentes

Quille *et al.* (2019) investigó tres diferentes tipos de estrés hídrico relacionados con el potencial hídrico del suelo (SWP). El propósito era evaluar su impacto en la altura del cultivo de arroz y utilizar índices de vegetación (IAF y NDVI) obtenidos de imágenes de drones o UAV. Los hallazgos del estudio mostraron una correlación entre 0,85 y 0,89 y entre 0,77 y 0,95 para IAF y NDVI, respectivamente, con respecto a la altura del cultivo de arroz. Este trabajo de investigación confirma que es factible usar índices de vegetación para monitorear la falta de agua en las plantas cultivadas.

En su trabajo de grado de Quispe (2021) utilizó imágenes multiespectrales para calcular la ET en tres variedades de arroz: IR717006, IR43 y Sahood Ulan 12, durante el periodo de brotación. Esta información se obtuvo a través de un UAV, y se aplicaron los modelos SEBAL y METRIC. Según los resultados, los valores medios de Rn, G, H y LE del cultivo de arroz fueron 638,76, 84,45, 350,14, 205,10 respectivamente, usando el modelo METRIC. Además, se determinó que la evapotranspiración oscilaba entre 2,66 y 6,24 mm d⁻¹.

En el estudio de Machaca et al. (2022) titulado "Uso de imágenes de dron para la determinar la ET en olivares de áreas áridas para optimizar el riego: un estudio de caso en La Yarada, Tacna, Perú", se aplicaron técnicas de teledetección usando un Sistema de Aeronaves Pilotadas a Distancia (RPAS) para calcular la evapotranspiración de cultivos (ET_c) en árboles de oliva (Olea europaea L.), ubicados en la zona costera del sur de Perú. El propósito del estudio fue calcular la ET_C en olivares utilizando el modelo METRIC, basándose en imágenes multiespectrales y térmicas capturadas por un RPAS, que fue previamente calibrado vicarialmente variedad de formas en el terreno, utilizando un espectrómetro de radiación y un radiómetro móvil. Se registraron promedios de ET_C entre 2,86 y 2,94 mm d⁻ ¹, ascendiendo a 4,02 mm d⁻¹ en la temporada invernal (durante la floración) y a 4,53 mm d⁻ ¹ en el periodo de verano (durante la fructificación). Por otro lado, los valores de ET_0F fluctuaron entre 0.88 y 1.67 y entre 0.92 y 1.42 mm d^{-1} en los periodos de invierno y verano respectivamente, mostrando variaciones significativas entre las estaciones. Los valores que superaron el 1,0 mostraron una mayor fluctuación y tendieron a ser un poco más elevados durante el periodo invernal, lo que se atribuye a la implementación de un riego diario durante todo el año para combatir el estrés abiótico causado por la salinidad del suelo.

La Tabla 1, presenta los valores de ET para distintas condiciones del clima, sistema o técnica de riego y métodos de estimación; con valores máximas para clima árido (Pakistán).

Clasificación climática Köppen-Geiger	Riego	Método para estimar ET _C	$ET_{C} (mm d^{-1})$	Zona de estudio	Referencia
Árido cálido	Goteo	balance hídrico (lisímetro)	1,75 - 5,16	Perú	Neira et al. (2020)
Árido cálido	Goteo	balance de energía (<i>METRIC</i>)	1,65 - 7,48	Perú	Quille <i>et al.</i> (2021)
Árido	Inundado	balance hídrico (Croptwat)	2 - 8,51	Pakistán	Hussain <i>et al</i> . (2023)
Árido	Regímenes de riego	balance hídrico (AquaCrop)	0,3 - 5,5	Egipto	Elsadek et al. (2023)
Árido templado	Inundado y AWD	balance de energía (<i>METRIC</i>)	7,07 - 6,54	Perú	Ramos et al. (2024)
Húmedo tropical	Inundado	balance de energía (SEBAL)	0 - 5,44	Costa de Marfil	Kra et al. (2023)
Húmedo tropical	Inundado	balance de energía (SEBAL)	5,52 - 6,17	Burkina Faso	Sawadogo <i>et al.</i> (2020)
Mediterráneo de veranos frescos	Inundado	balance de energía (<i>METRIC</i>)	2,1 - 4,7	Portugal	Ferreira et al. (2023)
Templado	Inundado	balance de energía (SEBAL y Eddy Covariance)	5,30 y 5,20	Korea del sur	Lee & Kim (2016)

Tabla 1: Valores de evapotranspiración (ET) de diferentes estudios presentados

III. METODOLOGÍA

3.1. Zona de estudio

Se llevó a cabo en la región Lambayeque, costa norte del Perú (Figura 3), con campos de arroz distribuidos en parcelas experimentales instaladas en la Estación Experimental Agraria (EEA) "Vista Florida" del INIA, ubicada en el distrito de Picsi y en la provincia de Chiclayo. La campaña agrícola se prolongó de enero a junio 2023, iniciándose con el reconocimiento de los campos de arroz en la región Lambayeque. Siendo la variedad de arroz que se empleó INIA 515 - Capoteña (Ver Tabla 2).

Figura 3: Ubicación de las parcelas a nivel nacional

Nota: (a), ubicación de las parcelas a nivel Departamental (b), Variabilidad espacial de las parcelas de arroz en el INIA Vista Florida (c)

Zona	Longitud	Latitud	Altitud (m.s.n.m)	Área (ha)	N° parcelas	Variedad
INIA-Vista Florida	06°43'56,55"S	79°47'27,55'' W	35	0,11	4	INIA 515 - Capoteña

Tabla 2: Características de la zona de estudio

El lugar de la investigación se caracteriza por un clima desértico subtropical, con temperaturas que oscilan entre un mínimo de 15 °C y un máximo de 30 °C. Experimenta lluvias fuertes en verano (de febrero a abril) y precipitaciones moderadas, pero poco comunes en invierno, lo que indica que es una región con baja precipitación anual.

Siendo el desarrollo y crecimiento del cultivo entre enero a junio del año 2023, un ciclón tropical desorganizado denominado "Ciclón Yaku" estuvo presente cerca de la costa norte y central hasta el 18 de marzo (73 DDS) (SENAMHI, 2023). Esta presencia contribuyó a la infiltración y acumulación de humedad en la cuenca occidental. Como resultado, se produjeron fuertes lluvias y registros diarios de precipitaciones sin precedentes a lo largo de la costa norte, lo que afectó significativamente el régimen hidrológico durante el período experimental.

3.1.1. Manejo de riego

La adquisición del agua para el riego proviene de un canal que se abastece del reservorio Tinajones, el cual es administrado por la comisión de regantes de Capote. El diseño del estudio fue experimental con observación y consistió en cuatro parcelas, con medidas de 24 m x 11 m (Figura 3c).

El primer tratamiento fue con riego por inundación continua (CF), y los tratamientos restantes con riego bajo alternancia de humedecimiento y secado (AWD₅, AWD₁₀ y AWD₂₀). En los tratamientos AWD₅, AWD₁₀ y AWD₂₀, los piezómetros fueron ubicados a una altura de 5-, 10- y 20- cm respectivamente, en relación al nivel de la superficie terrestre (que se supervisa a una profundidad de 5 a 20 cm usando el piezómetro) (Tabla 3).

Repeticiones	Manejo de riego
CF	Inundado (testigo)
AWD ₅	cm respecto al nivel del suelo 5-
AWD_{10}	cm respecto al nivel del suelo 10-
AWD_{20}	cm respecto al nivel del suelo 20-

Tabla 3: Descripción del manejo de riego por tratamiento

Los tratamientos AWD se iniciaron desde la fase de macollamiento y continuaron hasta la fase de floración. El AWD₂₀ fue el más extremo, se obtuvo la temperatura seca. Respecto al tratamiento CF, al ser un riego por inundación, resultó la condición de menos estrés.

La clasificación del agua de riego se determinó como $C_2 - S_1$, lo que indica que contiene una cantidad reducida de sodio y sal, con un índice de absorción de sodio (RAS) de 0,55. Además, presenta las siguientes características químicas: potencial de hidrógeno (pH) de 7,34, conductividad eléctrica (EC) de 0,31 dS m⁻¹, cationes como Ca²⁺ (1,91 meq L⁻¹), Mg²⁺ (0,43 meq L⁻¹), Na⁺ (0,59 meq L⁻¹) y K⁺ (0,10 meq L⁻¹), y los aniones Cl⁻¹ (1,00 meq L⁻¹), HCO₃⁻² (1,89 meq L⁻¹) y SO₄⁻² (0,29 meq L⁻¹).

3.1.2. Manejo del cultivo

La siembra de la variedad INIA 515 – Capoteña fue por almácigo el 02 de enero del 2023. Treinta días después de la siembra (DDS) (Figura 4), se trasplantaron dos plántulas por golpe a una distancia de 0,25 x 0,25 cm. La fertilización fue de 250-106-60 en forma de nitrógeno (N), fósforo (P) y potasio (K), respectivamente. Se aplicó el 100% de P y K, mientras que el nitrógeno se distribuyó de manera equitativa en fase de macollamiento y punto de algodón. La fenología se determinó usando los grados días de calor (GDD), un índice útil para identificar el crecimiento del cultivo.

Figura 4: (a) Momentos que se realizaron los vuelos con el UAV según DDS; (b) Fase fenológica del arroz de acuerdo a los días después de la siembra (DDS)

Se utilizaron insecticidas para controlar la presencia de *Chironomus sp.* y *Hydrellia wirthii*, durante la etapa vegetativa del cultivo de arroz. Además, se aplicó fungicidas en la fase de grano lechoso para evitar enfermedades causadas por el hongo *Villosiclava virens*.

3.1.3. Características del suelo

El suelo es de textura franco arenosa (26% arena, 39% limo, 35% arcilla), porosidad de 47,2%, densidad aparente (da) de 1,41 g cm⁻³, densidad real (dr) 2,67 g cm⁻³, capacidad de campo (CC) de 29,76 %, punto de marchitez permanente (PMP) de 16,27 % (Tabla 4), y como características químicas presenta una CE de 0,42 dS m⁻¹, pH de 7,64, capacidad de intercambio catiónico (CIC) de 220 meq kg⁻¹, materia orgánica (MO) de 1,22%, N total de 0,11%, C orgánico de 0,71%, S disponible de 3,76 ppm, CaCO₃ de 4,02%, P de 12 ppm y K de 376 ppm.

0

	Textura del suelo				Densidad Densidad		Capacidad	Punto de
Zona	% Arena	% Arcilla	% Limo	Textura	aparente	real	de campo	Marchitez
	/0 111 chiu	, o micina	/0 2000		(g cm ⁻³)	(g cm ⁻³)	(%)	(%)
INIA-Vista	26	39	35	Franco	1,41	2,67	$29{,}76 \pm 1{,}38$	$16,\!27\pm1,\!25$
Florida				arenosa				

3.1.4. Colecta de imágenes multiespectrales y térmicas

Se realizaron los monitoreos aéreos con un UAV Matrice 300 (DJI, Shenzhen, China), equipado con una cámara multiespectral Parrot Sequoia (Parrot S.A., París, Francia) y una cámara térmica DJI Zenmuse H20T (DJI, Shenzhen, China); durante 13 días de monitoreo, distribuidos durante el desarrollo del cultivo.

La cámara multiespectral se calibró con un panel de reflectancia llamada AIRNOV. La cámara H20T colectó imágenes térmicas y ópticas en formato TIF radiométrico. En la Tabla 5 se proporcionan detalles adicionales sobre las especificaciones de los sensores.

UAV	Sensores	Imágenes	Banda espectral (nm)/ precisión	Distancia focal (mm)	Resolución
	Parrot	Multiespectral	Verde (550±40),	3,98	1280 x 960
Matrice	Sequoia		Rojo (660±40),		
			Borde rojo (735 \pm 10),		
			Infra rojo cercano (790±40)		
300	Zenmuse	Térmico	8000-14000/ (± 0,2 m + D \times	13,5	640 x 512
RTK	H20T		0,15 %)		
		-	D es la distancia a una	-	
			superficie vertical		
		RGB		4,5	4056 x 3040

Tabla 5: Características de las cámaras

Se instalaron 4 puntos de control en suelo para la georreferenciación de la cámara térmica, las cuales fueron bloques de concretos pintados de blanco y negro, y en algunos casos forrados con papel aluminio.

Se utilizó la aplicación DJI Pilot V 2.5.1.15 para programar el itinerario de vuelo, con una velocidad de vuelo, traslape frontal y lateral, y altura de vuelo, según se detalla en la Tabla 6. Con el objetivo de reducir el ruido provocado por las sombras del dosel de la planta, las imágenes se tomaron en el horario comprendido entre las 09:00 y las 11:30 am. en condiciones de cielo despejado sugerido por Quille *et al.* (2021).

Los vuelos con el UAV se realizaron en las siguientes fechas: 11 de febrero; 6, 10, 20 y 24 de marzo; 2, 6, 17 y 21 de abril; 7, 11 y 31 de mayo; 2 de junio.
Sector	Resolución	Traslape	Traslape	Velocidad	Altura	Tiempo	Área
	cm/pixel	frontal %	lateral %	m/s	m	de vuelo	(has)
INIA Vista Florida	2,7	85	80	1,5	45	10′56′′	0,5

Tabla 6: Plan de vuelo

3.2. Materiales y equipos

Los equipos y materiales empleados en el campo de estudio se detallan la Tabla 7.

Materiales y equipos	Descripción	Uso-aplicación
Vehículo Aéreo No	Marca DJI, Matrice 300 RTK	Acople de cámaras, sensores
Tripulado (UAV)		térmicos y sensores
		multiespectrales.
Cámara termográfica	Zenmuse H20T. Resolución 640x512	Captura de imágenes térmicas y
	pixeles, operatividad de -20° C a $+ 50^{\circ}$ C,	ópticas (RGB, TIF y
	rango espectral de 7,5 – 13 µm. long. Focal	Radiométrica).
	de 13mm, y ancho de sensor de 100,88	
Cámara Multiespectral	Marca Parrot Sequoia, 4 sensores	Captura de imágenes en bandas
	monocromáticos verde, rojo, borde rojo,	(Blue, Green, Red, Red Edge y
	infrarojo cercano, sensor de reflectancia	NIR).
	Sunshire.	
Cámara RGB	Zenmuse X4S 8.8mm, resolución 20 MP	Captura de imágenes en bandas
		RGB.
Estación meteorológica	ATMOS 41	Obtención de data meteorológica.
portátil		
Radiómetro	Modelo MI-210 Apogge, con 200 gramos	Medir la intensidad de la
	de peso.	radiación solar.
GreenSeaker™	Reflectómetro portátil, marca Trimble.	Medición de datos del NDVI.

Tabla 7: Materiales y equipos

La Tabla 8 muestra las herramientas computacionales necesitados durante el estudio, así como la descripción del uso que se les dio.

	0	TT • 4		1	4.11. 1		• • • • • • •
Tahla	×۰	Herramientas	computacio	nalec i	atilizadas.	en la	investigación
I abla	U •	H (H) annon(a)	computatio	narco	umzauas	UII Ia	mesugacion

Software	Descripción
Pix4D 4.5.6	Es un software para fotogrametría profesional, la obtención de
	ortomosaicos, el pre - procesamiento de las imágenes térmicas, multiespectrales e imágenes RGB.
ArcGIS 10.5.1	Para realizar procesamientos de ortomosacios, imágenes térmicas e imágenes multiespectrales.

3.3. Procedimiento

3.3.1. Índice de área foliar (IAF) por método extractivo

Se identificaron un total de 25 plantas, ubicadas en áreas cercanas al campo de inundación continua. En cada una de estas plantas se llevaron a cabo mediciones específicas relacionadas con el Índice de Vegetación de Diferencia Normalizada (NDVI) y extracción de biomasa para el Índice de Área Foliar (IAF) del cultivo para obtener una ecuación de correlación.

Para medir el NDVI, se utilizó un reflectómetro portátil GreenSeaker[™], de la marca Trimble. Se realizaron tres mediciones en cada planta a una distancia de 60 cm por encima de las mismas. Durante el crecimiento del cultivo, se recopilaron un total de 75 lecturas. El enfoque empleado para registrar las mediciones del NDVI fue similar al usado por Fan *et al*. 2009.

Se empleó el método extractivo para determinar el IAF, que consistió en extraer la zona aérea de la planta para separar hoja por hoja y colocar en un poliestireno expandido de 1 x 1 m, así como se verifica en la Figura 5. Estas hojas se clasificaron de acuerdo a su tamaño y se tomaron fotografías para determinar el área foliar en el software de ArcGIS 10.4. Por último, el área foliar se dividió con el área de referencia que es la distancia entre planta y plantas (20 x 20 cm), como se muestra en la Ecuación 21. Este procedimiento se llevó a cabo en las 25 plantas empleadas en la medición del NDVI, y con cuatro repeticiones para cada una.

Figura 5: Muestras de hojas de arroz extraídas para estimación del IAF en campo INIA – Vista Florida

$$IAF = \frac{\acute{a}rea\ foliar}{\acute{a}rea\ de\ referencia} \quad \dots \dots (21)$$

Para hallar el IAF se usó la ecuación obtenida de la relación entre IAF y NDVI (información recolectada en campo). Dicha ecuación obtenida se ingresó al NDVI generado por las imágenes del UAV (Ecuación (22) y de esta manera se encontró el IAF espacial.

Con la información de las imágenes multiespectrales, se estimó el NDVI. El cálculo se realizó a partir de las reflectancias de las bandas NIR y RED de las imágenes multiespectrales y basándose en la siguiente ecuación:

$$NDVI = \frac{NIR - RED}{NIR + RED} \qquad \dots \dots (22)$$

3.3.2. Componentes del balance de energía para riego inundado (CF) y riego AWD

a. Obtención de ortomosaico

Las imágenes se procesaron utilizando la versión 4.4.12 del software de fotogrametría Pix4Dmapper Pro, desarrollado por Pix4D S.A., con sede en Prilly, Suiza. Se realiza principalmente en tres procedimientos estándares: (i) alineación de imágenes geolocalizadas, (ii) generación de nubes de puntos y corrección geométrica, y (iii) creación del modelo digital de la superficie (MDS) y ortomosaico utilizando la ponderación inversa de la distancia (Río *et al.*, 2019). El programa proporciona plantillas para la creación de mosaicos a partir de imágenes RGB, multiespectrales, térmicas y modelos en 3D. También incluye un registro de modelos de cámaras que identifica los formatos de las imágenes tomadas, lo que permite que estas imágenes sean procesadas. En el Anexo 3 se muestran imágenes procesadas de RGB de los campos experimentales de INIA - Vista Florida.

b. Ajuste del ortomosaico de térmico

Las imágenes térmicas se ajustaron con data de un radiómetro Apogee MI-210 (Apogee Instruments, MI-210, Utah, EE. UU.) (Figura 6a). Se realizó este proceso sobre nueve tipos de superficies conocidas: aluminio, hojas verdes, hojas secas, poliestireno expandido, tela amarilla, tela negra, tela verde, tela roja y suelo desnudo. Estas estaban contenidas en un marco cuadrado de PVC de un metro de largo y ancho. Las mediciones fueron tomadas desde una altura de 40 cm, recopilándose un total de 81 lecturas en cada vuelo (entre el 11 de febrero y el 2 de junio de 2023). La Figura 6b, señala el ajuste de los mosaicos térmicos obtenidos del UAV.

Figura 6: Toma de temperatura Nota: en cada cobertura (a), y en el ráster por grupos de pixeles (b)

La data del radiómetro permitió corregir los datos de la imagen térmica a un valor más real, debido a que la imagen es sensible a la humedad del ambiente que podría alterar los datos registrados por la cámara térmica.

c. Datos meteorológicos

c.1. La recopilación de información meteorológica se extrajo de la estación meteorológica portátil Atmos-41, la cual posee capacidades de comunicación digital SDI-12 para transmitir datos desde sensores ambientales y, además, la estación estaba conectada a un data logger modelo ZL6. La información meteorológica fue: la temperatura del aire (T, °C), humedad relativa (RH, %), velocidad del viento (WS, m s⁻¹) y radiación solar (SR, W m⁻²).

Dicha estación portátil se instaló al centro de la zona de estudio, a una altura de dos metros, con el fin de obtener información meteorológica del cultivo durante los días de vuelo (13 fechas), a largo de su fase fenológica. El tiempo de duración de la colecta para todos los días de vuelo fue de una a dos horas, intervalo de tiempo en que se realizaban las tomas de datos en campo y el vuelo del UAV, de esta manera obtener la velocidad de viento en tiempo y lugar correspondiente. No pudiendo dejar en campo más tiempo, por evitar alguna sustracción del equipo tan costoso.

El equipo de Investigación "Teledetección y cambio climático aplicado a la agricultura y Recursos Hídricos" proporcionó formación y capacitación para la instalación de la estación portátil en el campo de arroz. Además, se facilitaron dos videos (recursos audiovisuales) que detallan el proceso de ensamblaje de la estación:

https://youtu.be/iMhnr5RGoWQ?si=9zjo85WpbZ1hDQG1 https://youtu.be/K5PP9UeZO38?si=Ix8xwtRvDpuYN7zG

c.2. Para estimar la evapotranspiración de referencia (ET_0) , se requirió de la data meteorológica durante las 24 horas de cada uno de los días de vuelo (ANEXO 4). Por ello mismo, se dejó la estación portátil las 24 horas (captando datos cada 5 minutos) durante tres días completos de las fechas de vuelo (11 de febrero, 11 y 31 de mayo). Así como también fue necesario de la data de AGPRES (estación meteorológica de INIA – Vista florida) de los mismos días de vuelo con información de 24 horas de la estación portátil.

La Figura 7 representa el resumen gráfico de la obtención de datos en campo con los equipos utilizados en el área de estudio. Además, se visualiza el procedimiento metodológico de toma de información que se realizaron en campo terrestre y aéreo (UAV).

