UNIVERSIDAD NACIONAL AGRARIA
LA MOLINA
ESCUELA DE POSGRADO
MAESTRÍA EN GESTIÓN INTEGRAL DE CUENCAS
HIDROGRÁFICAS

“REDUCCIÓN DE LA CONTAMINACIÓN DE AGUA MEDIANTE
AIREACIÓN Y COSECHA DE LENTEJA EN LA BAHÍA INTERIOR
DEL LAGO TITICACA, PUNO”

Presentada Por:

PERCY ARTURO GINEZ CHOQUE

TESIS PARA OPTAR EL GRADO DE
MAGISTER SCIENTIAE EN GESTIÓN INTEGRAL DE CUENCAS
HIDROGRÁFICAS

Lima – Perú

2021
UNIVERSIDAD NACIONAL AGRARIA
LA MOLINA

ESCUELA DE POSGRADO

MAESTRÍA EN GESTIÓN INTEGRAL DE CUENCAS HIDROGRÁFICAS

“REDUCCIÓN DE LA CONTAMINACIÓN DE AGUA MEDIANTE AIREACIÓN Y COSECHA DE LENTEJA EN LA BAHÍA INTERIOR DEL LAGO TITICACA - PUNO”

TESIS PARA OPTAR EL GRADO DE:

MAGISTER SCIENTIAE

Presentada Por:

PERCY ARTURO GINEZ CHOQUE

Sustentada y aprobada ante el siguiente jurado:

.. ..
Mg.Sc. Rosa Miglio Toledo Mg.Sc. Ricardo Apacilla Navalvert
PRESIDENTE ASESOR

.. ..
MIEMBRO MIEMBRO
DEDICATORIA

El presente trabajo le dedico con mucho cariño a mi familia, a mi esposa Romi y mis hijos Percy Aldeir y Alioska por su tolerancia y apoyo incondicional y por creer en mí.
AGRADECIMIENTOS

Al M.Sc. Ricardo Apacilla Nalvarte, por su apoyo en la revisión del perfil de proyecto hasta su culminación y el aporte permanente en la viabilidad hasta su culminación del presente trabajo de investigación.

Al Dr. Eduardo Flores Condori, docente de la Universidad Nacional del Altiplano, quien en su afán de investigar el Titicaca ha permitido involucrarse en el trabajo que hoy sentencia su aporte a la solución al problema de contaminación.

Al Ing. Fran Lino Talavera, desde la Dirección de Estudios del Proyecto Especial Binacional Lago Titicaca, por su aporte en el acceso a la información y las facilidades en los trabajos de campo y laboratorio.

A mis compañeros de trabajo de la Autoridad Binacional del Lago Titicaca ALT y en especial al Presidente Ejecutivo Ing. Julián Barra Catacora por su apoyo en concretar esta experiencia de reducir la contaminación de las aguas en el Titicaca.

A la Universidad Nacional Agraria La Molina, en cuyos claustros académicos de la Facultad de Ingeniería Agrícola me he permitido formarme con alta especialidad en recursos hídricos y la gestión integral de cuencas.