Figura 7: Resumen gráfico con las técnicas de riego empleadas

Nota: Inundación continua (CF) y alternancia de humedecimiento y secado (AWD), esta última con niveles de agua a 5 cm, 10 cm y 20 cm, respecto al nivel de la superficie del suelo (AWD₅, AWD₁₀ y AWD₂₀)

d. Radiación neta (Rn)

El primer componente a calcular es la radiación neta (Rn), se ingresó información de: T_S (en kelvin), banda NIR, banda RED, IAF, DTM (modelo digital de elevación), Gsc (constante solar atmosférico), $cos(\theta)$ (es el coseno de la incidencia solar) y dr (es la distancia relativa entre la tierra y el sol); ANEXO 5. Después de dicho procedimiento se obtendrá el ráster de la radiación neta. La Figura 8 incluye el proceso del cálculo de la radiación neta.

e. Calor sensible del aire (H)

H se calcula ingresando la información de: DTM, IAF, TS (en kelvin), U₂₀₀, k (constante que será de 0,41), " z_1 y z_2 ", C_p y las constantes "a y b" (Figura 8) que fueron obtenidos empíricamente para cada imagen, donde:

El procedimiento utilizado consistió en elegir un grupo de píxeles fríos y calientes, estableciendo condiciones límites para alcanzar un equilibrio energético. Fueron seleccionados en base a la similitud entre sus píxeles vecinos y la distancia a la estación meteorológica. Para identificar el píxel frío, se enfocó en áreas agrícolas y se eligió un subconjunto de píxeles cuyos valores de temperatura estuvieran dentro del rango de ± 0.2 K del promedio del 20% más frío. Estos píxeles fueron extraídos del área que representaba el 5% de los valores más altos del NDVI. Finalmente, se obtuvo el promedio de los valores más altos del NDVI. Finalmente, se enfocó en suelos agrícolas desnudos sin vegetación y se eligió un subconjunto de píxeles cuyos valores de temperatura estuvieran dentro del rango de ± 0.2 K del promedio del 20% más caliente. Estos píxeles fueron extraídos del área que representaba el 2% del 20% más caliente. Estos píxeles fueron extraídos del área que representaba el 10% de los valores más altos del NDVI. La selección de los píxeles finales se basó en la cercanía del valor promedio y la similitud entre elos píxeles próximos.

f. Flujo del calor del suelo (G)

La Figura 8 indica el proceso secuencial para obtener G, donde se muestra que para calcular el G se requirió de la información procesada de la obtención del Rn, el albedo, así como también de la T_s (kelvin) y NDVI.

g. Flujo de calor latente (LE)

Se determinó LE, restando el flujo de calor del suelo (G) y el flujo de calor sensible (H) de la radiación neta (Rn). Esto se verifica en la Figura 8, donde se representa el proceso secuencial para obtener los componentes de la ET_c .

3.3.3. Evapotranspiración del cultivo (ET_c) para riego inundado (CF) y riego AWD

a. Por balance de energía

La ecuación 23 del modelo METRIC estableció la evapotranspiración diaria, proporcionando una estimación de la evapotranspiración instantánea (ET_{inst}).

$$ET_{inst} = 3600 * \frac{LE}{\lambda} \dots \dots (23)$$

Dónde: ET_{inst} es la ET instantánea (mm*h⁻¹); 3600 es el tiempo de conversión de segundos a horas y (λ) es el calor latente de vaporización o el calor absorbido cuando un kilogramo de agua se evapora (J*kg⁻¹) (Allen *et al.*, 2007).

La fracción de ET de referencia (ET_rF) se estima de la relación existente entre la ET instantánea (ET_{inst}) de cada píxel y la ET de referencia (ET_0) , Ecuación 24.

$$ET_rF = \frac{ET_{inst}}{ET_0} \dots \dots (24)$$

Durante el cálculo de la ET_rF se utiliza un único valor de ET_0 para todos los pixeles, dicho valor se encuentra en los datos de la estación meteorológica, sin embargo, para la ET_{inst} cada píxel tiene un valor único (Allen *et al.*, 2007).

Para el modelo METRIC, la ET_{24} (mm d⁻¹) se calcula considerando que la ET_rF instantánea es igual para un promedio de 24 horas (Allen *et al.*, 2007), Ecuación 25.

$$ET_{24} = ET_rF * ET_{0_{24}} \dots \dots (25)$$

Donde: ET_rF representa la proporción de la ET de referencia. $ET_{0_{24}}$ se calcula sumando los valores horarios de ET_0 para cada día que se toma la imagen.

La ET_0 se halló con la información obtenida de la estación meteorológica portátil ATMOS 41, donde se descargó data de la temperatura media (T°C), humedad relativa (HR), velocidad del viento (V), presión atmosférica (P) y radiación solar. Luego se preparó un Excel con los datos meteorológicos ya mencionados y se calculó la ET_0 por cada hora (las 24 horas del

día), aplicando el método de Penman-Monteith.

A partir de lo obtenido de ET_0 , se calculó la $\text{ET}_{0_{24}}$, mediante la sumatoria de ET_0 de las 24 horas comprendidas en un día (Ecuación 26).

$$ET_{0_{24}} = ET_{0_1} + ET_{0_2} + ET_{0_3} + \dots + ET_{0_{22}} + ET_{0_{23}} + ET_{0_{24}} \quad \dots \dots (26)$$

Los resultados obtenidos de la ET_0 y $ET_{0_{24}}$ se verifican en el ANEXO 6.

La Figura 8 muestra el proceso paso a paso y numerada para la estimación de la ET_c por balance energético (modelo METRIC), a partir de la adquisición de las imágenes hasta la obtención de los resultados (ET_c y sus componentes). El software que se empleó fue el ArcGIS 10.4 (*ModelBuilder*):

Se realizaron los vuelos con el UAV (1) para colectar imágenes multiespectrales (2), RGB (3) y térmicas (4). De las bandas NIR (5) y RED (6), se obtuvieron los albedos (α) (5), e índices de vegetación como el NDVI (7) e IAF (9), anticipadamente ajustados con información de campo. Se tuvo el MDT (10) del ortomosaico RGB (3).

Se colectó data climática (13) como la radiación solar (R_S) (14), velocidad del viento (V) (15), temperatura del aire (Ta) (18), para calcular la ET_0 (20) y la resistencia aerodinámica (rah) (19). Además, se halló radiación de onda larga incidente (R_L \downarrow) (22) de la Ta (18). Con datos de ET_0 (20) se obtuvo $ET_{0_{24}}$ (21). Con la imagen térmica (4) se obtuvo la temperatura superficial (T_S) (11). Luego, con la información de campo (radiómetro) se ajustó la T_S para estimar la T_S ajustada (12). Del MDT se calculó la transmisividad atmosférica (Tsw) (23) para estimar la presión atmosférica (P)(30).

De la identificación de valores umbrales llamados pixel frío y caliente (20) se determinó el diferencial de temperatura (dT) (31), con P se halló la densidad del aire (ρ air) (32). La emisividad térmica de la superficie (Eo) (25) se calculó del IAF (9), y con la Ts ajustada se halló la radiación de onda larga saliente ($R_L\uparrow$) (28). Se determinó la radiación de onda corta entrante ($R_S\downarrow$) (27) a partir del Cos θ , GsC y dr (26). De la Ts ajustada se encontró landa (γ) (33) y, de esta última se halló la evapotranspiración instantánea (ET_{inst}) (38).

Se obtuvieron los componentes del balance energético como la radiación neta (Rn) (35), el flujo de calor del suelo (G)(36), el flujo de calor sensible del aire (H)(34) y el flujo de calor latente (LE) (37). En última instancia, se estimó la fracción de evapotranspiración de referencia (ET_rF) (39) y la ET_c (40) con lo obtenido de la ET₀₂₄ (21).

Figura 8: Secuencia del diagrama de flujo para estimar de la ET_c por METRIC

Se dividió cada parcela en 3 x 6, resultando 18 cuadrantes por cada tratamiento (CF, AWD₅, AWD₁₀ y AWD₂₀), para realizar análisis y pruebas estadísticas de los valores obtenidos del ET_c. Primero, se examinó la normalidad de la variable "ET_c" mediante la prueba de Shapiro-Wilk, resultando un valor p extremadamente bajo (p = $7,857e^{-06}$), indicando que los datos no siguen una distribución normal (p< 0,05; se rechaza la hipótesis nula). Además, se hizo una prueba de homogeneidad de varianzas de Levene, revelando diferencias significativas entre los grupos (p = $1,781e^{-07}$) lo que reveló que en los valores no hay normalidad y tampoco homogeneidad de varianzas. Por tal motivo, se optó por realizar el test de Kruskal-Wallis lo que confirmó que existe diferencias significativas entre los grupos (p = $9,027e^{-06}$). Posteriormente, se llevó a cabo la prueba de Dunn para comparaciones múltiples, revelando diferencias significativas en varias comparaciones, especialmente entre el tratamiento CF y los demás (AWD₅, AWD₁₀ y AWD₂₀).

b. Por balance hídrico

Con el modelo AquaCrop, previamente parametrizado, se estimó la evapotranspiración del cultivo por balance hídrico. El modelo AquaCrop fue creado por la organización para la agricultura y la alimentación (FAO) (Elsadesk, 2023). El modelo AquaCrop ha sido calibrado y evaluado para simular el desarrollo y el rendimiento del arroz en condiciones de inundación en algunas zonas del mundo (Abdul *et al.*, 2018; Lin *et al.*, 2012; Porras *et al.*, 2020). Los datos para el modelo AquaCrop se dividen en cuatro módulos: clima, cultivo, riego y suelo (Nie *et al.*, 2022).

Los datos meteorológicos necesarios (Tmáx, Tmin, V, HR, hr de sol, P, Rad) para ejecutar el módulo climático en AquaCrop fueron extraídos de cada uno de los días durante todas las fases de fenología del arroz, de la estación meteorológica portátil ATMOS 41, así como también de la estación Lambayeque y AGPRES. Los archivos climáticos se cargaron en AquaCrop para calcular la Evapotranspiración (ET₀) utilizando la ecuación de Penman-Monteith, que considera todos los parámetros relacionados con el intercambio de energía y el flujo de calor latente del suelo (Raes, 2017). La información climática, información fenológica de campo, rendimientos, la profundidad de raíz, características del suelo, manejo del agua y la variación temporal del dosel en cada tratamiento, permitieron parametrizar el modelo de balance de agua por AquaCrop.

c. Experiencia en La Molina

A fin de encontrar otra relación entre ET_c por balance de energía y ET_c balance hídrico, se instalaron y monitorearon pozas de arroz en La Molina:

En el área experimental de riego (AER) de la Universidad Nacional Agraria la Molina (UNALM) se instalaron tres pozas de arroz de 3 x 4 m con la misma variedad del cultivo, INIA 515 – Capoteña. Incluso, fue preparada con las mismas condiciones mediante almácigos que se trasplantaron a una distancia de $0,25 \times 0,25$ cm, durante el verano del 2023. Sin embargo, el régimen hídrico mantuvo la humedad del terreno entre saturación y una lámina de agua máxima de 5 cm con sensores de humedad FDR (Frecuency Domain Reflectometry). En cuanto al agua de riego; provino del río Rímac y fue almacenada en un tanque de 25 m³, conectada a una red de tuberías para llevar agua a cada poza.

Se ubicaron tres puntos de control para la georreferenciación de la cámara térmica y se realizaron siete vuelos con el UAV Matrice 300, durante el desarrollo del cultivo. De igual manera, se acopló la cámara multiespectral y la cámara térmica H20T al UAV Matrice 300. También se disponía de una estación meteorológica, Davis Vantage Pro, la cual estuvo ubicada en el centro de las pozas. Se procesaron las imágenes térmicas y multiespectrales según el procedimiento descrito para el estudio de Chiclayo. Se obtuvieron los valores del ET_C por balance de energía y, además, se hallaron los valores del ET_C por balance hídrico con el AcuaCrop para La Molina.

IV. RESULTADOS Y DISCUSIÓN

4.1. Índice de área foliar (IAF) por método extractivo

Se desarrolló la conexión entre el IAF estimado por método extractivo y NDVI medido en campo por diferentes fechas de desarrollo del cultivo, con el fin de obtener la variación espacial del IAF. Se generaron cinco ecuaciones de correlación de las fechas coincidentes de toma de información. Posteriormente, con los datos de las cinco fechas, se generó la ecuación exponencial de $Y_{IAF} = 0,0669e^{4,9257*NDVI}$ con coeficiente de determinación (R²) de 0,5128 (Figura 9).

Figura 9: Relación entre NDVI medido con GreenSeaker e IAF estimado por método extractivo de cinco fechas, realizados en campo

Nota: El color de la ecuación coincide con el color de los puntos y línea de tendencia. La ecuación en negro corresponde a la ecuación general que son todos los puntos de las cinco fechas.

Figura 10: Variación espacial del IAF en fase vegetativa (38 a 92 DDS), fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz

Se obtienen valores hasta de 7,74 del IAF que coinciden con lo mencionado por Ali *et al.* (2021) de 1,83 a 7,26, Gong *et al.* (2021) de 2,9 a 9,8 y Serrano *et al.* (2023) de 3,48 a 9,94 en cultivos de arroz.

El IAF llega a su punto más alto durante la fase reproductiva y disminuye a medida que la planta envejece. Esto muestra cambios importantes en el área de las hojas en relación con las distintas etapas del proceso de crecimiento y desarrollo de la vegetación. El uso de una cantidad elevada de Nitrógeno produce plantas más altas, con un mayor número de brotes y un área foliar más amplia (Pan *et al.*, 2011).

Además, la reflectancia hiperespectral del dosel no solo se ve influenciada por las características biofísicas, la estructura del dosel, la absorción y dispersión atmosférica, sino también por la dirección de la radiación incidente y las condiciones del suelo (Carvalho *et al.*, 2016).

4.2. Componentes del balance de energía para riego inundado (CF) y riego AWD

Se empleó una estación portátil de meteorología para obtener datos meteorológicos confiables y representativos en el estudio. Según Chu *et al.* (2017), es crucial contar con mediciones precisas de las condiciones ambientales para el cálculo de la ET. Pues mayormente en los estudios se obtienen datos de estaciones meteorológicas que están lejos del lugar de estudio.

La Figura 11 muestra las condiciones meteorológicas de los días de vuelo. La temperatura ambiental (Figura 11a) fluctuó de 25,4 a 30,5°C. La humedad relativa (Figura 11b) fue muy variable (61,05 - 90,5%). La velocidad del viento (Figura 11c) varió entre 0,32 m s⁻¹ a 4,32 m s⁻¹. La radiación solar (Figura 11d) varió de 266,5 – 1051 W m⁻². Estos datos fueron tomados durante el intervalo de tiempo en que se ejecutaba el vuelo del UAV, específicamente entre las 09:00 y las 11:30 am.

Figura 11: Condiciones meteorológicas según N° de vuelo realizado con el UAV de acuerdo al DDS

Nota: (a) temperatura (T, °C), (b) humedad relativa (RH, %), (c) velocidad del viento (WS, m s⁻¹) y (d) radiación solar (IS, W m⁻²)

4.2.1. Radiación neta (Rn)

a. Ajuste del ortomosaico térmico

La Figura 12 representa la calibración de los ortomosaicos de imágenes térmicas que consistió en correlacionar datos obtenidos de imágenes del UAV con la cámara H20T y lo medido en campo con el radiómetro de temperatura. Se generaron todas las ecuaciones de corrección por cada día de vuelo (Figura 12) para finalmente obtener la ecuación general ($Y_{radiometro} = 0,6638 X_{H20T} + 12,615$), cuyo R² fue de 0,918 y error cuadrático medio (RMSE) de 12,77°C.

Nota: El color de la ecuación coincide con el color de los puntos y línea de tendencia. La ecuación en negro corresponde a la ecuación general del total de datos obtenidos en campo durante los días de vuelo.

En el Anexo 7, se visualiza las imágenes térmicas corregidas, luego de ingresar la ecuación a los ortomosaicos térmicos obtenidos por el UAV.

b. Diagrama de cajas de la radiación neta (Rn)

A partir de las informaciones obtenidas y procesadas se obtiene los valores de la radiación neta para cada tratamiento, y de las 13 fechas de monitoreo con el UAV. La Figura 13 presenta el diagrama de cajas de Rn, donde se pueden observar estos valores.

Figura 13: Diagrama de cajas de Rn para los tratamientos CF y AWD, durante los días de vuelo del UAV

La Figura 13 contiene el resultado obtenido de Rn estimados por el modelo METRIC, obteniéndose valores mínimos a máximos para cada manejo de riego: CF de 291,75 a 621,09 W m⁻², AWD₅ de 311,68 a 795,99 W m⁻², AWD₁₀ de 318,16 a 816,57 W m⁻² y AWD₂₀ de 310,27 a 819,85 W m⁻². Así mismo, en la Figura 14 se representa la variación espacial de los valores obtenidos para el componente de radiación neta.

Estos resultados coinciden con el rango (100 a 800 W m⁻²) obtenido por Nassar *et al.* (2021) y Montibeller *et al.* (2017). Sin embargo, el 75 DDS señala un Rn de 819.85 W m⁻² para el tratamiento AWD₂₀ esto debido a que ese día se señala una mayor temperatura del ambiente y fue uno de los días de seca. Asimismo, algunos días de monitoreo también se registró un rango mayor, posiblemente a diferencias en la distribución espacial del albedo y las condiciones climáticas, según lo señalado por Montibeller *et al.* (2017).

Figura 14: Variación espacial de Rn en fase vegetativa (38 a 92 DDS), fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz

4.2.2. Calor sensible del aire (H)

a. Píxeles fríos y píxeles calientes

La selección de los píxeles fríos y calientes de cada fecha de vuelo (Tabla 9), fueron obtenidos acorde al modelo METRIC con porcentajes de pixeles de temperatura y NDVI, así como fue detallado en el procedimiento. Este procedimiento es propio del modelo empleado a diferencia del modelo SEBAL que no establece porcentajes límites de selección de pixeles.

De la Tabla 9, los píxeles fríos corresponden a la temperatura superficial (T_S) mínima de 296,76 K, y a valores máximos para NDVI, IAF y albedo de 0,93, 6,83 y 0,35, respectivamente. Así como también, los píxeles calientes corresponden a una temperatura superficial (T_S) máxima de 321,88 K, con valores mínimos en NDVI, IAF y albedo de 0,02, 0,05 y 0,15, respectivamente.

Facha DDS		Divol	Coordenada (WGS84, UTM)		NDVI	IAF	AF Albedo	o T(K)	Constantes de calibración	
Геспа	DDS	I IXCI	X	Y					a	b
11-feb.	38	frío	633648,78	9255632,41	0,72	2,78	0,25	298,96	0,382	-111,531
		caliente	633637,75	9255631,10	0,02	0,05	0,22	307,51		
6-mar.	61	frío	633644,81	9255650,83	0,77	3,68	0,22	302,40	0,345	-100,349
		caliente	633632,07	9255701,91	0,15	0,11	0,15	311,10		
10-mar.	65	frío	633613,16	9255672,40	0,84	5,43	0,21	301,26	0,636	-187,402
		caliente	633606,73	9255734,94	0,14	0,10	0,15	306,29		
20-mar.	75	frío	633629,01	9255674,63	0,85	5,88	0,27	302,12	0,245	-71,220
		caliente	633635,03	9255702,95	0,14	0,10	0,26	318,34		
24-mar.	79	frío	633619,50	9255642,26	0,88	6,13	0,29	300,35	0,166	-46,459
		caliente	633634,97	9255708,46	0,16	0,68	0,22	321,88		
2-abr.	88	frío	633620,37	9255642,46	0,90	6,63	0,33	300,60	0,322	-92,839
		caliente	633634,20	9255704,54	0,24	0,88	0,20	308,65		
6-abr.	92	frío	633626,61	9255689,27	0,93	6,17	0,35	299,17	0,340	-99,414
		caliente	633595,26	9255717,95	0,22	0,88	0,17	308,14		
17-abr.	103	frío	633622,01	9255705,07	0,91	7,73	0,32	300,48	0,152	-41,320
		caliente	633595,07	9255719,49	0,24	0,22	0,17	311,56		
21-abr.	107	frío	633604,20	9255713,17	0,91	7,61	0,32	296,76	0,271	-77,976
		caliente	633616,79	9255726,50	0,26	0,25	0,15	308,15		
7-may.	123	frío	633643,04	9255650,77	0,86	6,99	0,30	297,11	0,185	-53,158
		caliente	633595,89	9255711,76	0,20	0,18	0,20	317,35		
11-may.	127	frío	633625,31	9255645,13	0,84	6,42	0,29	300,27	0,323	-95,512
		caliente	633616,16	9255723,40	0,22	0,20	0,18	314,58		
31-may.	147	frío	633640,25	9255683,39	0,84	6,69	0,24	300,83	0,198	-56,978
		caliente	633618,06	9255723,40	0,28	0,29	0,22	317,79		
2-jun.	149	frío	633640,53	9255683,74	0,86	7,05	0,33	298,01	0,129	-34,544
		caliente	633610,07	9255724,46	0,26	0,25	0,20	315,67		

Tabla 9: Selección del píxel frío y caliente con los valores de NDVI, albedo, temperatura y las constantes de calibración dT = a + b T_s

b. Diagrama de cajas del calor sensible del aire (H)

La Figura 15 representa el diagrama de cajas de la variación temporal del calor sensible del aire (H) para cada tratamiento, y de las 13 fechas de monitoreo con el UAV.

Figura 15: Diagrama de cajas del H para los tratamientos CF y AWD, durante los días de vuelo del UAV

En la Figura 15 se muestra los valores del H calculados por el modelo METRIC, obteniéndose valores mínimos a máximos para cada manejo de riego: CF de 40,12 a 188,55 W m⁻², AWD₅ de 50,17 a 186,36 W m⁻², AWD₁₀ de 52,22 a 189,31 W m⁻² y AWD₂₀ de 52,30 a 209,08 W m⁻². De igual manera, la Figura 16 muestra la variación espacial de los resultados obtenidos para el componente de calor sensible del aire.

Estos resultados están cerca al obtenido por Lee & Kim (2016) y Acharya & Sharma (2021) con un rango de valores de 50 a 400 W m⁻². Con respecto a los valores bajos obtenidos en este estudio, según Nassar *et al.* (2021), los elementos que componen el equilibrio energético alcanzan su punto máximo al mediodía, aunque este pico cambia dependiendo a la estación del año que nos encontremos (verano, primavera, otoño, invierno), siendo el verano la estación con los valores más elevados.

Figura 16: Variación espacial de H en fase vegetativa (38 a 92 DDS), fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz

4.2.3. Flujo del calor del suelo (G)

La Figura 17 representa el diagrama de cajas G, para cada tratamiento, y de las 13 fechas de vuelos realizados con el UAV.

Figura 17: Diagrama de cajas de G para los tratamientos CF y AWD, durante los días de vuelo del UAV

La Figura 17 muestra valores de G, calculados por el modelo METRIC. En el que se obtuvieron valores mínimos a máximos para cada manejo de riego: CF de 12,90 a 125,37 W m⁻², AWD₅ de 14,67 a 126,23 W m⁻², AWD₁₀ de 15,67 a 127,36 W m⁻² y AWD₂₀ de 16,12 a 133,80 W m⁻². De igual manera, la Figura 18 muestra la variación espacial de los resultados obtenidos para el componente de calor del suelo. Estos resultados corresponden al rango indicado por Nassar *et al.* (2021) de 0 a 180 W m⁻².

Figura 18: Variación espacial de G en fase vegetativa (38 a 92 DDS), fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz

4.2.4. Flujo de calor latente (LE)

Se presenta el diagrama de cajas de la variación temporal del calor latente (LE) para cada tratamiento (Figura 19), en las 13 fechas de vuelos realizados con el UAV.

Figura 19: Diagrama de cajas de LE para los tratamientos CF y AWD, durante los días de vuelos del UAV

La Figura 19 muestra los valores de LE calculados por el modelo METRIC, en el que se obtuvieron valores mínimos a máximos para cada manejo de riego: CF de 203,58 a 640,75 W m⁻², AWD₅ de 212,88 a 617,66 W m⁻², AWD₁₀ de 220,86 a 635,20 W m⁻² y AWD₂₀ de 187,76 a 615,36 W m⁻². De igual manera, la Figura 20 muestra la variación espacial de los resultados obtenidos para el componente de calor latente.

Según Montibeller *et al.* (2017) estos valores de LE pueden variar dependiendo en la fase fenológica que se encuentre el cultivo.

Figura 20: Variación espacial del calor latente (LE) en fase vegetativa (38 a 92 DDS), fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz

4.3. Evapotranspiración del cultivo (ET_c)

4.3.1. ET_c por balance de energía

La Figura 21 muestra la variación horaria de la evapotranspiración de referencia (ET_0) durante las 24 horas de los 13 días de vuelos y calculados por Penman – Monteith con los datos de la estación meteorológica portátil ATMOS 41. Los días de vuelo están agrupados según la fase en que se encuentra el cultivo: fase vegetativa (38 DDS, 61 DDS, 65 DDS, 75 DDS, 79 DDS, 88 DDS, 92 DDS), fase reproductiva (103 DDS, 107 DDS, 123 DDS, 127 DDS) y fase de maduración (147 DDS, 149 DDS).

Figura 21: Variación horaria de la evapotranspiración de referencia (ET₀) durante las 24 horas del día en las 13 fechas de vuelos del UAV

Con respecto a lo que se visualiza en la Figura 21, a las 7:00 horas empieza a subir la ET_0 llegando al pico más alto a partir de las 12:00 horas e incluso para algunos días hasta las 14:00 horas, aproximadamente. Sin embargo, la ET_0 es baja a partir de las 18:00 horas debido a que en las noches no hay radiación solar lo que provoca que la superficie terrestre se enfríe hasta la salida del sol (las 7:00 horas).

La Figura 22 presenta el diagrama de cajas de la variación temporal de ET_c para cada tratamiento, y en las 13 fechas de vuelos realizados con el UAV.

Figura 22: Diagrama de cajas del ET_c para los tratamientos CF y AWD, durante los días de vuelos del UAV

Se tiene los valores de la ET_C estimados por el modelo METRIC (Figura 22), en el que se obtuvieron valores mínimos a máximos para cada manejo de riego: CF de 3,01 a 8,90 mm d⁻¹, AWD₅ de 2,93 a 8,47 mm d⁻¹, AWD₁₀ de 2,75 a 8,77 mm d⁻¹ y AWD₂₀ de 2,47 a 8,78 mm d⁻¹. De igual manera, la Figura 23 muestra la variación espacial de la ET_c diaria según las fases del cultivo (vegetación, reproductiva y maduración) y bajo los diferentes regímenes de riego.

Estos valores coinciden con Alamo y Toro (2022) de 2,6 a 14 mm d⁻¹, donde su lugar de estudio corresponde a las mismas condiciones climáticas que se realizó el presente trabajo. Así como también, cercanos a Quille *et al.* (2021) de 1,65 a 7,48 mm d⁻¹, y con valores promedios de 7,07 y 6,54 mm d⁻¹ de Ramos *et al.* (2024).

Figura 23: Variación espacial de la ET_c en fase vegetativa (38 a 92 DDS), fase reproductiva (103 a 127 DDS) y fase de maduración (147 y 149 DDS) del cultivo de arroz

De la Figura 23, el primer vuelo (38 DDS) presenta resultados un poco altos debido a que ese día se inició el vuelo del UAV a las 14:35 horas. Entonces, al estar con agua y con poco dosel de las plantas de arroz, las parcelas se fueron calentando durante las horas transcurridas, provocando la alteración del mosaico térmico.

Los valores promedios de ET_C registrados en los días 61 y 65 DDS, se muestran elevados debido a la presencia de lluvias constantes provenientes del ciclón Yaku y a precipitaciones anómalas que se presentaron durante en los días previos a los vuelos del UAV. Además, hubieron días de seca debido a problemas técnicos con la tubería del canal (tubería rota) que se evidenciaron en los resultados de los vuelos de los días 75 y 79 DDS.

Se tiene los resultados de la relación entre ET_C y ET_0 en cada día de vuelo realizado con el UAV (Tabla 10). Los valores de la relación son cercanos con Rayo y Londoño (2014) de 0 a 2, donde se empleó sensores remotos.

ETc/ETo							
CF	AWD ₅	AWD ₁₀	AWD ₂₀				
1,406	1,421	1,367	1,322				
1,749	1,666	1,729	1,679				
1,751	1,687	1,766	1,724				
1,342	1,322	1,321	1,303				
1,436	1,429	1,413	1,243				
2,003	1,997	1,993	2,001				
1,818	1,797	1,853	1,848				
2,281	2,314	2,347	2,331				
1,416	1,476	1,495	1,519				
1,164	1,136	1,100	1,081				
1,153	1,129	1,095	1,061				
1,107	1,091	1,075	1,031				
2,407	2,609	2,384	2,124				
	CF 1,406 1,749 1,751 1,342 1,436 2,003 1,818 2,281 1,416 1,164 1,153 1,107 2,407	CFAWD51,4061,4211,7491,6661,7511,6871,3421,3221,4361,4292,0031,9971,8181,7972,2812,3141,4161,4761,1641,1361,1531,1291,1071,0912,4072,609	CFAWD5AWD101,4061,4211,3671,7491,6661,7291,7511,6871,7661,3421,3221,3211,4361,4291,4132,0031,9971,9931,8181,7971,8532,2812,3142,3471,4161,4761,4951,1641,1361,1001,1531,1291,0951,1071,0911,0752,4072,6092,384				

Tabla 10: Relación entre ET_C y ET_O

En las Tablas 11 y 12 se muestran lo obtenido en NDVI, IAF y componentes del balance energético, por cada régimen de riego.

	Fase vegetativa								
	38 DDS	61 DDS	65 DDS	75 DDS	79 DDS	88 DDS	92 DDS		
CF									
Albedo	$0,\!16\pm0,\!01$	$0,\!11\pm0,\!02$	$0,\!10\pm0,\!01$	$0,\!18\pm0,\!02$	$0{,}21\pm0{,}03$	$0,\!24\pm0,\!04$	$0,\!23\pm0,\!05$		
Térmica	$30{,}00\pm0{,}21$	$30{,}57\pm0{,}46$	$29,10\pm0,29$	$31,\!76\pm1,\!25$	$31,\!09 \pm 1,\!89$	$27{,}96 \pm 0{,}32$	$26{,}47\pm0{,}27$		
NDVI	$0,\!02\pm0,\!03$	$0,\!20\pm0,\!10$	$0,\!39\pm0,\!13$	$0{,}61\pm0{,}11$	$0,\!71\pm0,\!11$	$0{,}81 \pm 0{,}07$	$0,\!88\pm0,\!05$		
IAF	$0,\!05\pm0,\!01$	$0,17\pm0,11$	$0,\!57\pm0,\!49$	$1,\!81 \pm 1,\!04$	$3,\!83 \pm 1,\!11$	$5,\!17\pm0,\!92$	$5{,}42\pm0{,}59$		
Rn	$644,95 \pm 10,63$	$766,39 \pm 16,83$	$781,\!30 \pm 14,\!01$	$721,55 \pm 17,24$	$646,95 \pm 22,32$	$592,97 \pm 40,41$	$399,12\pm32,20$		
G	$95{,}70\pm0{,}53$	$107,\!05\pm1,\!82$	$98,\!42\pm5,\!42$	$97,77 \pm 14,49$	$79,05 \pm 17,78$	$51,\!07\pm11,\!74$	$23{,}70\pm6{,}30$		
Н	$138,65\pm3,09$	$54{,}98 \pm 2{,}82$	$89,\!29 \pm 4,\!75$	$117,\!47\pm4,\!60$	$161,\!05\pm7,\!54$	$62,\!45\pm1,\!94$	$61,\!91\pm2,\!28$		
LE	$410,60 \pm 12,18$	604,36 ± 19,25	593,59 ± 13,97	$506,32 \pm 20,19$	$406,85 \pm 19,57$	479,45 ± 30,92	$313,\!52\pm28,\!22$		
ETc	$5{,}11\pm0{,}15$	$6{,}55\pm0{,}21$	$6{,}71\pm0{,}16$	$5{,}96 \pm 0{,}23$	$5{,}30\pm0{,}25$	$6{,}70\pm0{,}43$	$5,\!14\pm0,\!46$		
AWD ₅									
Albedo	$0,\!15\pm0,\!01$	$0,12\pm0,01$	$0,\!11\pm0,\!02$	$0,\!16\pm0,\!02$	$0{,}21\pm0{,}03$	$0,\!24\pm0,\!04$	$0,\!23\pm0,\!04$		
Térmica	$29,38\pm0,35$	$31,\!85\pm0,\!46$	$29,\!64\pm0,\!41$	$32,52 \pm 1,21$	$31,21 \pm 1,09$	$28,\!48\pm0,\!40$	$26{,}82\pm0{,}40$		
NDVI	$0,\!18\pm0,\!04$	$0,32\pm0,10$	$0,56\pm0,11$	$0,71\pm0,07$	$0,74\pm0,08$	$0,\!80\pm0,\!07$	$0,85\pm0,05$		
IAF	$0,13\pm0,03$	$0,32\pm0,21$	$1,\!37\pm0,\!84$	$2,77 \pm 1,04$	$4,\!16\pm0,\!95$	$4{,}93\pm0{,}87$	$5{,}08 \pm 0{,}62$		
Rn	$651,63 \pm 13,05$	$748,85\pm9,61$	764,03 ± 14,94	$727,30 \pm 16,10$	$647,26 \pm 21,80$	$592,94 \pm 33,01$	$402,\!41 \pm 28,\!50$		
G	$94{,}08\pm0{,}89$	$109,44 \pm 2,87$	$91,\!72\pm9,\!40$	88,04 ± 13,38	$74,\!70\pm14,\!47$	$54,\!97 \pm 11,\!48$	$27{,}61\pm6{,}85$		
Н	$141,83\pm4,37$	$63{,}91 \pm 2{,}63$	$105,\!47\pm4,\!66$	$131,\!46\pm6,\!82$	$164,\!06\pm4,\!91$	$64{,}54\pm1{,}91$	$64,31\pm2,73$		
LE	$415,72 \pm 16,08$	$575,50 \pm 10,35$	566,83 ± 12,02	$507,81 \pm 15,26$	$408,49 \pm 17,95$	473,43 ± 23,70	$310,\!49\pm22,\!42$		
ETc	$5,\!17\pm0,\!20$	$6{,}25\pm0{,}11$	$6{,}42\pm0{,}14$	$5{,}98 \pm 0{,}18$	$5{,}33\pm0{,}23$	$6{,}62\pm0{,}33$	$5{,}10\pm0{,}37$		
AWD ₁₀									
Albedo	$0,\!15\pm0,\!01$	$0,10\pm0,01$	$0,\!10\pm0,\!01$	$0,\!16\pm0,\!02$	$0{,}21\pm0{,}03$	$0,\!24\pm0,\!03$	$0{,}21\pm0{,}04$		
Térmica	$30{,}22\pm0{,}48$	$31,\!40\pm0,\!45$	$29,21 \pm 0,25$	$32,\!92 \pm 1,\!25$	$31,\!36\pm1,\!14$	$28{,}22\pm0{,}33$	$26{,}48 \pm 0{,}25$		
NDVI	$0,\!14\pm0,\!04$	$0,\!25\pm0,\!07$	$0,\!45\pm0,\!10$	$0,\!70\pm0,\!07$	$0,73\pm0,08$	$0,\!80\pm0,\!05$	$0,83\pm0,06$		
IAF	$0,\!10\pm0,\!02$	$0,\!21\pm0,\!10$	$0,\!70\pm0,\!44$	$2,\!65\pm0,\!97$	$4,\!05\pm0,\!86$	$4,\!91\pm0,\!69$	$4,\!79\pm0,\!71$		
Rn	$646,88 \pm 13,20$	$769,34\pm8,50$	$785,\!68 \pm 12,\!19$	$730,\!84 \pm 15,\!06$	$644,83 \pm 20,45$	$589,88 \pm 29,50$	$413,\!39\pm28,\!25$		
G	$96,\!10\pm1,\!12$	$108,\!82\pm1,\!54$	$97,\!30 \pm 4,\!83$	$90,\!07 \pm 12,\!79$	$76,\!55\pm13,\!38$	$54{,}88 \pm 8{,}94$	$30,\!34\pm7,\!42$		
Н	$149,75\pm5,47$	$59,\!79 \pm 2,\!35$	$93,\!34\pm4,\!72$	$134,\!24\pm7,\!40$	$164{,}56\pm5{,}21$	$63,\!32\pm1,\!87$	$60,\!98 \pm 1,\!99$		
LE	$401,03 \pm 16,74$	$600,73 \pm 10,58$	$595,03 \pm 12,71$	$506{,}52\pm16{,}16$	$403,72 \pm 16,59$	$471,\!68 \pm 22,\!42$	$322,\!07\pm22,\!90$		
ETc	$4{,}99\pm0{,}21$	$6{,}52\pm0{,}11$	$6{,}73\pm0{,}14$	$5{,}96 \pm 0{,}19$	$5{,}26\pm0{,}22$	$6{,}59\pm0{,}31$	$5{,}28 \pm 0{,}38$		
AWD ₂₀									
Albedo	$0,\!15\pm0,\!01$	$0,11\pm0,01$	$0,\!10\pm0,\!01$	$0,\!15\pm0,\!02$	$0,\!23\pm0,\!02$	$0,\!21\pm0,\!03$	$0{,}21\pm0{,}04$		
Térmica	$31,\!02\pm0,\!31$	$32{,}52\pm0{,}55$	$29,99 \pm 0,38$	$33,\!96 \pm 1,\!34$	$35{,}07 \pm 1{,}83$	$28{,}93 \pm 0{,}59$	$26{,}52\pm0{,}32$		
NDVI	$0,\!11\pm0,\!03$	$0,\!21\pm0,\!06$	$0{,}41\pm0{,}09$	$0,\!62\pm0,\!09$	$0{,}56\pm0{,}12$	$0,\!70\pm0,\!09$	$0,\!81\pm0,\!06$		
IAF	$0{,}09\pm0{,}02$	$0,\!16\pm0,\!07$	$0,53\pm0,33$	$1,72\pm0,85$	$2{,}51\pm0{,}92$	$3,\!67\pm0,\!90$	$4,\!46\pm0,\!70$		
Rn	647,16 ± 13,41	$753,70\pm9,09$	$779,\!46\pm7,\!63$	736,83 ± 15,60	603,67 ± 19,28	613,06 ± 28,73	$416,02 \pm 26,37$		
G	$97,\!88 \pm 0,\!74$	$112,33 \pm 1,63$	$101,\!21\pm4,\!04$	$103,15 \pm 12,30$	$102,70 \pm 14,01$	$71,\!45\pm11,\!49$	$33,\!80\pm7,\!24$		
Н	$157,\!58\pm3,\!94$	$64{,}24\pm2{,}67$	$100,\!29\pm4,\!48$	$135{,}63\pm7{,}50$	$176,44 \pm 6,44$	$64,\!10\pm1,\!98$	$60,\!70\pm2,\!26$		
LE	391,70 ± 14,93	578,13 ± 11,79	$577,95\pm9,09$	$498,05 \pm 17,15$	324,53 ± 28,92	$477,52 \pm 19,16$	$321,52\pm21,51$		
ETc	$4,88\pm0,19$	$6{,}28\pm0{,}13$	$6{,}54\pm0{,}10$	$5,\!88\pm0,\!20$	$4{,}25\pm0{,}37$	$6{,}68 \pm 0{,}27$	$5{,}28 \pm 0{,}35$		

Tabla 11: Resumen de resultados de los componentes del balance energético, ET_c y otros resultados durante la fase vegetativa

		Fase repr		Fase de maduración		
	103 DDS	107 DDS	123 DDS	127 DDS	147 DDS	149 DDS
CF						
Albedo	$0,\!27\pm0,\!04$	$0,\!28\pm0,\!04$	$0,\!25\pm0,\!03$	$0,\!25\pm0,\!03$	$0,\!23\pm0,\!03$	$0,\!27\pm0,\!03$
Térmica	$28,\!30\pm0,\!23$	$24{,}71\pm0{,}46$	$25{,}62\pm0{,}79$	$27,\!55\pm0,\!25$	$30,\!08\pm0,\!71$	$27,\!78\pm0,\!61$
NDVI	$0,\!88\pm0,\!03$	$0,\!89\pm0,\!02$	$0,\!78\pm0,\!03$	$0,75\pm0,03$	$0,\!46\pm0,\!04$	$0,\!47\pm0,\!04$
IAF	$7{,}42 \pm 1{,}26$	$7,74 \pm 1,00$	$4,\!76\pm0,\!74$	$3{,}93 \pm 0{,}72$	$0,\!82\pm0,\!20$	$0,\!86\pm0,\!19$
Rn	$552,78 \pm 36,29$	$374,32 \pm 29,91$	$485,10 \pm 21,56$	499,86 ± 21,24	$509,76 \pm 22,25$	522,43 ± 23,92
G	$36{,}47 \pm 7{,}61$	$21,\!24 \pm 3,\!46$	$44,\!58\pm4,\!20$	$53{,}91 \pm 4{,}40$	$80{,}52\pm1{,}89$	$79,\!40 \pm 2,\!31$
Н	$70,62 \pm 1,59$	$65,57\pm3,74$	$84,\!49\pm5,\!80$	$57,\!54\pm2,\!99$	$72,\!49\pm3,\!98$	$140,30 \pm 3,34$
LE	445,69 ± 31,20	$287,52 \pm 29,10$	356,03 ± 24,37	388,41 ± 21,64	356,75 ± 21,92	302,73 ± 23,35
ETc	$6{,}97 \pm 0{,}49$	$4{,}28\pm0{,}43$	$4,\!49\pm0,\!31$	$4,\!60\pm0,\!26$	$3,\!97\pm0,\!24$	$5{,}01\pm0{,}39$
AWD ₅						
Albedo	$0,\!26\pm0,\!03$	$0,\!26\pm0,\!03$	$0,\!25\pm0,\!02$	$0,\!24\pm0,\!02$	$0,\!24\pm0,\!03$	$0,\!20\pm0,\!02$
Térmica	$28,\!43\pm0,\!42$	$24,\!82\pm0,\!50$	$26{,}24\pm0{,}64$	$28,\!24\pm0,\!29$	$29,\!79\pm0,\!58$	$30{,}51\pm0{,}76$
NDVI	$0,86\pm0,02$	$0,87\pm0,01$	$0,75\pm0,03$	$0,72\pm0,03$	$0,46 \pm 0,04$	$0,\!37\pm0,\!05$
IAF	$6{,}90\pm0{,}95$	$6{,}99 \pm 0{,}62$	$4,\!09\pm0,\!63$	$3,33\pm0,58$	$0,78\pm0,18$	$0,50\pm0,16$
Rn	$565,66 \pm 30,20$	386,01 ± 22,91	482,79 ± 19,80	$502,23 \pm 18,43$	$501,98 \pm 24,04$	$562,72 \pm 18,55$
G	$41,\!14\pm6,\!09$	$24,05 \pm 2,25$	$48,80 \pm 3,41$	$58,60 \pm 3,80$	$80,01 \pm 1,84$	$88,83 \pm 1,82$
Н	$69,91\pm0,86$	$65,\!48 \pm 3,\!61$	$87,56 \pm 5,20$	$64,74 \pm 3,50$	$70,76 \pm 2,74$	$142,35 \pm 4,83$
LE	454,62 ± 25,67	296,48 ± 23,04	346,43 ± 22,91	378,88 ± 19,57	351,21 ± 23,52	$331,54 \pm 20,46$
ETc	$7,11\pm0,40$	$4{,}41\pm0{,}34$	$4,37\pm0,29$	$4,\!49\pm0,\!23$	$3{,}91\pm0{,}26$	$5{,}50\pm0{,}34$
AWD ₁₀						
Albedo	$0,\!25\pm0,\!04$	$0,\!26\pm0,\!04$	$0,\!27\pm0,\!03$	$0,\!26\pm0,\!02$	$0,\!25\pm0,\!03$	$0{,}21\pm0{,}01$
Térmica	$28,02\pm0,32$	$24{,}68 \pm 0{,}49$	$26{,}27\pm0{,}70$	$28{,}20\pm0{,}39$	$30,04\pm0,63$	$32,\!86\pm1,\!26$
NDVI	$0,85\pm0,04$	$0,\!88\pm0,\!02$	$0,\!78\pm0,\!03$	$0,75\pm0,03$	$0,\!46\pm0,\!04$	$0,\!33\pm0,\!03$
IAF	$7{,}02 \pm 1{,}41$	$7{,}20\pm0{,}87$	$4{,}72\pm0{,}66$	$3,\!93\pm0,\!60$	$0,\!81\pm0,\!17$	$0,\!38\pm0,\!07$
Rn	$577,14\pm33,78$	$388,\!24\pm24,\!85$	$470,52\pm22,13$	$488,40 \pm 19,39$	$497,76 \pm 24,60$	539,36 ± 15,33
G	$42,\!73\pm8,\!86$	$22,\!80\pm3,\!10$	$45,31 \pm 3,77$	$54,\!56\pm3,\!99$	$80,\!12\pm1,\!75$	$93,\!91 \pm 2,\!35$
Н	$68{,}60 \pm 1{,}77$	$64,\!93 \pm 3,\!68$	$89,\!40 \pm 4,\!94$	$65{,}61 \pm 4{,}24$	$72,\!24\pm3,\!29$	$147,\!06\pm4,\!49$
LE	$465,81 \pm 27,52$	$300,51 \pm 24,18$	335,82 ± 24,27	368,23 ± 19,99	$345,41 \pm 23,71$	$298,40 \pm 19,12$
ETc	$7{,}29\pm0{,}43$	$4,\!47\pm0,\!36$	$4{,}24\pm0{,}30$	$4,\!36\pm0,\!24$	$3,85\pm0,26$	$\textbf{4,96} \pm \textbf{0,31}$
AWD ₂₀						
Albedo	$0,\!24\pm0,\!04$	$0,\!25\pm0,\!04$	$0,\!27\pm0,\!04$	$0,\!27\pm0,\!03$	$0,\!25\pm0,\!03$	$0{,}28\pm0{,}03$
Térmica	$28{,}01\pm0{,}29$	$24{,}71\pm0{,}60$	$26{,}63\pm0{,}67$	$\textbf{28,}\textbf{48} \pm \textbf{0,}\textbf{41}$	$31,\!28\pm0,\!78$	$30{,}47\pm0{,}70$
NDVI	$0,83 \pm 0,06$	$0,\!88\pm0,\!02$	$0,\!81\pm0,\!03$	$0,\!78\pm0,\!02$	$0,\!44\pm0,\!03$	$0,\!44 \pm 0,\!03$
IAF	$6{,}54 \pm 1{,}67$	$7{,}22\pm0{,}97$	$5{,}47\pm0{,}76$	$4,\!82\pm0,\!63$	$0,72\pm0,13$	$0,\!71\pm0,\!12$
Rn	580,39 ± 34,55	392,68 ± 25,68	466,68 ± 30,19	$477,28 \pm 23,17$	490,72 ± 22,39	$498,22 \pm 20,63$
G	$47,\!29\pm10,\!88$	23,11 ± 3,73	$41,\!86\pm3,\!95$	$49,43 \pm 3,94$	$82,\!89\pm2,\!00$	$85,\!25\pm2,\!01$
Н	$67,\!46 \pm 2,\!42$	64,98 ± 3,93	$93,\!95\pm5,\!69$	$71,\!00\pm4,\!88$	$77,\!13\pm3,\!71$	$147,\!83\pm3,\!46$
LE	465,64 ± 26,88	304,60 ± 22,86	330,87 ± 32,22	356,85 ± 23,52	330,69 ± 21,45	265,14 ± 19,40
ETc	$7{,}28 \pm 0{,}42$	$4{,}53\pm0{,}34$	$4,\!17\pm0,\!40$	$4,\!23\pm0,\!28$	$3{,}69 \pm 0{,}24$	$4,\!40\pm0,\!32$

Tabla 12: Resumen de resultados de los componentes del balance energético, ET_c y otros resultados durante la fase reproductiva y de maduración

De las tablas 11 y 12, los valores obtenidos para el NDVI de 0,02 a 0,93 está cerca con lo mencionado por Allen *et al.* (2013) de 0,10 a 0,96 y coinciden con Morton *et al.* (2013) de 0,02 a 0,94.