Gracias.
ÍNDICE GENERAL

I. INTRODUCCIÓN .. 1
II. REVISIÓN DE LITERATURA .. 3
 2.1 LA CONTAMINACIÓN DE LAS AGUAS .. 3
 2.2 TIPOS DE CONTAMINACIÓN ... 3
 2.2.1 Por su origen .. 3
 2.2.2 Por el tipo de contaminante .. 4
 2.3. PRINCIPALES CONTAMINANTES DEL AGUA .. 6
 2.3.1 Microorganismos Patógenos .. 6
 2.3.2 Desechos Orgánicos .. 7
 2.3.3 Sustancias Químicas inorgánicas o Compuestos tóxicos 7
 2.3.4 Nutrientes Vegetales Inorgánicos .. 7
 2.4 LOS COMPUESTOS ORGÁNICOS ... 8
 2.4.1 Sedimentos y Materiales Suspendidos .. 8
 2.4.2 Sustancia Radioactivas ... 8
 2.4.3 Contaminación térmica ... 8
 2.5. CARACTERÍSTICAS FÍSICAS DEL AGUA ... 8
 2.5.1. Color .. 8
 2.5.2. Temperatura ... 9
 2.5.3. Turbiedad ... 9
 2.5.4. Olor .. 10
 2.6. CARACTERÍSTICAS QUÍMICAS .. 11
 2.6.1. Potencial de hidrogeno (pH) .. 11
 2.6.2. Oxígeno disuelto (OD) ... 11
 2.6.3. Demanda química de oxígeno (DQO) ... 12
 2.6.4. Demanda bioquímica de oxígeno (DBO) .. 12
 2.6.5. Fosfato ... 13
 2.6.6. Fósforo total ... 13
 2.6.7 Nitratos y Nitritos .. 14
 2.6.8. Nitrato .. 15
 2.6.9. Nitrógeno total ... 15
 2.6.10. Conductividad .. 15
2.11.7. Ley N° 29906 Ley que declara de necesidad y utilidad pública la prevención y recuperación ambiental integral del Lago Titicaca y sus afluentes......................... 43

III. MATERIALES Y MÉTODOS... 44
3.1 CARACTERÍSTICAS DE LA ZONA ... 44
3.2. DESCRIPCIÓN DEL PROBLEMA ... 45
3.3. PLANTEAMIENTO DE SOLUCIONES ... 46
3.3.1. Instalación del sistema de aireación .. 47
3.3.2. Cosecha de lenteja (lemna sp.) .. 49
3.4. MONITOREO DE LA CALIDAD DEL AGUA ... 53
3.4.1. Medición de parámetros de campo y registro de información 54
3.4.2. Materiales y método de ejecución: ... 54
3.5. ANÁLISIS ESTADÍSTICOS ... 56

IV. RESULTADOS Y DISCUSIÓN .. 58
4.1 EL EFECTO DEL SISTEMA DE AIREACIÓN .. 58
4.2 LA COSECHA DE LENTEJA ... 59
4.2.1. Volumen de cosecha colectada.. 59
4.2.2. Disposición de lemnas cosechadas ... 60
4.2.3. Costo estimado de la cosecha y disposición 61
4.3. CALIDAD DE AGUA ... 62
4.3.1. La variación del pH ... 62
4.3.2. La turbiedad ... 63
4.3.3. Niveles de oxígeno disuelto (OD) ... 64
4.3.4. La temperatura (°C) ... 65
4.3.5. Los sólidos totales disueltos (TDS) .. 68
4.3.6. El nitrato (NO₃⁻) .. 69
4.3.7. El nitrito (NO₂⁻) .. 69
4.3.8. El fosfato (PO₄³⁻) ... 70
4.3.9. El sulfato (SO₄²⁻) ... 71
4.3.10. Demanda bioquímica de oxígeno (DBO) ... 72
4.3.11. Los coliformes termotolerantes (CTE) ... 73
4.4. LÍNEA BASE ... 74
4.5 LÍNEA FINAL ... 75