La correlación no paramétrica de Kruskal-Wallis y la prueba estadística de Dunn muestran que los efectos de los regímenes de riego influyeron significativamente (p < 0,05) la evapotranspiración del cultivo (tablas 11 y 12). Para ET_C, se observan diferencias significativas entre los tratamientos (Figura 24). Los valores oscilan entre 5,24 mm d⁻¹ para el riego por AWD₂₀ a 5,45 mm d⁻¹ bajo el riego por inundación continua (CF). El régimen de riego AWD redujo la evapotranspiración del cultivo, disminuyendo a un 99,8%, 99,4% y 96,1% en AWD₅, AWD₁₀ y AWD₂₀, respectivamente.

Figura 24: Correlación no paramétrica de Kruskal-Wallis y prueba estadística de Dunn entre regímenes de riego basados en la ET_C

Nota: (*) indica diferencias significativas entre tratamientos (p < 0.05)

Del análisis obtenido de la prueba estadística de Dunn, se realizó la relación lineal entre la técnica de inundación continua (CF) y la técnica de riego AWD (AWD₅, AWD₁₀ y AWD₂₀), Figura 25. Se estimo el R² para cada AWD, las cuales fueron 0,943, 0,967 y 0,897 para AWD₅, AWD₁₀ y AWD₂₀, respectivamente. AWD₂₀, fue el tratamiento con mas diferencia en los resultados de ET_C respecto al riego por inundación continua (CF) debido a que este tratamiento fue el de corte de riego más extremo respecto a los demás (AWD₅ y AWD₁₀).

Figura 25: Relación de la evapotranspiración (ET_c) por balance de energía entre la técnica de inundación continua (CF) y la técnica de riego AWD (AWD₅, AWD₁₀ y AWD₂₀)

4.3.2. Comparación entre ET_c por balance de energía y por balance hídrico

La ecuación entre ET_C por balance de energía y por balance hídrico es $ETc_{(B.\ hidrico)} = 0,502\ ETc_{(B.\ energía)} + 2,547$, la cual presenta un coeficiente de determinación (R²) de 0,703 y error cuadrático medio (RMSE) de 0,380 (Figura 26).

Figura 26: Relación entre ET_c por balance de energía (método METRIC) y balance hídrico (AquaCrop)

El grupo de datos no incluidos a la obtención de la ecuación (Figura 26), pertenecen a la fase de máximo macollamiento e inicios de floración. Estos mismos corresponden a los valores bajos de ET_{c} por balance hídrico en valores mayores a 6,25 mm d⁻¹ por balance de energía. Entonces, no se está valorando correctamente los datos del ET_{c} por balance hídrico, posiblemente sea por el elevado nivel freático generado por el aporte de la napa freática.

La Tabla 13 muestra la lámina de agua que se requirió para cada técnica de riego (CF, AWD₅, AWD₁₀, AWD₂₀), así mismo se dan a conocer valores de precipitación, percolación, evaporación, transpiración y evapotranspiración; resultados que también fueron obtenidos del modelo AquaCrop, previamente parametrizado.

Técnica	Precipitación	Riego	Infiltración	Percolación	Evaporación	Transpiración	ETc
de riego	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
CF	164,6	1997	2161,6	1723,3	398,5	340,4	738,9
AWD ₅	164,6	1428	1592,6	1180,9	408,7	313,9	722,6
AWD10	164,6	1434	1598,6	1206,9	424,1	293,2	717,3
AWD ₂₀	164,6	1447	1611,6	1330,7	485,1	244,8	729,9

Tabla 13: Componentes del balance hídrico para cada técnica de riego (CF y AWD)

El riego tradicional (CF) ha requerido más agua (1997 mm) respecto a la técnica AWD, debido a la ET_C y a pérdidas por percolación (738,9 y 2161,6 mm, respectivamente). Así mismo, al analizar la técnica de riego AWD; AWD₂₀ es la que ha requerido más lámina de agua (1447 mm) con respecto a AWD₅ y AWD₁₀ (1428 y 1434 mm). Esto se debe al aporte de capilaridad que compensa a las zonas de raíces, generando que el suelo permanezca saturado, así como también de la pérdida por percolación de 1330,7 mm.

4.3.3. Eficiencia de uso de agua

En este estudio, el consumo de agua osciló entre 14280 a 19970 m³ ha⁻¹ (Tabla 14), siendo el de mayor consumo, el riego tradicional (CF) con 19970 m³ ha⁻¹. El rango de rendimiento fue de 15239,41 a 18015 kg ha⁻¹ (Tabla 14), siendo AWD₁₀ el de mejor rendimiento (17642,02 kg ha⁻¹) respecto a la técnica de riego AWD.
Técnica de riego	Riego	Rendimiento	Eficiencia de uso de agua
	m ³ ha ⁻¹	kg ha ⁻¹	(kg m ⁻³)
CF	19970	18015,00	0,902
AWD ₅	14280	15239,41	1,067
AWD ₁₀	14340	17642,02	1,230
AWD ₂₀	14470	16600,71	1,147

Tabla 14: Eficiencia de uso de agua para cada técnica de riego (CF y AWD)

El consumo de agua coincide con lo mencionado por la Autoridad Nacional del Agua (ANA), la cantidad de agua utilizada para el cultivo de arroz en las costas norte y sur varía entre 14000 y 24000 m³ ha⁻¹.

De la Tabla 14, se tiene que hay una eficiencia de uso de agua máxima de 1,230 kg m⁻³ que corresponde a la técnica de riego AWD₁₀ que resulta beneficioso. Además, se elaboró la Tabla 15 para analizar el beneficio neto en cada manejo de riego (CF, AWD₅, AWD₁₀, AWD₂₀). El riego por inundación continua (CF) no se necesitó controlar las malezas (*Butachlor* y *Florpyrauxifen-benzil*) debido a que se controlaba por el tipo de riego aplicado.

		Técnica	de riego	
Variables	CF	AWD ₅	AWD ₁₀	AWD ₂₀
Rendimiento (kg ha ⁻¹)	18015,00	15239,41	17642,02	16600,71
Beneficio bruto (soles ha ⁻¹) ⁽¹⁾	24140,10	20420,81	23640,31	22244,96
Costo de producción	13000	13000	13000	13000
Costos variables:				
Pre emergente: <i>Butachlor</i> (soles ha ⁻¹) ⁽²⁾	-	131,40	136,51	146,00
Pos emergente: <i>Florpyrauxifen-benzil</i> (soles ha ⁻¹) ⁽³⁾	-	252,00	261,80	280,00
Agua temporal (soles ha ⁻¹) ⁽⁴⁾	835,55	597,48	599,99	605,43
Costo total (soles ha ⁻¹)	13835,55	13980.88	13998.30	14031,43
Beneficio neto (soles ha ⁻¹)	10304,55	6439,93	9642,01	8213,53

Tabla 15: Beneficio neto para cada técnica de riego (CF y AWD)

(1) Precio de arroz cáscara: 1,34 soles kg⁻¹ (agroperu.pe)

(2) Butachlor: 73 soles por bolsa de 25 kg (50 kg ha⁻¹)

(3) Florpyrauxifen-benzil: 280 soles por litro (1litro ha⁻¹)

(4) Agua temporal: 0,0418 soles m⁻³ (comisión de usuarios de agua, Lambayeque)

De los beneficios netos (Tabla 15), indica que la técnica de riego por CF (riego tradicional), es la que alcanza mayor beneficio neto en comparación a la técnica de riego AWD. En relación a la técnica de riego AWD, al comparar AWD₅, AWD₁₀ y AWD₂₀, el mayor beneficio neto lo alcanza AWD₁₀ con 9642,01 soles ha⁻¹ versus AWD₅ y AWD₂₀ con 6439,93 y 8213,53 soles ha⁻¹, respectivamente. Esto se debe a que el rendimiento en AWD₁₀ de 17642,02 kg ha⁻¹ es mejor, lo que resulta económicamente recomendable.

4.3.4. ET_c por balance energía y por balance hídrico en La Molina

La selección del píxel de temperatura alta y baja con valores de NDVI, albedo, temperatura y las constantes de calibración conocidas como "a y b" están en el Anexo 8. Así mismo, los resultados de los componentes del balance energético, ET_c y otros resultados durante la fase vegetativa, reproductiva y de maduración de cultivo para La Molina se verifica en el Anexo 9.

La Figura 27 representa la variación espacial de los valores de la ETc, obtenidos para la Molina, según información fenológica del cultivo que indican siete vuelos del UAV: fase vegetativa (76 y 94 DDS), fase reproductiva (101, 108, 125 y 136 DDS) y fase de maduración (151 DDS). Del Anexo 10 al Anexo 13 se muestran las figuras que representan a las variaciones espaciales de valores que corresponden a los componentes de la evapotranspiración del cultivo (Rn, H, G y LE).

Figura 27: Variación espacial de la ET_c, según fonología del cultivo

En la Figura 26, se tiene valores de ET_{C} con un rango de 1,5 a 9,2 mm d⁻¹. Estos valores están cercanos al rango indicado por Quille *et al.* (2021) de 1,65 a 7,48 mm d⁻¹, donde su lugar de estudio corresponde a las mismas condiciones climáticas que se realizó el presente trabajo. Se halló otra relación entre la ET_{c} por balance de energía y por balance hídrico para La Molina (Figura 28), la cual fue encontrada de manera similar a lo realizado para Chiclayo. A partir de las variables simuladas en AquaCrop, se determinó la evapotranspiración hídrica para obtener la ecuación de evapotranspiración de $ETc_{(B. hídrico)} = 0,793 ETc_{(B. energía)} + 0,539 \text{ con } \text{R}^2 \text{ y} \text{ RMSE}$ de 0,822 y 0,522, respectivamente.

Figura 28: Relación entre ET_c por balance de energía (método METRIC) y balance hídrico (AquaCrop) para La Molina

De la Figura 26 y 28, para La Molina (Figura 28) el nivel freático si responde mejor por ello es que se muestra una mejor relación entre ET_{c} por balance de energía y por balance hídrico. Existe una variación en los resultados debido a las diferentes ubicaciones de los estudios, influenciadas por sus aspectos climáticos. En Chiclayo, se observaron temperaturas más altas y mayores precipitaciones, lo cual tuvo un impacto significativo en los resultados de la evapotranspiración en comparación con La Molina. Así mismo, la diferencia en los días después de la siembra (DDS) en que se realizaron los monitores, influyeron en la calibración térmica del UAV.

V. CONCLUSIONES

- Se requirió valores del agua de riego de 19970, 14280, 14340 y 14470 m³ ha⁻¹ para CF, AWD₅, AWD₁₀ y AWD₂₀, respectivamente. Lo que representa un ahorro de agua del riego de 28,49, 28,19 y 27,54%, respectivamente, respecto al riego CF. Además, se presentó una reducción del rendimiento de 15,41, 2,07 y 7,85% para AWD₅, AWD₁₀ y AWD₂₀, respectivamente, que se traduce en un incremento de 18,30, 36,38 y 27,18% en la EUA de agua para AWD₅, AWD₁₀ y AWD₂₀, respectivamente, respecto al riego CF. Resultando AWD₁₀ como mejor alternativa para la EUA, debido a que presenta un ahorro de agua de riego del 28,19% y una reducción del rendimiento de 2,07%, respecto al riego CF.
- 2. Se encontró la relación entre IAF estimado por método extractivo y NDVI medido en campo, mediante una ecuación exponencial de correlación ($Y_{IAF} = 0,0669e^{4,9257*NDVI}$) cuyo R² es de 0,513. A fin de obtener el IAF espacial que nos llevó a calcular la ET_c. El IAF espacial tuvo el rango de valores de 0,05 a 7,74, de los cuales los valores más bajos son por pixeles de suelo desnudo.
- 3. Se determinó los componentes del balance de energía para el riego CF, donde los valores fueron entre 291,75 a 621,09 W m⁻² para Rn, entre 12,90 a 125,37 W m⁻² para G, entre 40,12 a 188,55 W m⁻² para H y entre 187,76 a 640,78 W m⁻² para LE. Así mismo se hizo para el riego AWD, donde los valores fueron entre 310,27 a 819,85 W m⁻² para Rn, entre 14,67 a 133,80 W m⁻² para G, entre 50,17 a 209,08 W m⁻² para H y entre 187,76 a 640,78 W m⁻² para LE. Lo que se concluye que el riego AWD tuvo un aumento de 6 a 32% para Rn, de 7 a 15% para G y de 11 a 25% para H, respecto al riego CF.
- 4. Se determinó la ET_c por balance de energía (modelo METRIC) para los tratamientos CF, AWD₅, AWD₁₀ y AWD₂₀, cuyos resultados promedios fueron de 5,45, 5,44, 5,42 y 5,24 mm d⁻¹, respectivamente. Por lo que la ET_c por balance de energía tuvo una reducción de 0,18, 0,41 y 3,81% para AWD₅, AWD₁₀ y AWD₂₀, respectivamente, respecto al riego CF.

VI. RECOMENDACIONES

- Monitorear el nivel freático durante el desarrollo del cultivo (la variación temporal) a fin de evaluar el ascenso del nivel freático y el aporte de agua en las últimas fases del cultivo.
- Realizar mayor colecta de información del IAF (método extractivo) a fin de representar mejor los valores del IAF espacial y dar mayor robustez al estudio.
- 3. Monitorear la aparición de malezas en el riego AWD debido a que, en el riego tradicional o inundado (CF), el agua controla la aparición de malezas.
- 4. Implementar la colecta de información con la aplicación de sensores proximales, termistores o termocuplas a fin de tener mayor calibración con la información del UAV. Así mismo, las colectas de información en campo deben ser en el mismo tiempo de vuelo para mayor exactitud de la información térmica.
- Implementar un control automatizado del nivel de agua para técnicas de riego con ahorro de agua, con inversiones accesibles donde puedan ser aplicadas por pequeños agricultores a fin de tener una mejor gestión del agua de riego.
- Realizar la valorización económica del impacto ambiental por el uso de la tecnología de riego AWD. Por ejemplo, el beneficio por el menor riesgo de salinización del suelo agrícola y menor emisión de gases de efecto invernadero.
- Realizar el experimento en otras condiciones climáticas como por ejemplo en otra campaña (agosto-diciembre) en el distrito de Chongoyape, así como también, en arrozales de Tumbes, Piura a fin de dar mayor robustez a los estudios.

VII. BIBLIOGRAFÍA

- Abdul, S., Kyei, N., Agyare, A. y Dogbe, W. (2018). Evaluación del efecto del riego en el rendimiento del arroz con cáscara mediante la aplicación del modelo AquaCrop en el norte de Ghana. *Springer, Singapur*. 93-116.
- Acharya, B. & Sharma, V. (2021). Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region. *In Remote Sensing*. 13(9), 1822.
- Alamo, R. y Toro, H. (2022). Determinación de la evapotranspiración del cultivo de arroz aplicando el modelo METRIC con información de un VANT en Chongoyape, Lambayeque (Tesis de pregrado). Universidad Pedro Ruiz Gallo, Lambayeque, Perú. https://repositorio.unprg.edu.pe/handle/20.500.12893/10666
- Ali, M., Savin, I., Poddubskiy, A., Abouelghar, M., Saleh, N., Abutaleb, K. y Dokukin, P. (2021). Método integrado para el seguimiento del cultivo de arroz utilizando datos de Sentinel-2 y el índice de área foliar. *Revista egipcia de teledetección y ciencia espacial*, 24 (3), 431-441.
- Allen, RG., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., Kelly, C. & Trezza, R. (2013). Automated calibration of the METRIC-Landsat evapotranspiration process. *Journal of the American Water Resources Association*. 49(3), 563–576. <u>https://doi.org/10.1111/jawr.12056</u>
- Allen, R.G., Tasumi, M. y Trezza, R. (2007). Balance de energía basado en satélites para mapear la evapotranspiración con el modelo de calibración internalizada (METRIC). *Journal of Irrigation and Drainage Engineering*. 133(4), 380-394. <u>https://doi.org/10.1061/(ASCE)0733-9437(2007)</u>
- Allen, R., Pereira, S., Raes, D. y Smith, M. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. FAO Riego y Drenaje. 56, 297.
- Allen, R., Tasumi, M., Trezza, R., Bastiaanssen, W. & Waters, R. (2002). Manual for Surface Energy Balance Algorithms for Land. 1-98.

- Bastiaanssen, W.G.M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. *Journal of Hydrology*. 229 (1-2): 87-100.
- Bastiaanssen, W.G.M., Molden, D.J. & Makin, I. (2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Water Manag Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management. 46, 137-155.
- Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J.F., Roerink, G.J. & van der Wal, T. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). *Journal of Hydrology* 212-213(JANUARY):213-229.
- Bastiaanssen, W.G.M. (1995). Regionalization of surface flux densities and moisture indicators in composite terrain: : a remote sensing approach under clear skies in Mediterranean climates (Doctoral Thesis). Wageningen Agricultural University, Wageningen, Nederland. 273 p.
- Butler, P.F. y Prescott, J.A. (1955). Evapotranspiración de trigo y pasto en relación con la humedad disponible. *Revista Australiana de Investigación Agrícola*. 6, 52-61. <u>https://doi.org/10.1071/AR9550052</u>
- Carvalho, S., Van der Putten, W.H. & Hol, W.H.G. (2016). The potential of hyperspectral patterns of winter wheat to detect changes in soil microbial community composition. *Frontiers in Plant Science*, 7, 194453. <u>https://doi.org/10.3389/fpls.2016.00759</u>
- Chu, R., Li, M., Shen, S., Islam, ARM, Cao, W., Tao, S. y Gao, P. (2017). Cambios en evapotranspiración de referencia y sus factores contribuyentes en Jiangsu, una importante provincia económica y agrícola del este de China. *Water*. 9 (7), 486. https://doi.org/10.3390/w9070486
- Dong, Q., Wang, W., Shao, Q., Xing, W., Ding, Y. & Fu, J. (2020). The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections. *Int. J. Climatol.* 40 (1), 235-254. https://doi.org/10.1002/joc.6206
- Durán, F. (2017). Balance de energía basado en satélites para mapear la evapotranspiración con el modelo de calibración internalizada (METRIC). Journal of Irrigation and Drainage Engineering. 133(4), 380-394.
 https://doi.org/10.1061/(ASCE)07339437(2007)133:4(380)
- Elsadek, E., Zhang, K., Mousa, A., Ezaz, G.T., Tola, T.L., Shaghaleh, H., Hamad, A.A.A. y Alhaj Hamoud, Y. (2023). Estudio sobre el balance hídrico en el campo del arroz de siembra directa con diversos regímenes de riego en condiciones climáticas áridas en

Egipto utilizando el modelo AquaCrop. *Agronomía*, 13, 609. https://doi.org/10.3390/agronomy13020609

- Fan, L., Gao, Y., Brück, H. & Bernhofer, Ch. (2009). Investigating the relationship between NDVI and IAF in semi-arid grassland in Inner Mongolia using in-situ measurements. *Theoretical and Applied Climatology*, 95(1-2), 151-156.
- Ferreira, S., Sánchez, J.M. & Gonçalves, J.M. (2023). A Remote-Sensing-Assisted Estimation of Water Use in Rice Paddy Fields: A Study on Lis Valley, Portugal. *Agronomy*, 13(5), 1357. https://doi.org/10.3390/agronomy13051357
- Gao, X., Sun, M., Zhao, Q., Wu, P., Zhao, X., Pan, W., Wang, Y. (2017). Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. *Science of The Total Environment*, 579, 1550–1559. https://doi.org/10.1016/j.scitotenv.2016.11.163
- Gong, Y., Yang, K., Lin, Z., Fang, S., Wu, X., Zhu, R. & Peng, Y. (2021). Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season. *Plant Methods*, 17(1), 1-16.
- Gordillo, V.M., Flores, H., Tijerina, L. y Arteaga, R. (2014). Estimación de la evapotranspiración utilizando un balance de energía e imágenes satelitales. *Revista mexicana de ciencias agrícolas*, 5(1), 143-149. http://www.scielo.org.mx/pdf/remexca/v5n1/v5n1a12.pdf
- Guo, D., Westra, S. y Maier, HR. (2017). Sensibilidad de la evapotranspiración potencial a cambios en las variables climáticas para diferentes zonas climáticas australianas, Hydrol. Sistema Tierra Science, 21, 2107–2126. <u>https://doi.org/10.5194/hess-21-2107-2017</u>
- Han, M., Zhan, H., De Jonge, K.C., Comas, L.C. & Gleason, S. (2018). Comparison of Three Crop Water Stress Index Models with Sap Flow Measurements in Maize. *Agricultural Water Management*, 203: 366-75.
- Hussain, S., Mubeen, M., Nasim, W., Fahad, S., Ali, M., Ehsan, M.A. & Raza, A. (2023). Investigation of irrigation water requirement and evapotranspiration for water resource management in Southern Punjab, Pakistan. *Sustainability*, 15(3), 1768. <u>https://doi.org/10.3390/su15031768</u>
- Instituto Nacional de Estadística e Informática (INEI). (2022). Producción de principales productos agroindustriales. Recuperado de https://www.inei.gob.pe/estadisticas/indice-tematico/economia/

- Kra, J.L., Adahi, M. B., Konan-Waidhet, B.A., N'Guessan, J.Y.K., Koné, J.D. & Assidjo, E.N. (2023). Estimation of the Actual Evapotranspiration by the SEBAL Method in the Irrigated Rice Perimeter of Zatta (Yamoussoukro-Côte d'Ivoire). *Journal of Water Resource and Protection*, 15(10), 539-556. https://doi.org/10.4236/jwarp.2023.1510030
- Kumar, A., Nayak, A.K., Hanjagi, P.S., Kumari, K., Vijayakumar, S., Mohanty, S., Tripathi, R. & Panneerselvam, P. (2021). Submergence stress in rice: Adaptive mechanisms, coping strategies and future research needs. *Environmental and Experimental Botany*, 104448. <u>https://doi.org/10.1016/j.envexpbot.2021.104448</u>.
- Lee, Y. & Kim, S. (2016). The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. *Remote Sensing*. 8(12), 983.
- Lin, L., Zhang, B. & Xiong, LH. (2012). Evaluación del rendimiento del arroz con cáscara al riego y manejo del suelo con la aplicación del modelo AquaCrop. Sociedad Estadounidense de Ingenieros Agrícolas y Biológicos. 55: 839-848.
- Liu, Y., Zhang, S., Zhang, J., Tang, L., Bai, Y. (2021). Assessment and comparison of six machine learning models in estimating evapotranspiration over croplands using remote sensing and meteorological factors. *Remote Sensing*. 13 (19), 3838. <u>https://doi.org/10.3390/rs13193838</u>
- Loor, S., Kimberly, M., Jirón, Z. y Jofiel, R. (2017). Comparación de la eficacia, días control y selectividad de seis herbicidas para el cultivo de arroz (Oryza sativa L.) bajo riego por goteo (Tesis de pregrado). Escuela Agrícola Panamericana, Zamorano, Honduras. https://bdigital.zamorano.edu/handle/11036/6108
- Machaca, R., Pino, E., Ramos, L., Quille, J. y Torres, A. (2022). Estimación de la evapotranspiración con fines de riego en tiempo real de un olivar a partir de imágenes de un drone en zonas áridas, caso La Yarada, Tacna, Perú. *Idesia (Arica)*. 40(2), 55-65. https://dx.doi.org/10.4067/S0718-34292022000200055
- Moguel, E., Tijerina, L., Quevedo, A., Crespo, G. y Haro, G. (2001). Evapotranspiración y balance de energía en el cultivo de alfalfa. *Agro ciencia*, vol. 35(1), 13-21. https://www.redalyc.org/articulo.oa?id=30235102
- Montibeller, A.G. (2017). Estimatins energy fluxes and evapotranspiration of corn and soybean with an unmanned aircraft system in Ames, Lowa. Dissertations and Theses, University of Northern Lowa.

- Morton, C.G., Huntington, J.L., Pohll, G.M., Allen, R.G., Mcgwire, K.C. & Bassett, S. D. (2013). Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. *Journal of the American Water Resources Association*, 49(3), 549-562.
- Nassar, A., Torres, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., Nieto, H., Alsina, M. M., White, W., McKee, L., Coopmans, C., Sanchez, L. & Dokoozlian, N. (2021).
 Assessing daily evapotranspiration methodologies from one- time- of- day suas and ec information in the grapex project. *Remote Sensing*, 13(15), 2887.
- Neira, E., Ramos, L., & Razuri, L. (2020). Coeficiente de cosecha (Kc) de arroz a partir de lisímetro de drenaje en La Molina, Lima-Perú. *IDESIA (Chile)*. <u>http://dx.doi.org/10.4067/S0718-34292020000200049</u>
- Nie, T., Tang, Y., Jiao, Y., Li, N., Wang, T., Du, C., Zhang, Z., Chen, P., Li, T.Sun, Z. & Zhu, S. (2022). Efectos de los programas de riego sobre el rendimiento del maíz y la eficiencia del uso del agua en escenarios climáticos futuros en la provincia de Heilongjiang basados en el modelo AquaCrop. *Agronomía*, 12, 810. https://doi.org/10.3390/agronomy12040810
- Niu, H., Hollenbeck, D., Zhao, T., Wang, D. & Chen, Y. (2020). Evapotranspiration Estimation with Small UAVs in Precision Agriculture. Sensors, 20, 6427. <u>https://doi.org/10.3390/s20226427</u>
- Nuñez, C.M. (2009). Modelación del flujo de calor del suelo y aplicación de algoritmo de cálculo de evapotranspiración mediante teledetección (Tesis de Maestría). Pontificia Universidad Católica de Chile, Chile. 152 p.
- Ortega, S., Ortega, S., Poblete, T., Kilic, A., Allen, R., Poblete, C., Ahumada, L., Zuñiga, M. & Sepúlveda, D. (2016). Estimation of energy balance components over a dripirrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based Unmanned Aerial Vehicle (UAV). *Remote Sensing*, 8(8), 1-18. <u>https://doi.org/10.3390/rs8080638</u>
- Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, JJ, Peres, E. y Morais, R. (2017). UAS, sensores y procesamiento de datos en agroforestería: una revisión hacia aplicaciones prácticas. *Revista internacional de teledetección*, 38 (8-10), 2349-2391.
- Pan, J., Cui, K., Wei, D., Huang, J., Xiang, J. & Nie, L. (2011). Relationships of nonstructural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. *Physiologia Plantarum*, 141(4), 321-331. <u>https://doi.org/10.1111/j.1399-3054.2010.01441.x</u>

- Pan, S., Chen, G., Ren, W., Dangal, S.R., Banger, K., Yang, J., Tao, B. & Tian, H. (2018). Responses of global terrestrial water use efficiency to climate change and rising atmospheric CO₂ concentration in the twenty-first century. *Int. J. Digit. Earth* 11 (6), 558–582. <u>https://doi.org/10.1080/17538947.2017.1337818</u>
- Pérez, E.H. (1967). Un paso de C. Thornthwaite hacia una clasificación racional del clima. *Revista Ingeniería hidráulica, México*. <u>https://dialnet.unirioja.es</u>
- Pintér, K. & Nagy, Z. (2022). Building a UAV Based System to Acquire High Spatial Resolution Thermal Imagery for Energy Balance Modelling. Sensors, 22, 3251. <u>https://doi.org/10.3390/s22093251</u>
- Porras-Jorge, R., Ramos-Fernández, L., Ojeda-Bustamante, W. & Ontiveros-Capurata, R. (2020). Performance assessment of the AquaCrop model to estimate rice yields under alternate wetting and drying irrigation in the coast of Peru. *Scientia Agropecuaria*, 11(3), 309-321. <u>https://doi.org/10.17268/sci.agropecu.2020.03.03</u>
- Quille, J., Ramos, F., Ontiveros, R., Ojeda, W. y Jorge, R. (2019). Relación de la altura de planta del cultivo de arroz bajo estrés hídrico con índices de vegetación obtenidas de imágenes de dron. *Colegio Mexicano de Ingenieros en Irrigación (COMEII)*. <u>https://www.riego.mx/congresos/comeii2019/docs/ponencias/extenso/COMEII-19043.pdf</u>
- Quille, J., Ramos, L. y Ontiveros, R.E. (2021). Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes RPA. *Asociación Española de Teledetección*, 16. <u>https://doi.org/10.4995/raet.2021.136999</u>
- Quispe, D. (2021). Estimación de la evapotranspiración del cultivo de arroz mediante la aplicación de los modelos SEBAL y METRIC usando imágenes multiespectrales. (Tesis de pregrado). Universidad Nacional Agraria la Molina, Lima, Perú. https://repositorio.lamolina.edu.pe/handle/20.500.12996/5169
- Raes, D. (2017). Manuales de capacitación de AquaCrop: Libro I: Comprensión de AquaCrop. Roma: Organización de las Naciones Unidas para la Alimentación y la Agricultura, pág. 50.
- Ramos Fernández, L., Quispe Tito, D., Altamirano Gutiérrez, L., Cruz Grimaldo, C.L., Quille Mamani, J.A., Carbonell Rivera, J.P., Torralba, I. y Ángel Ruiz, L. (2024). Estimación de la evapotranspiración a partir de imágenes de alta resolución de VANT para sistemas de riego en arrozales de la costa norte de Perú. *In Scientia Agropecuaria*. Universidad Nacional de Trujillo. Facultad de Ciencia Agropecuarias. <u>https://doi.org/10.17268/sci.agropecu.2024.001</u>

- Rayo, A.M. y Londoño, E.A. (2014). Estimación de la evapotranspiración en cultivos de arroz con sensores remotos (Tesis de pregrado). Universidad del Valle, Santiago de Cali, Colombia.
- Río, O., Espinoza, T., Sáenz, A. y Córtes, F. (2019). Levantamientos Topográficos con Drones. *Revista Ciencia, Ingeniería y Desarrollo Tecnológico Lerdo*, 1(5), 15-19.
- Sánchez, M. (2001). Métodos de estimación de evapotranspiración utilizados en Chile. *Revista de Geografía Norte Grande*, N° 28, p. 3-10.
- Santos, C., Lorite, I., Tasumi, M., Allen, R. & Fereres, E. (2010). Performance assessment of an irrigation scheme using indicators determined with remote sensing techniques. *Irrigation Science*, 28, 461-477.
- Sawadogo, A., Kouadio, L., Traoré, F., Zwart, S. J., Hessels, T. & Gündoğdu, K. S. (2020). Spatiotemporal assessment of irrigation performance of the Kou Valley irrigation scheme in Burkina Faso using satellite remote sensing-derived indicators. *ISPRS international journal of geo-information*, 9(8), 484. <u>https://doi.org/10.3390/ijgi9080484</u>
- Serrano Reyes, J., Jiménez, J.U., Quirós-McIntire, E.I., Sanchez-Galan, J.E. Fábrega, J.R. (2023). Comparación de dos métodos de estimación del índice de área foliar del arroz (*Oryza sativa L.*) utilizando mediciones espectrorradiométricas en el campo e imágenes satelitales multiespectrales. *AgriEngineering*, 5 (2), 965-981.
- SENAMHI. (2023). Boletín Climático Nacional (marzo 2023). Servicio Nacional de Meteorología e Hidrología del Perú.
- Soto, P.J.L. (2013). Contraste de hipótesis. Comparación de más de dos medias independientes mediante pruebas no paramétricas: Prueba de Kruskal-Wallis. *Revista Enfermería del Trabajo*, 3(4), 166-171.
- Surendran, U., Raja, P., Jayakumar, M. & Subramoniam, S.R. (2021). Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review. J. Clean. Prod, 309, 127272.
- Vieira Passos, M.L., Zambrzycki, G.C. & Pereira, R.S. (2016). Balango hídrico e classificagáo climática para uma determinada regiáo de Chapadinha-MA. *Revista Brasileira de Agricultura Irrigada*, 10 (4): 758-766.
- Vijayakumar, S., Kumar, D., Ramesh, K., Jinger, D. & Rajpoot, S.K. (2022). Effect of Potassium fertilization on water productivity, irrigation water use efficiency, and grain quality under direct seeded rice-wheat cropping system. *J. Plant Nutr*, 45: 2023–2038.

Walter, I.A., Allen, R.G., Elliott, R., Jensen, M.E., Itenfisu, D., Mecham, B., Howell, T.A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R.H., Wright, J.L. & Martin, D. (2001). ASCE's standardized reference evapotranspiration equation. Watershed Management and Operations Management, 2000:1-11.

VIII. ANEXOS

Anexo 1: Panel fotográfico de la visita de campo a las parcelas experimentales instaladas en la EEA "Vista Florida" del INIA -Chiclayo

a. Parcelas experimentales instaladas en la EEA, "Vista Florida" del INIA - Chiclayo.

c. Instalación de telas a las coberturas.

e. Preparación para el inicio del vuelo.

b. Captación de información de la estación portátil ATMOS 41.

d. Preparación de las coberturas para la toma de datos con el radiómetro.

d. Dron Matrix 300 en campo, Chiclavo.

e. Vuelo del dron Matrix 300.

f. Ultimo día de monitoreo (151 DDS).

Anexo 2: Panel fotográfico de la visita de campo a las pozas experimentales instaladas en el AER de la UNALM - La Molina

a. Toma de temperatura en La Molina.

c. Aplicación de insecticidas en los arrozales de La Molina.

b. Preparación para iniciar el monitoreo con el UAV.

d. Cosecha de arroz en La Molina.

Anexo 4: Data meteorológica de las 24 horas de cada día de vuelo realizado

	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
11-Feb	C°	%	m/s	hPa	W/m^2
	22.973333	83.183333	1.6365	1004.8333	0
	23.078333	81.556667	1.313	1004	0
	22.84	84.35	2.0913333	1003.8333	0
	22.97	84.216667	1.0436667	1003	0
	22.763333	86.366667	0.5315	1003.5	0
	22.358333	89.183333	0.8326667	1004	0
	22.391667	89.883333	1.4788333	1004	12.15
	22.501667	90.833333	1.2535	1005	95.35
	22.458333	83.771667	1.3531667	963.71667	201.95
	24.706667	78.558333	1.9363333	1005.6667	289.71667
	25.868333	71.403333	1.4261667	1005	420.26667
	26.93	65.993333	1.7681667	1005	408.38333
	27.118333	65.95	2.2718333	1004.3333	422.91667
	27.811667	65.405	3.384	1003.3333	838.45
	28.061667	62.256667	3.4108333	1002.5	498.15
	26.876667	66.636667	4.385	1002	290.55
	26.105	69.741667	4.266	1001.1667	216.4
	25.92	69.91	4.0245	1001.1667	111.6
	25.361667	72.606667	3.886	1002.3333	24.75
	24.613333	75.451667	3.144	1003.1667	0
	24.425	76.663333	1.9221667	1004	0
	24.121667	80.446667	1.9215	1004.5	0
	23.988333	82.083333	1.5015	1005	0
	23.628	85.42	1.179	1004.6	0
	Temperatur	Humedad	Velocidad	Presión	Radiación
	Temperatur a del aire	Humedad Relativa	Velocidad del viento	Presión Atmosférica	Radiación Solar
	Temperatur a del aire C°	Humedad Relativa %	Velocidad del viento m/s	Presión Atmosférica hPa	Radiación Solar W/m^2
6-Mar	Temperatur a del aire C° 23.908333	Humedad Relativa % 80.333333	Velocidad del viento m/s 0.1333333	Presión Atmosférica hPa 1007.025	Radiación Solar W/m^2 0
6-Mar	Temperatur a del aire C° 23.908333 23.15	Humedad Relativa % 80.333333 83.666667	Velocidad del viento m/s 0.1333333 0	Presión Atmosférica hPa 1007.025 1006.4417	Radiación Solar W/m^2 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825	Humedad Relativa % 80.333333 83.666667 85.916667	Velocidad del viento m/s 0.1333333 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825	Radiación Solar W/m^2 0 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667	Velocidad del viento m/s 0.1333333 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083	Radiación Solar W/m^2 0 0 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88	Velocidad del viento m/s 0.1333333 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583	Radiación Solar W/m^2 0 0 0 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667	Humedad Relativa % 80.333333 83.666667 85.916667 85.916667 88 88	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725	Radiación Solar W/m^2 0 0 0 0 0 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667 22.033333	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833	Radiación Solar W/m^2 0 0 0 0 0 0 8.8333333
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667 22.03333 22.666667	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 89	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 89 89	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 89 89 87.833333 81.333333 77.416667	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 1.2	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.8	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 89 87.833333 81.333333 77.416667 70.833333	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 1.2 2.2666667	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.8 1005.8	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 558.75
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175	Humedad Relativa % 80.333333 83.666667 85.916667 888 89 89 89 87.833333 81.333333 77.416667 70.833333 64.666667	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.1833 1005.65 1005.9333 1005.8 1005.4417 1005.1583	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 558.75 859.91667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375	Humedad Relativa % 80.333333 83.666667 85.916667 888 89 89 87.833333 81.333333 81.333333 77.416667 70.833333 64.666667 59.75	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.1333333	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.6583 1005.1833 1005.65 1005.9333 1005.8 1005.4417 1005.1583 1004.575	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 244.41667 558.75 859.91667 859.91667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 87.833333 81.333333 81.333333 77.416667 70.833333 64.666667 59.75 57.818182	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.1333333 4.3636364	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.8 1005.4417 1005.1583 1004.575 1003.8091	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 558.75 859.91667 859.91667 851.91667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.033333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 87.833333 81.333333 81.333333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.133333 4.3636364 3.2	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.8 1005.4417 1005.1583 1004.575 1003.8091 1002.825	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 859.91667 859.91667 859.91667 861.91667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 89 87.833333 81.333333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667 54.333333	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.1333333 4.3636364 3.2 3.2	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.083 1004.6583 1004.725 1005.1833 1005.9333 1005.9333 1005.8 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 861.91667 861.91667 505.16667
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667	Humedad Relativa % 80.333333 83.666667 85.916667 888 89 89 87.833333 81.333333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667 54.33333 59.083333	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.133333 4.3636364 3.2 3.2 3.2 2	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.8 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 859.91667 859.91667 558.7273 686.41667 505.16667 122
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667 28.1	Humedad Relativa % 80.333333 83.666667 85.916667 88.416667 88 89 89 87.833333 81.333333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667 54.33333 59.083333 63.583333	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.133333 4.3636364 3.2 3.2 2 1.4666667	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583 1003.5	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 859.91667 859.91667 555.16667 505.16667 122 20.25
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667 28.1 26.55	Humedad Relativa % 80.333333 83.666667 85.916667 88 89 89 89 87.833333 81.333333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667 54.33333 59.083333 63.583333	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2666667 3.6 4.133333 4.3636364 3.2 3.2 2 1.4666667 1.066667	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583 1003.5	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 859.91667 859.91667 753.27273 686.41667 505.16667 505.16667 122 20.25 1.25
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667 28.1 26.55 24.75	Humedad Relativa % 80.333333 83.666667 85.916667 88 89 89 87.833333 81.333333 81.333333 64.666667 59.75 57.818182 55.666667 54.33333 63.583333 63.583333 80.666667	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583 1003.5 1004.55	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 861.91667 753.27273 686.41667 505.16667 20.25 1.22 20.25 1.25 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.825 22.616667 22.191667 22.03333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667 28.1 26.55 24.75 23.883333	Humedad Relativa % 80.333333 83.666667 85.916667 86.416667 88 89 89 87.833333 81.333333 81.333333 81.333333 64.666667 59.75 57.818182 55.666667 54.33333 59.083333 63.583333 70.583333 80.666667 85.25	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.65 1005.9333 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583 1004.55 1006.1083 1006.925	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 859.91667 859.91667 859.91667 505.16667 505.16667 505.16667 122 20.25 1.25 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.033333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667 28.1 26.55 24.75 23.883333 23.333333	Humedad Relativa % 80.33333 83.666667 85.916667 86.416667 88 89 89 87.83333 81.33333 81.33333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667 54.33333 59.083333 80.68333 80.666667 85.25 88	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583 1004.55 1004.55 1006.1083 1006.925 1007.4667	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 558.75 859.91667 753.27273 686.41667 505.16667 505.16667 505.16667 122 20.25 1.25 0 0 0
6-Mar	Temperatur a del aire C° 23.908333 23.15 22.825 22.616667 22.191667 22.033333 22.666667 24.983333 27.341667 29.55 31.175 32.375 32.663636 32.116667 32.308333 29.991667 28.1 26.55 24.75 23.883333 23.333333	Humedad Relativa % 80.33333 83.666667 85.916667 86.416667 88 89 89 87.83333 81.33333 81.33333 77.416667 70.833333 64.666667 59.75 57.818182 55.666667 54.33333 63.583333 80.666667 85.25 88 88.75	Velocidad del viento m/s 0.1333333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1007.025 1006.4417 1005.825 1005.0083 1004.6583 1004.725 1005.1833 1005.65 1005.9333 1005.4417 1005.1583 1004.575 1003.8091 1002.825 1002.3833 1002.5583 1002.5583 1003.5 1004.55 1006.1083 1006.925 1007.4667 1007.9583	Radiación Solar W/m^2 0 0 0 0 0 8.8333333 90.916667 244.41667 412.41667 412.41667 412.41667 558.75 859.91667 753.27273 686.41667 505.16667 122 20.25 1.25 0 0 0 0 0