V. CONCLUSIONES ... 77

VI. RECOMENDACIONES ... 78
ÍNDICE DE TABLAS

Tabla 1: Fuente externa contaminante a la Bahía Interior de Puno (BIP) (en %). 45
Tabla 2: Parámetros en estudio ... 53
Tabla 3: Preparación de materiales y equipos .. 54
Tabla 4: Resumen de resultados de la investigación al inicio y al final de aireación 58
Tabla 5: Prueba de significancia de Tukey (P ≤ 0.05) de la cosecha de lenteja de agua en la bahía interior de Puno .. 59
Tabla 6: Análisis de variancia para la cosecha de lenteja de agua en la bahía interior del lago Titicaca .. 60
Tabla 7: Estimado de costos realizados en la cosecha de lenteja ... 61
Tabla 8: Prueba de significancia de Tukey (P=0.05) efecto de pH para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica .. 62
Tabla 9: Prueba de significancia de Tukey (P=0.05) efecto de turbiedad para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica .. 64
Tabla 10: Prueba de significancia de Tukey (P=0.05) efecto de OD para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica .. 65
Tabla 11: Prueba de significancia de Tukey (P=0.05) efecto de temperatura para dos profundides en el proceso del sistema de aireación en la remoción de materia orgánica .. 66
Tabla 12: Prueba de significancia de Tukey (P=0.05) efecto de temperatura para dos zonas de estudio en el proceso del sistema de aireación en la remoción de materia orgánica .. 66
Tabla 13: Prueba de significancia de Tukey (P=0.05) efecto de temperatura para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica .. 67
Tabla 14: Prueba de significancia de Tukey (P=0.05) efecto de sólidos totales disueltos (TDS) para 10 años en el proceso del sistema de aireación en la remoción de materia orgánica .. 68
Tabla 15: Prueba de significancia de Tukey (P=0.05) efecto de de nitrato (NO_3^-) para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica 70
Tabla 16: Prueba de significancia de Tukey (P=0.05) efecto de fosfato (PO_4^{3-}) para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica 71
Tabla 17: Prueba de significancia de Tukey (P=0.05) para el efecto de sulfato para diez años de observación .. 72
Tabla 18: Prueba de significancia de Tukey (P=0.05) para el efecto de demanda bioquímica de oxígeno (DBO) para diez años en el proceso del sistema de aireación 73
Tabla 19: Prueba de significancia de Tukey (P=0.05) efecto de coliformes termotolerantes para diez años de observación .. 74
Tabla 20: Características de Calidad del Agua “bahía interior de Puno” Año 2000 75
ÍNDICE DE FIGURAS

Figura 1: Ubicación del área del proyecto: Bahía Interior del Lago Titicaca – Puno........ 45
Figura 2: Imagen satelital del Área con degradación ambiental 48
Figura 3 : Ubicación de los aireadores en la BIP. ... 49
Figura 4: Área de intervención de la cosecha de lehma 2007... 50
Figura 5: Área de intervención de cosecha de lehma 2008... 51
Figura 6: Área de intervención de cosecha de lehma 2009... 51
Figura 7: Área de intervención de cosecha acumulada de lehma 2007 - 2009 52
Figura 8: Presencia de Lemna en la BIP... 52
Figura 9 : Evolución de la cantidad de Lemna en la bahía Interior de Puno................. 60
ÍNDICE DE ANEXOS