	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
	C°	%	m/s	hPa	W/m^2
10-Mar	23.1	94	0	1007.9	0
	22.991667	94	0	1006.9917	0
	22.925	94	0	1006.225	0
	22.825	94	0	1005.7	0
	22.883333	94	0	1005.6083	0
	23.091667	94	0	1005.9583	0
	23.116667	94	0	1006.6083	5.1666667
	23.45	94	0.1333333	1007.3167	53.833333
	24.075	92.583333	0.2666667	1008.075	251.41667
	27.166667	82	1.6	1007.8167	579
	29.6	73.181818	3.0545455	1007.0455	602.81818
	30.958333	69.833333	4	1006.4833	843.16667
	32.190909	64.545455	4.0727273	1005.5091	938.27273
	33.333333	60.833333	3.6	1004.45	890.83333
	33.45	62.833333	4.5333333	1003.625	772.08333
	30.633333	67.75	5.2	1003.225	277.58333
	28.283333	73.416667	3.3333333	1003.675	107.66667
	26.916667	77.583333	1.6	1004.7583	21.25
	26.291667	78.916667	0.2666667	1005.725	4.9166667
	26.191667	79.833333	0.4	1006.8	0
	25.25	87.916667	0.2666667	1007.3667	0
	24.641667	91.583333	0	1008.425	0
	24.475	92	0	1009.3083	0
	24.483333	92.416667	0.4	1009.2667	0
-	Tomporatur	Humodad	Valasidad	D!/-	Padiación
	emperatai	питейии	velociada	Presion	Rudiucion
	a del aire	Relativa	del viento	Presion Atmosférica	Solar
20-Mar	a del aire C°	Relativa %	del viento m/s	Presion Atmosférica hPa	Solar W/m^2
20-Mar	a del aire C° 25.625	Relativa % 85.4166667	del viento m/s	Atmosférica hPa 1008.51667	Solar W/m^2
20-Mar	a del aire C° 25.625 25.3166667	Relativa % 85.4166667 86.75	del viento m/s 0	Atmosférica hPa 1008.51667 1007.93333	Solar W/m^2 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667	Relativa % 85.4166667 86.75 88.3333333	del viento m/s 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667	Solar W/m^2 0 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025	Relativa % 85.4166667 86.75 88.3333333 88.9166667	del viento m/s 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675	Solar W/m^2 0 0 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667	del viento m/s 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333	Solar W/m^2 0 0 0 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.2833333	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667	del viento m/s 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833	Solar W/m^2 0 0 0 0 0 0 0 0 0 0 0 0 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.2833333 24.2416667	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25	verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13333333	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.975	Nauación Solar W/m^2 0 0 0 0 0 0 8.75
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.2833333 24.2416667 24.7916667	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.5833333	verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>Presion</i> <i>Atmosférica</i> <i>hPa</i> 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.975 1008.45833	Naulacion Solar W/m^2 0 0 0 0 0 0 8.75 89.16666667
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.66666667 24.283333 24.2416667 24.7916667 26.5666667	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.5833333 84.5	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.975 1008.45833 1009.28333	Naulación Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270
20-Mar	a del aire C° 25.625 25.3166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.3333333	verociada del viento m/s 0 0 0 0 0 0 0 0.13333333 0 0.93333333 1.6	<i>Presion</i> <i>Atmosférica</i> <i>hPa</i> 1008.51667 1007.6333 1007.66667 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.35833	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.1333333	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.5833333 84.5 76.3333333 68.75	verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>Presion</i> <i>Atmosférica</i> <i>hPa</i> 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1008.89167	Solar Solar W/m^2 0 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667
20-Mar	a del aire C° 25.625 25.3166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.1333333 32	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.9166667 88.25 89.5833333 84.5 76.3333333 68.75 64.75	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>Presion</i> <i>Atmosférica</i> <i>hPa</i> 1008.51667 1007.93333 1007.66667 1007.28333 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.28333 1009.35833 1008.89167 1008 325	Solar Solar W/m^2 0 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667
20-Mar	a del aire C° 25.625 25.3166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32 375	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61 833333	verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.28333 1009.35833 1008.89167 1008.325 1007 3	Solar Solar W/m^2 0 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667 855.75
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61.833333 60.083333	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.28333 1007.55833 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1008.89167 1008.325 1007.3	Solar Solar W/m^2 0 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 855.75 961.166667 989.75
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 22.883333	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61.833333 60.0833333 59.9166667	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1008.89167 1008.325 1007.3 1006.35833	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667 855.75 961.166667 989.75
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 32.883333 32 31.6667	Relativa <i>R</i> elativa <i>%</i> 85.4166667 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.5833333 84.5 76.3333333 68.75 64.75 61.833333 60.0833333 59.9166667 62.5	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.28333 1009.35833 1008.89167 1008.325 1006.35833 1005.35	Solar Solar W/m^2 0 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667 855.75 961.166667 989.75 823.166667
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.66666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 32.883333 32.3166667 31.433322	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61.833333 60.0833333 59.9166667 62.5 65 583322	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1008.89167 1008.325 1007.3 1006.35833 1004.53333	Solar Solar W/m^2 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667 855.75 961.166667 989.75 823.166667 640.916667
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 32.883333 32.3166667 31.433333 20.15	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61.833333 60.0833333 59.9166667 62.5 65.583333	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.55833 1009.28333 1009.35833 1009.35833 1008.89167 1008.325 1007.3 1006.35833 1004.53333 1004.16667	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 857.75 961.166667 855.75 961.166667 989.75 823.166667 640.916667 418.333333
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.2813333 24.2416667 26.5666667 29.125 31.1333333 32 32.375 33.0416667 32.8833333 32.3166667 31.433333 30.15 27.652322	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 89.5833333 84.5 76.3333333 68.75 64.75 61.833333 59.9166667 62.5 65.583333 69.5833333	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.55833 1009.28333 1009.35833 1009.35833 1008.89167 1006.35833 1005.35 1004.53333 1004.16667 1004.34167	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 855.75 961.166667 855.75 961.166667 989.75 823.166667 640.916667 418.33333 166.5
20-Mar	a del aire C° 25.625 25.3166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 32.883333 32.3166667 31.433333 30.15 27.6583333	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61.833333 59.9166667 62.5 65.583333 69.583333 69.583333 78	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1008.89167 1006.35833 1005.35 1004.53333 1004.41667 1004.80833 1005.65222	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 867.166667 855.75 961.166667 855.75 961.166667 855.75 961.166667 418.33333 166.5 9.08333333
20-Mar	a del aire C° 25.625 25.3166667 25.025 24.6666667 24.283333 24.2416667 26.5666667 29.125 31.133333 32 32.375 33.0416667 32.883333 32.3166667 31.433333 30.15 27.6583333 26.3	Relativa <i>Relativa</i> <i>%</i> 85.4166667 88.333333 88.9166667 89.6666667 89.6666667 88.25 89.583333 68.75 64.75 61.833333 60.0833333 59.9166667 62.5 65.5833333 69.5833333 69.5833333 78 83.0833333	Velocidad del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.28333 1007.28333 1007.55833 1007.975 1008.45833 1009.28333 1009.28333 1009.35833 1008.89167 1008.325 1007.3 1006.35833 1005.35 1004.53333 1004.53333 1005.65833 1005.65833	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 855.75 961.166667 855.75 961.166667 989.75 823.166667 418.33333 166.5 9.08333333
20-Mar	a del aire C° 25.625 25.3166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 31.433333 32.3166667 31.433333 30.15 27.6583333 26.3 26.2666667	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.9166667 88.25 89.583333 68.75 64.75 61.833333 60.0833333 59.9166667 62.5 65.5833333 69.5833333 69.5833333 78 83.0833333	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.66667 1007.675 1007.28333 1007.55833 1007.55833 1007.975 1008.45833 1009.28333 1009.28333 1009.35833 1008.89167 1006.35833 1006.35833 1004.53333 1004.41667 1004.80833 1005.65833 1005.65833	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 857.75 961.166667 855.75 961.166667 989.75 823.166667 640.916667 418.33333 166.5 9.08333333 0 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 31.433333 32.3166667 31.433333 30.15 27.6583333 26.3 26.2666667 26.025	Relativa <i>Relativa</i> <i>%</i> 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 68.75 64.75 61.833333 60.0833333 59.9166667 62.5 65.5833333 69.5833333 78 83.083333 83.3333333 83.3333333 83.333333 83.333333 83.333333 83.333333 83.333333 83.333333 83.333333 83.333333 83.333333 83.333333 83.3333333 83.3333333 83.3333333 83.333333 83.333333 83.333333 83.333333 83.3333333 83.333333 83.333333 83.3333333 83.333333 83.3333333 83.333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.3333333 83.33333333 83.33333333 83.3333333333	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.28333 1007.55833 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1009.35833 1008.89167 1006.35833 1005.355 1004.53333 1004.53333 1004.34167 1005.65833 1005.65833 1006.66667 1007.325	Solar Solar W/m^2 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 857.75 961.166667 855.75 961.166667 989.75 823.166667 640.916667 418.33333 166.5 9.08333333 0 0
20-Mar	a del aire C° 25.625 25.3166667 25.1166667 25.025 24.6666667 24.283333 24.2416667 24.7916667 26.5666667 29.125 31.133333 32 32.375 33.0416667 32.883333 32.3166667 31.433333 30.15 27.6583333 26.3 26.2666667 25.6	Relativa % 85.4166667 86.75 88.333333 88.9166667 89.6666667 88.9166667 88.25 89.583333 84.5 76.333333 68.75 64.75 61.833333 59.9166667 62.5 65.583333 69.583333 69.583333 69.583333 83.0833333 83.333333 83.333333	Verociada del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	Presion Atmosférica hPa 1008.51667 1007.93333 1007.66667 1007.675 1007.28333 1007.55833 1007.55833 1007.975 1008.45833 1009.28333 1009.35833 1008.89167 1008.325 1007.3 1006.35833 1004.53333 1004.53333 1004.80833 1005.65833 1006.66667 1007.325 1007.425	Solar Solar W/m^2 0 0 0 0 0 0 0 0 8.75 89.1666667 270 641.166667 855.75 961.166667 855.75 961.166667 989.75 823.166667 640.916667 418.33333 166.5 9.08333333 0 0 0

	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
24-Ma	r C°	%	m/s	hPa	W/m^2
	25.25	86.75	0.66666667	1006.30833	0
	25.4166667	86.0833333	1.06666667	1005.9	0
	24.9833333	86.9166667	0.13333333	1005.50833	0
	24.2083333	88.6666667	0	1005.125	0
	23.45	90.25	0	1004.825	0
	23.175	91.5833333	0	1005.025	0
	22.9666667	92.1666667	0	1005.60833	6.91666667
	24.1333333	91.4166667	0	1006.125	86.3333333
	27.6916667	78.8333333	0.4	1006.55833	346.272727
	29.7083333	71	1.46666667	1006.50833	374.666667
	30.7	69.5	2.4	1006.08333	471.25
	30.4666667	72.0833333	2.66666667	1005.675	715.916667
	31.6416667	67.3333333	3.46666667	1004.90833	812.25
	31.3857143	67	3.2	1004.1	531.285714
	32.1	64.25	3.6	1003.675	815.5
	31.3666667	65.8333333	3.86666667	1003.31667	463.333333
	30.1333333	69.5	3.06666667	1003.46667	351.333333
	29.1583333	72.6666667	2.8	1003.875	143.583333
	27.2833333	79.6666667	2.26666667	1004.41667	12.3333333
	26.625	82.0833333	0.13333333	1005.30833	0
	26.175	84	0.66666667	1005.75833	0
	25.725	85.9166667	0	1006.1	0
	25.5666667	85.5	0	1006.61667	0
	25.7166667	84.25	0.66666667	1006.74167	0
	Temperatur	Humedad	Velocidad	Presión	Radiación
	Temperatur a del aire	Humedad Relativa	Velocidad del viento	Presión Atmosférica	Radiación Solar
2-Abr	Temperatur a del aire C°	Humedad Relativa %	Velocidad del viento m/s	Presión Atmosférica hPa	Radiación Solar W/m^2
2-Abr	Temperatur a del aire C° 24.6833333	Humedad Relativa % 91	Velocidad del viento m/s 0	Presión Atmosférica hPa 1005.2	Radiación Solar W/m^2 0
2-Abr	Temperatur a del aire C° 24.6833333 24.35	Humedad Relativa % 91 91.8333333	Velocidad del viento m/s 0 0	Presión Atmosférica hPa 1005.2 1004.15833	Radiación Solar W/m^2 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15	Humedad Relativa % 91.8333333 92.25	Velocidad del viento m/s 0 0 0	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333	Radiación Solar W/m^2 0 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429	Humedad Relativa % 91.8333333 92.25 93	Velocidad del viento m/s 0 0 0 0	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857	Radiación Solar W/m^2 0 0 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.7333333	Humedad Relativa % 91.8333333 92.25 93 93.8333333	Velocidad del viento m/s 0 0 0 0 0 0	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667	Radiación Solar W/m^2 0 0 0 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333	Humedad Relativa % 91.8333333 92.25 93.8333333 94	Velocidad del viento m/s 0 0 0 0 0 0 0	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333	Radiación Solar W/m^2 0 0 0 0 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333 23.2916667	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333	Velocidad del viento m/s 0 0 0 0 0 0 0 1.33333333	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167	Radiación Solar W/m^2 0 0 0 0 0 22.0833333
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94	Velocidad del viento m/s 0 0 0 0 0 0 1.33333333 1.466666667	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.8	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333	Velocidad del viento m/s 0 0 0 0 0 0 1.33333333 1.46666667 0.93333333	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.8 1004.14167	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.483333 23.2916667 24.0583333 26.0166667 28.075	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82	Velocidad del viento m/s 0 0 0 0 0 0 1.33333333 1.46666667 0.9333333 0.93333333	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.8 1004.14167 1004.26667	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.483333 23.2916667 24.0583333 26.0166667 28.075 29.39	Humedad Relativa % 91.8333333 92.25 93.8333333 94 93.8333333 94 94.8333333 94 88.5833333 82 76.9	Velocidad del viento m/s 0 0 0 0 0 0 1.33333333 1.46666667 0.9333333 0.9333333 0.8	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.8 1004.14167 1004.26667 1004.26	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406 596.4
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222	Humedad Relativa % 91.8333333 92.25 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.2222222	Velocidad del viento m/s 0 0 0 0 0 1.33333333 1.46666667 0.93333333 0.93333333 0.8 2.48888889	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.2222222	Velocidad del viento m/s 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.8 2.48888889 2.8	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.8 1004.14167 1004.26667 1004.26667 1004.26667	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.2222222 75.1666667 70.9166667	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.9333333 0.8 2.4888889 2.8 1.86666667	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.2667 1003.61667 1002.55	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 676
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.483333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667	Humedad Relativa % 91.8333333 92.25 93.8333333 94 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.8 2.48888889 2.8 1.86666667 2.4	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1003.61667 1002.55 1001.575	Radiación Solar W/m^2 0 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 676 749.666667
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 32.6916667	Humedad Relativa % 91.8333333 92.25 93.8333333 94 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333 66.833333	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.8 2.48888889 2.8 1.86666667 2.4 1.7333333	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1004.255 1000.575 1000.83333	Radiación Solar W/m^2 0 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 676 749.666667 424.833333
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 32.6916667 31.4083333	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333 66.833333	Velocidad del viento m/s 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.9333333 0.8 2.48888889 2.8 1.86666667 2.4 1.73333333 1.6	Presión Atmosférica hPa 1005.2 1004.15833 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.26667 1004.2667 1004.2655 1001.575 1000.83333 1001	Radiación Solar W/m^2 0 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 4435.111111 583.666667 424.833333
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 32.6916667 31.4083333 29.775	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 70.9166667 67.833333 66.8333333 69 71.8333333	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.466666667 0.9333333 0.9333333 0.9333333 0.9333333 0.9333333 0.8 2.4888889 2.8 1.86666667 2.4 1.7333333 1.6 1.7333333	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1004.265 1001.575 1001.575 1000.83333 1001	Radiación Solar W/m^2 0 0 0 0 2 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 435.111111 583.666667 424.833333 263.5 64.4166667
2-Abr	Temperatur a del aire C° 24.6833333 24.35 24.15 24.0571429 23.733333 23.483333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 31.4083333 29.775 27.9583333	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333 66.833333 66.833333 69 71.833333	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.9333333 0.8 2.4888889 2.8 1.86666667 2.4 1.73333333 1.6 1.73333333 1.46666667	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1004.2655 1001.575 1000.83333 1001 1001.8 1002.71667	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 676 749.666667 424.83333 263.5 64.4166667 0.33333333
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 31.4083333 29.775 27.9583333	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333 66.833333 66.833333 65.833333	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.9333333 0.8 2.4888889 2.8 1.86666667 2.4 1.7333333 1.6 1.7333333 1.6 1.7333333	Presión Atmosférica hPa 1005.2 1004.15833 1003.73333 1003.22857 1003.21667 1003.23333 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1004.26667 1004.255 1001.575 1000.83333 1001 1001.8 1002.71667 1003.73333	Radiación Solar W/m^2 0 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 425.111111 583.666667 424.83333 263.5 64.4166667 0.3333333
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 32.6916667 31.4083333 29.775 27.9583333 27.2083333 26.85	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333 66.833333 66.833333 69 71.8333333 78.75 82.75 82.75	Velocidad del viento m/s 0 0 0 0 0 0 1.3333333 1.46666667 0.9333333 0.9333333 0.9333333 0.9333333 0.9333333 0.9333333 1.46666667 2.4 1.73333333 1.6 1.73333333 1.6 0.13333333 0.4	Presión Atmosférica hPa 1005.2 1004.15833 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1004.26667 1004.255 1001.575 1000.83333 1001.575	Radiación Solar W/m^2 0 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 435.111111 583.666667 424.83333 263.5 64.4166667 0.3333333 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.0571429 23.733333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 32.6916667 31.4083333 29.775 27.9583333 27.2083333 26.85 26.4416667	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 70.9166667 67.833333 66.8333333 69 71.8333333 78.75 82.75 84.4166667	Velocidad del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1005.2 1004.15833 1003.22857 1003.21667 1003.23333 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1004.26667 1004.265 1001.575 1000.83333 1001 1001.8 1002.71667 1003.73333 1004.59167	Radiación Solar W/m^2 0 0 0 0 2 2.0833333 134.5 303.25 406 596.4 435.111111 583.666667 435.111111 583.666667 424.833333 263.5 64.4166667 0.33333333 0 0
2-Abr	Temperatur a del aire C° 24.6833333 24.15 24.0571429 23.733333 23.4833333 23.4833333 23.2916667 24.0583333 26.0166667 28.075 29.39 30.1222222 30.275 31.325 32.4916667 32.6916667 31.4083333 29.775 27.9583333 27.2083333 27.2083333	Humedad Relativa % 91.8333333 92.25 93 93.8333333 94 94.8333333 94 88.5833333 82 76.9 75.222222 75.1666667 70.9166667 67.833333 66.833333 66.833333 66.833333 67.835 84.4166667 89.083333	Velocidad del viento m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Presión Atmosférica hPa 1005.2 1004.15833 1003.22857 1003.21667 1003.23333 1003.54167 1003.54167 1004.26667 1004.26667 1004.26667 1004.26667 1003.61667 1002.55 1001.575 1000.83333 1001.83 1001.8 1002.71667 1003.73333 1004.59167	Radiación Solar W/m^2 0 0 0 0 22.0833333 134.5 303.25 406 596.4 435.111111 583.666667 424.83333 263.5 64.4166667 0.33333333

	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
6-Abr	C°	%	m/s	hPa	W/m^2
	24.6833333	91	0	1005.2	0
	24.35	91.8333333	0	1004.15833	0
	24.15	92.25	0	1003.73333	0
	24.0571429	93	0	1003.22857	0
	23.7333333	93.8333333	0	1003.21667	0
	23.6	94	0	1003.5	0
	23.8833333	94.9166667	0	1004.09167	32.0833333
	24.7583333	94.75	0.4	1004.96667	130
	26.35	90.0833333	1.73333333	1005.6	325.666667
	28.3111111	82.3333333	1.77777778	1006.11111	421.666667
	29.24	79.2	2.24	1006.29	489
	30.3	75.4166667	2.66666667	1005.6	712.75
	31.075	72.6666667	2.4	1004.61667	621.833333
	31.3142857	71.5714286	2.05714286	1003.22857	486.714286
	30.725	74.25	2.8	1002.68333	329.5
	28.5333333	85.1666667	0.8	1002.2	204.916667
	28.5666667	81.6666667	0.66666667	1002.18333	147.75
	27.6666667	82	0.66666667	1002.85833	42
	26.5916667	87	0.26666667	1003.775	0.08333333
	25.45	91.5	0.8	1005.58333	0
	24.65	93.8333333	1.2	1005.475	0
	24.2818182	94	0.58181818	1004.98182	0
	24.1	94.5	0	1005.025	0
	24.1	95	0	1005.35714	0
	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
17-Abr	-			1.0	
	C°	%	m/s	пРа	W/m^2
	<i>C</i> ° 25.3	% 88.4166667	m/s 0	пРа 1007.00833	W/m^2 0
	C° 25.3 24.8	% 88.4166667 90.3333333	<i>m/s</i> 0 0	nPa 1007.00833 1006.275	W/m^2 0 0
	<i>C</i> ° 25.3 24.8 24.5083333	% 88.4166667 90.3333333 91.8333333	<i>m/s</i> 0 0 0	nPa 1007.00833 1006.275 1005.8	W/m^2 0 0 0
	C° 25.3 24.8 24.5083333 24.3857143	% 88.4166667 90.3333333 91.8333333 92.8571429	<i>m/s</i> 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.7	W/m^2 0 0 0 0
	C° 25.3 24.8 24.5083333 24.3857143 24.2	% 88.4166667 90.3333333 91.8333333 92.8571429 93.8333333	<i>m/s</i> 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.7 1005.725	W/m^2 0 0 0 0 0
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.2 24.325	% 88.4166667 90.3333333 91.8333333 92.8571429 93.8333333 94	<i>m/s</i> 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.7 1005.725 1005.70833	W/m^2 0 0 0 0 0 0 0
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4	% 88.4166667 90.3333333 91.8333333 92.8571429 93.8333333 94 94	<i>m/s</i> 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.7 1005.725 1005.70833 1005.95	W/m^2 0 0 0 0 0 4.33333333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.325 24.4 24.625	% 88.4166667 90.333333 91.8333333 92.8571429 93.8333333 94 94 94 93.8333333	m/s 0 0 0 0 0 0 0 0.266666667	nPa 1007.00833 1006.275 1005.8 1005.7 1005.725 1005.70833 1005.95 1006.41667	W/m^2 0 0 0 0 0 4.333333333 51.75
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.325 24.4 24.625 25.2166667	% 88.4166667 90.333333 91.833333 92.8571429 93.8333333 94 94 93.8333333 90.8333333	m/s 0 0 0 0 0 0 0.266666667 1.066666667	nPa 1007.00833 1006.275 1005.8 1005.7 1005.725 1005.70833 1005.95 1006.41667 1007.025	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.6333333	% 88.4166667 90.333333 91.8333333 92.8571429 93.8333333 94 94 94 93.8333333 90.8333333 85.5833333	m/s 0 0 0 0 0 0 0 0 0.266666667 1.06666667 1.6	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667	% 88.4166667 90.333333 91.8333333 92.8571429 93.8333333 94 94 93.8333333 90.8333333 85.5833333 78.8333333	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.6333333 28.0666667 28.9	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 85.583333 85.583333 78.833333 76.0833333	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 93.833333 90.833333 85.583333 85.583333 78.833333 76.0833333 69.5833333	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>hPa</i> 1007.00833 1006.275 1005.7 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.45 1006.85833 1005.88333	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 85.5833333 85.5833333 78.833333 76.0833333 69.5833333 69.5833333	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 90.833333 85.583333 85.583333 78.833333 76.0833333 69.5833333 69.5833333 66.333333 63.9166667	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 93.833333 90.833333 85.583333 85.583333 78.833333 76.0833333 69.5833333 69.5833333 69.5833333 63.9166667 68	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.7 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 93.833333 90.833333 85.583333 85.583333 76.0833333 76.0833333 69.5833333 69.5833333 69.5833333 63.9166667 68 71	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1002.95	W/m^2 0 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667 233.583333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 93.833333 90.833333 85.5833333 78.833333 76.0833333 76.0833333 69.5833333 66.3333333 66.3333333 66.3333333 66.3333333 66.3333333 66.3333333	m/s 0 0 0 0 0 0 0.266666667 1.066666667 1.6 1.466666667 2.25333333 1.466666667 2.26666667 1.86666667 0.53333333	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.45 1006.85833 1005.88333 1005.88333 1004.675 1003.74167 1003.225 1002.95 1003.025	W/m^2 0 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667 233.583333 70 5
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667 27.15	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 85.583333 78.833333 78.833333 76.0833333 69.5833333 69.5833333 63.9166667 68 71 74.75 76 75	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.7 1005.725 1005.70833 1005.795 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1003.225 1003.025 1003.56667	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667 233.583333 70.5 2.833333333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667 27.15 26.025	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 85.583333 78.833333 78.833333 78.833333 69.5833333 69.5833333 63.9166667 68 71 74.75 76.75 78.6666667	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.7 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1003.225 1003.025 1003.56667 1004 3	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667 233.583333 70.5 2.83333333
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667 27.15 26.025	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 93.833333 90.833333 85.583333 78.833333 78.833333 76.0833333 69.5833333 69.5833333 63.9166667 68 71 74.75 76.75 78.6666667 79 25	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.7 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1003.225 1003.025 1003.56667 1004.3 1005.025	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667 233.583333 70.5 2.83333333 0 0
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667 27.15 26.025 25.6666667 25.6583333	% 88.4166667 90.333333 91.8333333 92.8571429 93.8333333 94 94 93.8333333 90.833333 85.5833333 76.0833333 76.0833333 69.5833333 69.5833333 69.5833333 69.5833333 63.9166667 68 71 74.75 76.75 78.6666667 79.25 79.6666667	m/s 0 0 0 0 0 0 0.266666667 1.066666667 1.66 1.466666667 2.25333333 1.466666667 2.266666667 1.866666667 0.5333333 1.2 0.1333333 0.266666667	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1003.225 1003.025 1003.56667 1004.3 1005.025 1005.33333	W/m^2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.6333333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667 27.15 26.025 25.6666667 25.6583333 25.2416667	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 85.583333 78.833333 78.833333 76.0833333 66.333333 66.333333 66.333333 66.333333 66.333333 66.333333 66.333333 66.333333 67.75 78.6666667 79.25 78.6666667 80.416667	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.8 1005.725 1005.70833 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1003.225 1003.025 1003.56667 1004.3 1005.025 1005.33333 1005.34167	W/m^2 0 0 0 0 0 4.33333333 51.75 169.083333 343.416667 396.083333 462.333333 765.666667 706.083333 572.916667 453.666667 233.583333 572.916667 233.583333 0 0 0 0 0
	C° 25.3 24.8 24.5083333 24.3857143 24.2 24.325 24.4 24.625 25.2166667 26.633333 28.0666667 28.9 30.3583333 31.2916667 31.9083333 31.5666667 30.325 28.8416667 27.15 26.025 25.6666667 25.6583333 25.2416667	% 88.4166667 90.333333 91.833333 92.8571429 93.833333 94 94 94 93.833333 90.833333 85.583333 78.833333 78.833333 69.583333 69.583333 63.9166667 68 71 74.75 76.75 78.6666667 79.25 79.6666667 80.4166667	m/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nPa 1007.00833 1006.275 1005.7 1005.725 1005.70833 1005.95 1006.41667 1007.025 1007.275 1007.45 1006.85833 1005.88333 1004.675 1003.74167 1003.225 1003.225 1003.025 1003.56667 1004.3 1005.025 1005.33333 1005.34167 1005.45	W/m^2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
21-Abr	C°	%	m/s	hPa	W/m^2
	23.6555556	84.6666667	0	1006.95556	0
	23.5916667	87	0	1006.475	0
	23.3333333	88.3333333	0	1005.95833	0
	23.3083333	88	0	1005.8	0
	23.1833333	89.1666667	0	1005.925	0
	22.9333333	90.9166667	0	1005.975	0
	22.85	91.3333333	0	1006.50833	10.8333333
	23.725	89.25	0	1007.16667	97.0833333
	25.2583333	84.8333333	1.33333333	1007.28333	247.833333
	27.3083333	79.3333333	3.06666667	1007.58333	516.666667
	28.3666667	75.8333333	2.26666667	1007.375	409.25
	29.87	71.6	2.88	1006.65	914.9
	31.0083333	68.8333333	3.6	1005.71667	1028.25
	31.3083333	68.5	2.66666667	1004.73333	484.583333
	29.9083333	71	2.13333333	1004.16667	173.166667
	28.6666667	71.9166667	1.46666667	1003.825	158.25
	28.2916667	71.5	1.46666667	1003.575	85.8333333
	27.05	72.6666667	0.93333333	1003.8	34.75
	25.6666667	74.1666667	0.66666667	1004.50833	1.16666667
	24.9083333	77.1666667	0	1005.35	0
	24.775	78.8333333	0	1005.98333	0
	24.9	78.8333333	0	1006.38333	0
	25.0714286	80.2857143	0	1006.57143	0
	24.8666667	81.5	0	1006.59167	0
Т	emperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
7-May	C°	%	m/s	hPa	W/m^2
:	23.0333333	87.5833333	0	1004.95833	0
	22.625	88.5833333	0	1004.53333	0
	22.2	89.8333333	0.13333333	1003.975	0
	22.3125	89.75	0.2	1003.6	0
:	22.1090909	90.4545455	0	1003.69091	0
	21.9083333	91.1666667	0	1004	0
	21.95	91	0	1004.45	0
	22.875	90.1666667	0.26666667	1005.64167	96.5
	25.4166667	82.0833333	0.93333333	1006,125	309.833333
	28.6833333	71	1.73333333	1006.34167	613,583333
	30 6166667	65 25	2 66666667	1006 09167	760 916667
	21 2083333	63 8333333	2.00000000	1005 46667	637 016667
	22 0222222	62 2222222	2.0	1004 625	810 5
	2.0333333	61 5	2.33333333	1004.025	942
	32.0383333	61.5	5.2	1003.025	043
	31.7410007	03.8333333	4	1002.75	/34
	30.25	67.25	3.86666667	1002.31667	428.666667
	29.2	69.9166667	3.46666667	1002.36667	293.666667
	27.5833333	/4.5833333	2.13333333	1002.74167	80.6666667
	25.8	79.5	0.8	1003.28333	1.41666667
	25.125	81.5833333	1.6	1003.76667	0
	24.85	82.6666667	2.66666667	1004.025	0
:	24.6083333	83.4166667	2.13333333	1004.5	0
:	24.2916667	84.4166667	2.8	1004.8	0
1	24.0666667	86	1.46666667	1004.95	0

	Temperatur	Humedad	Velocidad	Presión	Radiación
	a del aire	Relativa	del viento	Atmosférica	Solar
11-May	C°	%	m/s	hPa	W/m^2
	23.9583333	81.9166667	0.13333333	1006.825	0
	23.4333333	83.25	0	1006.39167	0
	23.1166667	84.9166667	0	1005.79167	0
	22.4083333	86.8333333	0	1005.675	0
	22.1333333	87.9166667	0	1005.65833	0
	21.825	88.5	0	1005.86667	0
	21.2916667	90.25	0	1006.125	14.05
	21.75	90.875	0	1006.575	166.866667
	24.9090909	80.7272727	1.16363636	1007.36364	342.266667
	27.45	71.8333333	3.2	1007.375	574.666667
	29.1833333	67	2.93333333	1006.98333	689.316667
	30.5916667	64	3.33333333	1006.25833	615,133333
	31,4666667	62.25	4	1005,18333	744.366667
	31 5833333	61 9166667	4 93333333	1004 15833	600 316667
	31 5583333	61 9166667	4.55555555	1003 41667	612 383333
	30 5416667	64 5833333	4.4	1002 93333	460 033333
	30.0410007	04.3833333	3 9666667	1002.93333	104 292222
	29.9303333	71 5	3.80000007	1003.03855	194.205555
	27.0033333	71.5	2.13333333	1003.89167	32.2
	25.9	//.100000/	2.20000007	1004.59107	1.20000007
	24.7083333	81.25	0.00000007	1005.375	0
	24.1833333	83.5	0.13333333	1006.05	0
	23./91666/	85.25	0.53333333	1006.93333	0
	23.275	87	0	1007.00833	0
	22.825	88.25	0.13333333	1006.8	0
	Temperatura	Humedad	Velocidad	Presión	Radiación
	del aire	Relativa	del viento	Atmosférica	Solar
31-May	C°	%	m/s	hPa	W/m^2
	22.89166667	83.628333	0.5061667	1009	0
	22.745	84.1	0.4838333	1008.1167	0
	22.36333333	84.733333	0 9598333	1008	0
			0.5556666		-
	22.50166667	85.035	1.3778333	1007.2333	0
	22.50166667 22.42833333	85.035 85.518333	1.3778333 1.2906667	1007.2333 1007.8	0
	22.50166667 22.42833333 22.36166667	85.035 85.518333 84.6	1.3778333 1.2906667 1.2065	1007.2333 1007.8 1008	0 0 0
	22.50166667 22.42833333 22.36166667 22.20666667	85.035 85.518333 84.6 87.431667	1.3778333 1.2906667 1.2065 0.4718333	1007.2333 1007.8 1008 1008	0 0 0 4.3
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016	85.035 85.518333 84.6 87.431667 83.822951	1.3778333 1.2906667 1.2065 0.4718333 0.8147541	1007.2333 1007.8 1008 1008 1008.0656	0 0 0 4.3 62.245902
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667	85.035 85.518333 84.6 87.431667 83.822951 82.545	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333	1007.2333 1007.8 1008 1008 1008.0656 1008	0 0 4.3 62.245902 216.58333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735	1007.2333 1007.8 1008 1008 1008.0656 1008 1008	0 0 4.3 62.245902 216.58333 359.63333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 26.33666667	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008	0 0 4.3 62.245902 216.58333 359.63333 710.43333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 26.33666667 27.50166667	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1007.9667	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 26.33666667 27.50166667 27.915	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1007.9667 1007.0333	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.83333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.426666667 24.44166667 26.33666667 27.50166667 27.915 27.39166667	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1007.9667 1007.0333 1006.8	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 683.93333 435.08333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 26.33666667 27.50166667 27.915 27.39166667 27.7533333	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.93333 435.08333 679.71667
	22.50166667 22.42833333 22.36166667 22.20666667 23.42666667 24.44166667 26.33666667 27.50166667 27.915 27.39166667 27.7533333 26.34166667	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.93333 435.08333 679.71667 300.38333
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 24.44166667 27.50166667 27.915 27.39166667 27.7533333 26.34166667 25.18166667	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.83333 683.93333 435.08333 679.71667 300.38333 277
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 26.33666667 27.50166667 27.50166667 27.915 27.39166667 27.7533333 26.34166667 25.18166667 24.36	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333 78.335	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405 3.9451667	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006 1006.0167 1006.8167	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.83333 683.93333 435.08333 679.71667 300.38333 277 86.7
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 26.33666667 27.50166667 27.59166667 27.7533333 26.34166667 25.18166667 24.36 23.85	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333 78.335 78.521667	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405 3.9451667 3.3351667	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006 1006.0167 1006.8167 1007.75	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 683.93333 683.93333 683.93333 679.71667 300.38333 277 86.7 1.4166667
	22.50166667 22.42833333 22.36166667 22.20666667 23.42666667 24.44166667 26.33666667 27.50166667 27.915 27.39166667 27.7533333 26.34166667 25.18166667 24.36 23.85 23.66333333	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333 78.335 78.521667 78.118333	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405 3.9451667 2.5298333	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006 1006.0167 1006.8167 1007.75 1008	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.93333 638.93333 639.71667 300.38333 277 86.7 1.4166667 0
	22.50166667 22.42833333 22.36166667 22.20666667 23.42666667 24.44166667 24.44166667 27.50166667 27.915 27.39166667 27.7533333 26.34166667 25.18166667 24.36 23.85 23.66333333 23.16	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333 78.335 78.521667 78.118333 79.181667	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405 3.9451667 3.3351667 2.5298333 1.3433333	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006 1006.0167 1006.8167 1007.75 1008	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.93333 435.08333 679.71667 300.38333 277 86.7 1.4166667 0 0
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 24.3666667 27.50166667 27.915 27.39166667 27.7533333 26.34166667 25.18166667 25.18166667 23.85 23.66333333 23.16 23.045	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333 78.335 78.521667 78.118333 79.181667 342.67333	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405 3.9451667 3.3351667 2.5298333 1.3433333 1.2213333	1007.2333 1007.8 1008 1008.0656 1008 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006 1006.0167 1006.8167 1007.75 1008 1008.4667 1242	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.83333 639.71667 300.38333 277 86.7 1.4166667 0 0 0
	22.50166667 22.42833333 22.36166667 22.20666667 22.82459016 23.42666667 24.44166667 24.3466667 27.50166667 27.915 27.39166667 27.7533333 26.34166667 25.18166667 24.36 23.85 23.6633333 23.16 23.045 22.5983333	85.035 85.518333 84.6 87.431667 83.822951 82.545 77.656667 71.391667 66.991667 64.74 66.503333 65.695 70.963333 76.028333 78.335 78.521667 78.118333 79.181667 342.67333 82.163333	1.3778333 1.2906667 1.2065 0.4718333 0.8147541 0.9213333 0.8735 1.2536667 2.1133333 2.753 2.809 3.293 3.7745 4.3405 3.9451667 3.3351667 2.5298333 1.3433333 1.2213333 1.081	1007.2333 1007.8 1008 1008 1008.0656 1008 1008 1008 1007.9667 1007.0333 1006.8 1005.9833 1006 1006.0167 1006.8167 1007.75 1008 1008.4667 1242 1009	0 0 4.3 62.245902 216.58333 359.63333 710.43333 638.83333 638.83333 683.93333 435.08333 679.71667 300.38333 277 86.7 1.4166667 0 0 0 0

	Temperatura	Humedad	Velocidad	Presión	Radiación
	del aire	Relativa	del viento	Atmosférica	Solar
2-Jun	C°	%	m/s	hPa	W/m^2
	23.1833333	85.416667	0.85	1010.9167	0
	22.8416667	86.166667	0.925	1011.025	0
	22.65	86.166667	0.95	1011	0
	22.25	87.75	0.8166667	1010.6333	0
	22.6083333	86.833333	0.8083333	1010.65	0
	22.8	86	0.375	1010.95	0
	22.8833333	86	0.1	1011.325	6.7
	22.8333333	86.5	0.1666667	1011.6667	144.78333
	23.0083333	87	0	1012.2167	174.2
	23.575	85.916667	0.0333333	1012.6667	289.95
	24.4916667	80.75	0.2	1012.825	356.25
	25.2083333	77	0.3916667	1012.8417	484.1
	25.5083333	75.666667	0.525	1012.5667	304.54545
	25.8083333	73.916667	0.5666667	1011.8667	300.08333
	25.7416667	73.166667	0.5666667	1011.2167	275.71667
	25.9833333	71.666667	0.8833333	1010.3833	250.38333
	25.75	72.333333	1.1333333	1009.8	220
	25.3416667	73.583333	1.0333333	1009.8417	35
	24.6583333	76	0.9916667	1010.0417	2.8166667
	24.0083333	78.416667	0.65	1010.3583	0
	23.6833333	81.25	0.5333333	1010.8917	0
	23.4416667	82.416667	0.4	1011.4	0
	23.3916667	83.75	0.1	1011.9167	0
	23.3	83.75	0	1012.0583	0

Fecha	hora	Cosθ	Dr	Ta (°C)
11 Feb.	14:35	0.8590	1.0247	27.990
06 Mar.	11:20	0.9528	1.0144	28.550
10 Mar.	11:25	0.9598	1.0123	26.600
20 Mar.	12:10	0.9920	1.0069	29.650
24 Mar.	11:20	0.9506	1.0047	29.400
02 Abr.	10:50	0.9007	0.9996	28.600
06 Abr.	09:10	0.6492	0.9973	26.500
17 Abr.	11:05	0.9070	0.9912	27.200
21 Abr.	09:15	0.6559	0.9890	25.400
07 May.	10:10	0.7787	0.9809	27.200
11 May.	10:30	0.8120	0.9791	27.100
31 May.	11:00	0.8269	0.9717	27.300
02 Jun.	12:55	0.8630	0.9712	27.500

Anexo 5: Información de Cos θ , distancia relativa entre la tierra y el sol (Dr), y temperatura del aire en cada instante de los vuelos del UAV

Anexo 6: Evapotranspiración o	de referencia	(ET ₀) calculada	de las 24	horas	de los	13
días de vuelos en campo						

	d. juliano	42			d. juliano	65
	11-Feb			6-Mar		
Date		ET portatil	Date	Time	ET Agpres	ET calibrado
11/02/2023	24	0.026	6/03/2023	24	0.012	0.027
11/02/2023	1	0.025	6/03/2023	1	0.010	0.025
11/02/2023	2	0.027	6/03/2023	2	0.010	0.025
11/02/2023	3	0.021	6/03/2023	3	0.010	0.025
11/02/2023	4	0.015	6/03/2023	4	0.010	0.025
11/02/2023	5	0.015	6/03/2023	5	0.010	0.025
11/02/2023	6	0.031	6/03/2023	6	0.019	0.032
11/02/2023	7	0.075	6/03/2023	7	0.068	0.067
11/02/2023	8	0.150	6/03/2023	8	0.174	0.145
11/02/2023	9	0.225	6/03/2023	9	0.310	0.244
11/02/2023	10	0.320	6/03/2023	10	0.442	0.341
11/02/2023	11	0.333	6/03/2023	11	0.678	0.513
11/02/2023	12	0.351	6/03/2023	12	0.716	0.540
11/02/2023	13	0.615	6/03/2023	13	0.659	0.499
11/02/2023	14	0.422	6/03/2023	14	0.590	0.449
11/02/2023	15	0.291	6/03/2023	15	0.471	0.362
11/02/2023	16	0.225	6/03/2023	16	0.170	0.142
11/02/2023	17	0.151	6/03/2023	17	0.079	0.076
11/02/2023	18	0.059	6/03/2023	18	0.035	0.044
11/02/2023	19	0.050	6/03/2023	19	0.035	0.044
11/02/2023	20	0.038	6/03/2023	20	0.010	0.025
11/02/2023	21	0.032	6/03/2023	21	0.010	0.025
11/02/2023	22	0.027	6/03/2023	22	0.010	0.025
11/02/2023	23	0.021	7/03/2023	23	0.010	0.025
	SUMA	3.545			SUMA	3.751

		d. juliano	69
-	10-Mar		
Date	Time	ET Agpres	ET calibrado
10/03/2023	24	0.009	0.025
10/03/2023	1	0.009	0.025
10/03/2023	2	0.009	0.025
10/03/2023	3	0.009	0.025
10/03/2023	4	0.009	0.025
10/03/2023	5	0.009	0.025
10/03/2023	6	0.017	0.031
10/03/2023	7	0.047	0.053
10/03/2023	8	0.176	0.147
10/03/2023	9	0.411	0.318
10/03/2023	10	0.470	0.361
10/03/2023	11	0.650	0.492
10/03/2023	12	0.744	0.561
10/03/2023	13	0.735	0.554
10/03/2023	14	0.658	0.498
10/03/2023	15	0.318	0.250
10/03/2023	16	0.153	0.130
10/03/2023	17	0.058	0.060
10/03/2023	18	0.015	0.029
10/03/2023	19	0.017	0.030
10/03/2023	20	0.012	0.027
10/03/2023	21	0.009	0.024
10/03/2023	22	0.009	0.024
11/03/2023	23	0.011	0.026
		SUMA	3 762

		d. juliano	79
2	20-Mar		
Date	Time	ET Agpres	ET calibrado
20/03/2023	24	0.009	0.025
20/03/2023	1	0.009	0.025
20/03/2023	2	0.009	0.025
20/03/2023	3	0.009	0.025
20/03/2023	4	0.009	0.025
20/03/2023	5	0.009	0.025
20/03/2023	6	0.020	0.033
20/03/2023	7	0.069	0.068
20/03/2023	8	0.200	0.164
20/03/2023	9	0.474	0.364
20/03/2023	10	0.663	0.501
20/03/2023	11	0.679	0.513
20/03/2023	12	0.757	0.571
20/03/2023	13	0.790	0.595
20/03/2023	14	0.676	0.512
20/03/2023	15	0.542	0.414
20/03/2023	16	0.361	0.281
20/03/2023	17	0.149	0.127
20/03/2023	18	0.037	0.045
20/03/2023	19	0.027	0.038
20/03/2023	20	0.025	0.036
20/03/2023	21	0.035	0.043
20/03/2023	22	0.034	0.043
21/03/2023	23	0.013	0.027
		SUMA	4.523

		d. juliano	83	
	24-Mar			
Date	Time	ET Agpres	ET calibrado	
24/03/2023	24	0.016	0.030	
24/03/2023	1	0.019	0.032	
24/03/2023	2	0.011	0.026	
24/03/2023	3	0.009	0.025	
24/03/2023	4	0.009	0.025	
24/03/2023	5	0.009	0.025	
24/03/2023	6	0.018	0.031	
24/03/2023	7	0.066	0.067	
24/03/2023	8	0.253	0.203	
24/03/2023	9	0.308	0.243	
24/03/2023	10	0.398	0.308	
24/03/2023	11	0.554	0.422	
24/03/2023	12	0.645	0.488	
24/03/2023	13	0.588	0.447	
24/03/2023	14	0.651	0.493	
24/03/2023	15	0.414	0.320	
24/03/2023	16	0.296	0.234	
24/03/2023	17	0.124	0.109	
24/03/2023	18	0.040	0.047	
24/03/2023	19	0.011	0.026	
24/03/2023	20	0.018	0.031	
24/03/2023	21	0.009	0.025	
24/03/2023	22	0.009	0.025	
25/03/2023	23	0.017	0.031	
SUMA 3.712				

		d juliano	92
	2-Abr	a. juliulo	/2
Date	Time	ET Agpres	ET calibrado
2/04/2023	24	0.009	0.025
2/04/2023	1	0.009	0.025
2/04/2023	2	0.009	0.025
2/04/2023	3	0.009	0.025
2/04/2023	4	0.009	0.025
2/04/2023	5	0.010	0.026
2/04/2023	6	0.027	0.038
2/04/2023	7	0.094	0.087
2/04/2023	8	0.216	0.176
2/04/2023	9	0.305	0.240
2/04/2023	10	0.451	0.347
2/04/2023	11	0.420	0.324
2/04/2023	12	0.459	0.353
2/04/2023	13	0.531	0.405
2/04/2023	14	0.594	0.451
2/04/2023	15	0.358	0.280
2/04/2023	16	0.223	0.181
2/04/2023	17	0.077	0.074
2/04/2023	18	0.032	0.042
2/04/2023	19	0.011	0.026
2/04/2023	20	0.014	0.028
2/04/2023	21	0.010	0.026
2/04/2023	22	0.010	0.025
3/04/2023	23	0.010	0.025
		SUMA	3 277

		d. juliano	96
	6-Abr		
Date	Time	ET Agpres	ET calibrado
6/04/2023	24	0.009	0.025
6/04/2023	1	0.009	0.025
6/04/2023	2	0.009	0.025
6/04/2023	3	0.009	0.025
6/04/2023	4	0.009	0.025
6/04/2023	5	0.009	0.025
6/04/2023	6	0.025	0.037
6/04/2023	7	0.093	0.086
6/04/2023	8	0.228	0.184
6/04/2023	9	0.317	0.249
6/04/2023	10	0.377	0.293
6/04/2023	11	0.542	0.414
6/04/2023	12	0.495	0.379
6/04/2023	13	0.403	0.312
6/04/2023	14	0.295	0.233
6/04/2023	15	0.162	0.136
6/04/2023	16	0.116	0.103
6/04/2023	17	0.034	0.043
6/04/2023	18	0.012	0.026
6/04/2023	19	0.013	0.028
6/04/2023	20	0.012	0.027
6/04/2023	21	0.011	0.026
6/04/2023	22	0.009	0.024
7/04/2023	23	0.009	0.024
		SUMA	2 772

6/04/2023	21	0.011	0.026
6/04/2023	22	0.009	0.024
7/04/2023	23	0.009	0.024
		SUMA	2.772
		d. juliano	111
:	21-Abr		
Date	Time	ET Agpres	ET calibrado
21/04/2023	24	0.010	0.025
21/04/2023	1	0.010	0.025
21/04/2023	2	0.010	0.025
21/04/2023	3	0.010	0.025
21/04/2023	4	0.009	0.025
21/04/2023	5	0.009	0.025
21/04/2023	6	0.020	0.032
21/04/2023	7	0.072	0.071
21/04/2023	8	0.183	0.151
21/04/2023	9	0.375	0.292
21/04/2023	10	0.327	0.256
21/04/2023	11	0.673	0.509
21/04/2023	12	0.765	0.576
21/04/2023	13	0.414	0.320
21/04/2023	14	0.188	0.155
21/04/2023	15	0.155	0.131
21/04/2023	16	0.104	0.094
21/04/2023	17	0.035	0.043
21/04/2023	18	0.025	0.036
21/04/2023	19	0.010	0.026
21/04/2023	20	0.010	0.026
21/04/2023	21	0.010	0.025
21/04/2023	22	0.010	0.025
22/04/2023	23	0.010	0.025
		SUMA	2.945

		d. juliano	107
	17-Abr		
Date	Time	ET Agpres	ET calibrado
17/04/2023	24	0.009	0.025
17/04/2023	1	0.009	0.025
17/04/2023	2	0.009	0.025
17/04/2023	3	0.009	0.024
17/04/2023	4	0.009	0.024
17/04/2023	5	0.009	0.024
17/04/2023	6	0.017	0.030
17/04/2023	7	0.047	0.052
17/04/2023	8	0.128	0.111
17/04/2023	9	0.253	0.203
17/04/2023	10	0.306	0.242
17/04/2023	11	0.361	0.282
17/04/2023	12	0.586	0.445
17/04/2023	13	0.562	0.428
17/04/2023	14	0.460	0.354
17/04/2023	15	0.374	0.291
17/04/2023	16	0.200	0.164
17/04/2023	17	0.027	0.038
17/04/2023	18	0.031	0.041
17/04/2023	19	0.012	0.027
17/04/2023	20	0.015	0.029
17/04/2023	21	0.022	0.034
17/04/2023	22	0.023	0.035
18/04/2023	23	0.011	0.026
		SUMA	2.979

		d juliano	127
	7-May	a. jununo	127
Date	Time	ET Agpres	ET calibrado
7/05/2023	24	0.010	0.025
7/05/2023	1	0.010	0.025
7/05/2023	2	0.011	0.026
7/05/2023	3	0.011	0.026
7/05/2023	4	0.010	0.025
7/05/2023	5	0.010	0.025
7/05/2023	6	0.017	0.031
7/05/2023	7	0.072	0.070
7/05/2023	8	0.220	0.179
7/05/2023	9	0.456	0.350
7/05/2023	10	0.592	0.450
7/05/2023	11	0.527	0.402
7/05/2023	12	0.649	0.492
7/05/2023	13	0.680	0.514
7/05/2023	14	0.593	0.450
7/05/2023	15	0.372	0.289
7/05/2023	16	0.250	0.200
7/05/2023	17	0.018	0.031
7/05/2023	18	0.023	0.035
7/05/2023	19	0.029	0.039
7/05/2023	20	0.034	0.043
7/05/2023	21	0.030	0.040
7/05/2023	22	0.031	0.041
7/05/2023	23	0.022	0.034
		SUMA	3.844

	d. juliano	131		d. juliano	151
	11-May			31-May	
Date	Time	ET portatil	Date	Time	ET Portatil
11/05/2023	24	0.013	31/05/2023	24	0.016
11/05/2023	1	0.012	31/05/2023	1	0.016
11/05/2023	2	0.011	31/05/2023	2	0.019
11/05/2023	3	0.010	31/05/2023	3	0.022
11/05/2023	4	0.011	31/05/2023	4	0.021
11/05/2023	5	0.011	31/05/2023	5	0.021
11/05/2023	6	0.022	31/05/2023	6	0.023
11/05/2023	7	0.108	31/05/2023	7	0.060
11/05/2023	8	0.235	31/05/2023	8	0.156
11/05/2023	9	0.402	31/05/2023	9	0.255
11/05/2023	10	0.496	31/05/2023	10	0.498
11/05/2023	11	0.457	31/05/2023	11	0.476
11/05/2023	12	0.543	31/05/2023	12	0.516
11/05/2023	13	0.450	31/05/2023	13	0.358
11/05/2023	14	0.447	31/05/2023	14	0.498
11/05/2023	15	0.341	31/05/2023	15	0.260
11/05/2023	16	0.179	31/05/2023	16	0.205
11/05/2023	17	0.065	31/05/2023	17	0.004
11/05/2023	18	0.035	31/05/2023	18	0.044
11/05/2023	19	0.030	31/05/2023	19	0.040
11/05/2023	20	0.021	31/05/2023	20	0.028
11/05/2023	21	0.028	31/05/2023	21	0.000
11/05/2023	22	0.022	31/05/2023	22	0.023
11/05/2023	23	0.020	31/05/2023	23	0.019
	SUMA	3.968		SUMA	3.580

		d. juliano	153
	2-Jun		
Date	Time	ET Agpres	ET calibrado
2/06/2023	24	0.018	0.031
2/06/2023	1	0.018	0.031
2/06/2023	2	0.018	0.031
2/06/2023	3	0.016	0.030
2/06/2023	4	0.017	0.030
2/06/2023	5	0.014	0.028
2/06/2023	6	0.020	0.033
2/06/2023	7	0.095	0.087
2/06/2023	8	0.123	0.108
2/06/2023	9	0.203	0.166
2/06/2023	10	0.253	0.203
2/06/2023	11	0.343	0.269
2/06/2023	12	0.229	0.185
2/06/2023	13	0.226	0.183
2/06/2023	14	0.206	0.168
2/06/2023	15	0.187	0.155
2/06/2023	16	0.148	0.126
2/06/2023	17	0.006	0.022
2/06/2023	18	0.028	0.039
2/06/2023	19	0.021	0.033
2/06/2023	20	0.018	0.031
2/06/2023	21	0.016	0.029
2/06/2023	22	0.011	0.026
2/06/2023	23	0.010	0.025
		SUMA	2.071

Anexo 7: Imágenes térmicas corregidas en °C

Constantes de calibración Coordenada (WGS84, UTM) Fecha DDS Píxel NDVI IAF Albedo T(K) X Y a b 26-Ene 76 Frío 288199.55 8664041.99 0.88 1.85 0.21 298.31 0.189 -55.001 Caliente 288201.83 8664033.69 0.09 0.19 0.24 314.03 13-Feb 94 Frio 288199.17 0.93 0.29 295.52 8664040.77 2.18 0.095 -25.480 0.28 Caliente 288197.79 8664046.11 0.14 0.22 333.94 20-Feb 101 Frío 288199.19 8664040.79 0.89 1.95 0.23 300.69 0.074 -20.590 Caliente 288197.57 8664044.61 0.12 0.21 0.23 336.52 27-Feb 108 Frío 1.93 0.31 297.83 0.111 -28.634 288205.17 8664036.87 0.89 Caliente 288197.51 8664037.71 0.11 0.20 0.28 316.64 16-Mar 125 Frío 288204.31 8664042.46 0.92 2.11 0.33 298.30 0.192 -56.741 Caliente 288196.39 8664043.54 0.11 0.20 0.23 318.66 27-Mar 136 Frío 288203.51 8664042.08 0.87 1.83 0.34 299.15 0.136 -39.974 Caliente 288196.57 8664043.70 0.10 0.20 0.21 330.50 11-Abr 151 Frío 288204.37 8664042.44 0.78 1.40 0.23 301.44 0.051 -12.791 288197.99 8664034.60 Caliente 0.12 0.21 0.32 328.75

Anexo 8: Selección del píxel frío y caliente con valores de NDVI, albedo, temperatura y las constantes de calibración "a y b" de la Molina

Anexo 9: Resumen de resultados de los componentes del balance	e energético, l	ЕТс у
otros resultados, según su la fenológica del cultivo para la Molina		

D / II	Fase vegetativa Fase reproductiva				Fase de maduración		
Detaile	76 DDS	94 DDS	101 DDS	108 DDS	125 DDS	136 DDS	151 DDS
P1							
Albedo	$0,17 \pm 0,02$	$0,25 \pm 0,02$	$0,22 \pm 0,02$	$0,29 \pm 0,02$	$0,28 \pm 0,03$	$0,28 \pm 0,02$	$0,24 \pm 0,02$
Térmica	$27,07 \pm 0,74$	$23,42 \pm 0,73$	$28,51 \pm 1,08$	$25,01 \pm 0,77$	$26,87 \pm 0,77$	$29,89 \pm 1,13$	$31,11 \pm 1,31$
NDVI	$0,72 \pm 0,11$	$0,89 \pm 0,04$	$0,85 \pm 0,03$	$0,86 \pm 0,03$	$0,90 \pm 0,01$	$0,83 \pm 0,02$	$0,70 \pm 0,03$
IAF	$1,25 \pm 0,36$	$1,92 \pm 0,16$	$1,75 \pm 0,14$	$1,79 \pm 0,12$	$1,97 \pm 0.08$	$1,64 \pm 0,12$	$1,13 \pm 0,10$
Rn	771,64 ± 22,14	$714,34 \pm 25,76$	$712,26 \pm 18,17$	$660,78 \pm 22,01$	578,49 ± 29,03	520,97 ± 18,23	595,93 ± 16,13
G	74,08 ± 16,30	37,11 ± 7,39	$52,33 \pm 7,65$	$44,15 \pm 6,15$	$33,10 \pm 4,21$	$48,01 \pm 5,77$	$78,32 \pm 6,05$
Н	$271,62 \pm 25,93$	$119,97 \pm 1,94$	$195,06 \pm 5,48$	$196,67 \pm 3,08$	$70,53 \pm 12,91$	$71,13 \pm 9,51$	$213,88 \pm 3,85$
LE	425,95 ± 31,38	$557,26 \pm 22,57$	$464,87 \pm 16,85$	419,96 ± 20,15	474,86 ± 33,47	$401,83 \pm 21,53$	$303,72 \pm 20,73$
ETc	$4,85 \pm 0,36$	$4,86 \pm 0,20$	$4,92 \pm 0,18$	$7,21 \pm 0,35$	$4,22 \pm 0,30$	$4,18 \pm 0,22$	$2,20 \pm 0,15$
P2							10
Albedo	$0,16 \pm 0,02$	$0,25 \pm 0,03$	$0,22 \pm 0,02$	$0,29 \pm 0,02$	$0,29 \pm 0,03$	$0,28 \pm 0,02$	$0,24 \pm 0,02$
Térmica	$27,03 \pm 0,75$	$24,34 \pm 1,61$	$28,38 \pm 0,67$	$25,94 \pm 1,05$	$26,72 \pm 0,71$	$29,35 \pm 1,21$	$31,87 \pm 1,10$
NDVI	$0,69 \pm 0,09$	$0,88 \pm 0,03$	$0,85 \pm 0,03$	$0,85 \pm 0,04$	$0,90 \pm 0,01$	$0,85 \pm 0,02$	$0,72 \pm 0,03$
IAF	$1,11 \pm 0,28$	$1,90 \pm 0,17$	$1,70 \pm 0,15$	$1,73 \pm 0,16$	$1,96 \pm 0,07$	$1,73 \pm 0,09$	$1,19 \pm 0,13$
Rn	787,17 ± 22,60	$711,83 \pm 31,01$	$710,18 \pm 23,75$	$655,15 \pm 25,87$	$570,54 \pm 24,95$	$519,53 \pm 18,45$	$593,77 \pm 14,66$
G	80,29 ± 11,82	$39,36 \pm 8,51$	$54,32 \pm 7,96$	$48,49 \pm 7,78$	$33,42 \pm 3,48$	43,61 ± 4,32	$76,75 \pm 6,61$
Н	$282,98 \pm 23,27$	$123,22 \pm 3,12$	$193,73 \pm 3,36$	199,67 ± 3,35	67,98 ± 11,93	$66,90 \pm 10,42$	$217,84 \pm 3,91$
LE	423,90 ± 36,91	$549,25 \pm 25,88$	$462,13 \pm 18,87$	$406,98 \pm 24,94$	$469,14 \pm 28,04$	$409,02 \pm 25,29$	$299,18 \pm 17,07$
ETc	$4,83 \pm 0,42$	$4,79 \pm 0,23$	$4,89 \pm 0,20$	$6,99 \pm 0,43$	$4,17 \pm 0,25$	$4,25 \pm 0,26$	$2,17 \pm 0,12$
P3							13
Albedo	$0,18 \pm 0,02$	$0,26 \pm 0,03$	$0,22 \pm 0,02$	$0,28 \pm 0,03$	$0,29 \pm 0,03$	$0,28 \pm 0,02$	$0,24 \pm 0,02$
Térmica	$27,39 \pm 0,90$	$23,07 \pm 0,86$	$28,01 \pm 0,40$	$26,80 \pm 0,55$	$27,20 \pm 0,80$	$28,73 \pm 1,30$	$31,84 \pm 1,10$
NDVI	$0,73 \pm 0,12$	$0,90 \pm 0,02$	$0,85 \pm 0.03$	$0,87 \pm 0,03$	$0,89 \pm 0,01$	$0,83 \pm 0,02$	0,66 ± 0,03
IAF	$1,29 \pm 0,37$	$1,97 \pm 0,13$	$1,74 \pm 0,13$	$1,82 \pm 0,14$	$1,92 \pm 0,09$	$1,62 \pm 0,11$	$1,01 \pm 0.09$
Rn	$756,20 \pm 21,43$	$705,67 \pm 26,81$	$712,51 \pm 20,15$	$652,60 \pm 32,04$	564,35 ± 27,29	$522,86 \pm 20,36$	$590,57 \pm 18,99$
G	$72,59 \pm 17,02$	$34,57 \pm 7,05$	$51,70 \pm 6,85$	$45,30 \pm 7,97$	$35,67 \pm 4,90$	$47,59 \pm 5,63$	$84,53 \pm 4,46$
Н	286,78 ± 24,76	$119,03 \pm 3,16$	$191,52 \pm 3,25$	$204,92 \pm 3,49$	75,86 ± 13,26	61,01 ± 11,04	$213,91 \pm 4,03$
LE	396,83 ± 29,31	552,07 ± 23,83	469,29 ± 17,14	402,37 ± 28,59	452,83 ± 26,90	$414,26 \pm 24,54$	$292,13 \pm 21,15$
ETc	$4,52 \pm 0,33$	$4,81 \pm 0,21$	$4,96 \pm 0,18$	$6,92 \pm 0,49$	$4,03 \pm 0,24$	$4,30 \pm 0,25$	$2,12 \pm 0,15$

Anexo 10: Variación espacial de Rn en fase vegetativa (76 a 94 DDS), reproductiva (101 a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina

Anexo 11: Variación espacial de H en fase vegetativa (76 a 94 DDS), reproductiva (101 a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina

Anexo 12: Variación espacial de G en fase vegetativa (76 a 94 DDS), reproductiva (101 a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina

Anexo 13: Variación espacial del LE en fase vegetativa (76 a 94 DDS), reproductiva (101 a 136 DDS) y maduración (151 DDS) del cultivo de arroz para La Molina

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE INGENIERÍA AGRÍCOLA

DEPARTAMENTO DE RECURSOS HIDRICOS DRH LABORATORIO DE AGUA, SUELO MEDIO AMBIENTE,FERTIRRIEGO Av. La Molina s/n teléf.: 614 7800 anexo 226 / 349 3969 E mail: las-fia@lamolina.edu.pe

ANÁLISIS DE SUELO - CARACTERIZACIÓN

SOLICITANTE PROYECTO : ROXANA SARA PEÑA AMARO

: EVAPOTRANSPIRACIÓN ESTIMADA POR BALANCE DE ENERGÍA USANDO INFORMACIÓN REMOTA Y RIEGO CON ALTERNANCIA DE HUMEDECIMIENTO Y SECADO EN ARROZALES, CHICLAYO

UBICACIÓN RESP. ANÁLISIS FECHA DE ANÁLISIS : Lambaqueye, provincia Chiclayo : Ing. Elizabeth Monterrey Porras : La Molina, 12 de abril de 2023

				the second s						and the second								
nco ni	Número de muestra		CE	Análisis Mecánico				рН	M.O.	Р	к	CaCO ₃	Cationes Cambiables					
	Lab.	Campo	dS m ⁻¹ Relación 1:1	Arena %	Limo %	Arcilla %	Textura	Relación 1:1	%	ppm	ppm	%	CIC total	Ca ⁺⁺	Mg**	Na	K.	AI+3+H+1
													Cmol (+) Kg ¹					
Intel S	0	Interview.	CIC efectiv		11	niesia	foro P	Total Fo	00160		histor	bas	0			(2	(Sala	1.0
071 (+)1	19385	florida	2 70	31.68	34.00	34 32	Franco	7.67	2.01	EE GA	1277 40	27.00	19 70	10.70	2.01	0.15	0.95	
101	01-0	C1	un	01.00	04.00	04.02	arcilloso	1.01	2.01	00.04	1377.40	27.09	10.79	12.70	2.01	0.15	0.65	-
	10-20	Eja		1-2		RI - 240	u.o.iiouo		10.1		94 - S	ofbe	M	1	salin	8)080	Ligera	
	CE 03	8/00	in e	14.01		VID-2 C			-					-	-			
											10	EAGUA,	DUELO,					
											330		Politica (Ha) Claud feb n					
					LABORAT	FORIO DE /	ANALISIS DE	AGUA Y SUEL	0		AWA	Facu	Itad		abibiti			
						-	-	211			DE	d	9	ENT	ton hos			
						K	in 5 k	PH.			198	ng. Ag	rícola	a T	1			
					Dra.	Rocio	Pastor.	läuregui			(Ling	Contrast Number of		5	hilliple		Ligen	
						JEFA DE	LABORAT	ORIO			168	100	-	50//				
MÉTODOS SEGUIDOS EN EL ANÁLISIS

CARACTERIZACIÓN COMPLETA

- 1. Análisis mecánico: textura por método Hidrómetro
- 2. Conductividad eléctrica: C.E. Lectura de extracto de relación sueloagua 1:1 y extracto de la pasta saturada
- 3. pH: lectura de extracto de relación suelo- agua 1: 1 y extracto de la pasta saturada
- 4.. Calcáreo total: método gaso- volumétrico
- 5. Materia orgánica: método de Walkley y Black. % M.O = % C x 1.724
- 6. Nitrógeno total: método Micro Kjeldah1
- 7. Fósforo: método de Olsen Modificado, extracto. NaHC03 O,5M, pH= 8,5
- 8. Potasio disponible: extracto acetato de amonio 1N, pH 7,0
- 9. Capacidad de intercambio cationico: acetato de amonio 1N pH 7,0
- 10. Cambiables: determinado en extracto amónico
- Ca²⁺:espectrofotometría de absorción atómica
- Mg2+: espectrofotometria dé absorción atómica
- K⁺ : especirofotomelría de absorción atómica
- Na⁺ : espectrofotometría de absorción atómica

SALINIDAD y SODICIDAD (1:3)

1. Cationes solubles

- Ca²⁺ : espectrofotometría de absorción atómica
- Mg²⁺ : espectrofotometría de absorción atómica
- K^{+} : espectrofotometría de absorción atómica
- Na⁺ : espectrofotometría de absorción atómica
- 2. Aniones solubles
- Cr : volumétrico: nitrato de plata
 - CO3 : volumétrico: ácido clohídrico
 - HCO 3 : volumétrico: ácido clohídrico
 - SO[#]₄ : turbidimétrico: sulfato de bario
 - NO₃ : colorimétrico
- 3. Yeso soluble: solubilización con agua y precipitación con acetona 4. Boro soluble: colorímétrico: método de la curcumina

INTERPRETACIÓN Disponibles

				Contraction of the second second		
.E. (Sales)	Clase	Materia	Calcáreo Total	Fósforo	Potasio	
(dS m ⁻¹)		Orgánica	CaC0 ₃ (%)	P (ppm)	K (ppm)	
Muy ligeramente salino	Bajo	< 2%	< 1%	<7	<100	2-5
Ligeramente salino	Medio	2 - 4%	1- 5%	7-14	100 - 240	5 - 1
Moderadamente salino	Alto	> 4%	> 5%	>14	> 240	10 - 1

pane and i	 	And in case	 -
And the second	 		A C
	 	- E IN	
and the second of	 		

 $1 \text{ mmhos/cm} = 1 \text{ dS m}^{-1}$ 1 meq/100gr = 1 cmol(+) Kg⁻¹

CIC efectiva cmol(+) Kg ⁻¹		1	CIC total cmol(+) Kg ⁻¹		
2-5	muy baja		0 - 10	muy baja	
5 - 10	baja		10 - 20	baja	
10 - 15	media		20 - 35	media	
15 - 20	alta		35 - 45	media-alta	
> 20	muy alta		> 45	alta	

* CIC: Capacidad de intercambiable de cationes

Reacción del Suelo (pH)		
5,1 - 5,5	Fuertemente ácido	
5,6 - 6,0	Moderadamente ácido	
6,6 - 7,3	Neutro	
7,4 - 7,8	Ligeramente alcalino	
7,9 - 8,4	Moderadamente alcalino	

C.E. (Sales) (dS m⁻¹)

Fuertemente salino Extremandamente salino

< 2

2-4

4-8

8 - 16

> 16

*Según respuesta de los cultivos