Anexo: 1 Efecto del pH en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 83
Anexo: 2 Efecto de la turbiedad en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior expresada en NTU (Unidades Nefelométricas de turbidez) 2018 .. 83
Anexo: 3 Análisis de variancia para el efecto de oxígeno disuelto (OD) en el proceso del sistema de aireación en la remoción de materia orgánica expresada (mg/L) 83
Anexo: 4 Análisis de variancia para el efecto de temperatura en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 83
Anexo: 5 Análisis de variancia para el efecto de sólidos totales disueltos (TDS) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 84
Anexo: 6 Análisis de variancia para el efecto de nitrito (NO$_2^-$) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 84
Anexo: 7 Análisis de variancia para el efecto de nitrato (NO$_3^-$) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 84
Anexo: 8 Análisis de variancia para el efecto de fosfato (PO$_4^{3-}$) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 84
Anexo: 9 Análisis de variancia para el efecto de sulfato en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 85
Anexo: 10 Análisis de variancia para el efecto de demanda bioquímica de oxígeno (DBO) en el proceso del sistema de aireación en la remoción de materia orgánica en la bahía interior ... 85
Anexo: 11 Análisis de variancia para el efecto coliformes termotolerantes en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas de la bahía interior 85
Anexo: 12 Análisis de variancia para el efecto de coliformes totales en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior ... 85
Anexo: 13 Resultados de análisis de resultados de análisis de parámetro químico pH 86
Anexo: 14 Resultados de análisis de Parámetro Químico Turbiedad (NTU) 86
Anexo: 15 Resultados de análisis de Parámetro Químico Oxígeno Disuelto (mg/l) 86
Anexo: 16 Resultados de análisis de Parámetro Químico Oxígeno Disuelto (mg/l) 87
Anexo: 17 Resultados de análisis de Parámetro Químico Sólidos Totales Disueltos (mg/l) .. 87
Anexo: 18 Resultados de análisis de Parámetro Químico Nitrito NO$_2$ -N (mg/l)......... 87
Anexo: 19 Resultados de análisis de Parámetro Químico Nitrato (NO$_3$ -N) 88
Anexo: 20 Resultados de análisis de Parámetro Químico Fosfato PO$_4$ - (mg/l) 88
Anexo: 21 Resultados de análisis de Parámetro Químico Sulfato SO$_4$ - (°C) 88
Anexo: 22 Resultados de análisis de Parámetro Químico DBO$_5$ (mg/l) 89
Anexo: 23 Resultados de análisis de parámetro Biológico Coliformes Termotolerantes (NMP) ... 89
Anexo: 24 Resultados de análisis de Parámetro Biológico Coliformes Totales (NMP) ... 89
RESUMEN

En este trabajo de investigación se analizan tres momentos en la reducción de la contaminación de las aguas de la bahía interior del lago Titicaca, el primero es la cosecha mecánica de lenteja de agua, un segundo aspecto es la aireación de fondo en dos estaciones de control y el tercero se refiere al monitoreo de la calidad del agua en base a la metodología de la Autoridad Nacional del Agua. El muestreo de la calidad del agua se realizó en dos zonas y durante el periodo del 2008 al 2017, siendo analizada en los laboratorios de calidad del agua del Proyecto Especial Binacional del Lago Titicaca PELT. Se analizaron parámetros fisicoquímicos y microbiológicos utilizando lineamientos de la EPA y APHA, los nutrientes se determinaron utilizando espectrofotometría. El objetivo principal es Evaluar la reducción de la contaminación de agua, mediante el proceso de aireación y cosecha mecánica de lenteja en la bahía interior del lago Titicaca de Puno. El sistema de aireación permitió mejoras en los niveles de concentración de oxígeno disuelto alcanzando niveles hasta 8.2 mg/l, lo que permitió reducir la carga orgánica de manera progresiva desde el año 2008 al 2013, (periodo de aireación) y logrando su control moderado a partir del 2014 al 2017 (periodo sin aireación), las condiciones de turbiedad fueron controladas incrementando el aspecto del cuerpo de agua con mejor visibilidad, reducción de olores e incremento de la avifauna y el retorno de especies acuáticas. La cosecha de la lenteja ha permitido una mejor aireación superficial reduciendo la producción en el 2007 fue de 12,683 m³/año y el 2011 con 1352 m³/año. El monitoreo de calidad del agua del pH durante la aireación fue de 9.54 y después 10.25; el oxígeno disuelto (OD) antes de la aireación fue de 1 mg/l, durante la aireación 8.20 mg/l y después de la aireación 4.94 mg/l; el nitrato en promedio antes de la aireación fue de 1.13 mg/l y después 6.13 mg/l, en comparación con el estándar máximo de 13 mg/l, sin exceso al rango; la DBOs antes del proyecto fue de 27 mg/l, después 11.61 mg/l, todos los valores superan el promedio de rango; y los coliformes termotolerantes durante el proceso fueron de 1645 NMP/100 ml y después fue de 1716 NMP/100 ml; el oxígeno disuelto (OD) el promedio durante el proceso fue de 8.20 mg/l y después sin aireación se redujo a 4.94 mg/l, es aceptable; el nitrato antes de la aireación 1.13 mg/l y después 6.13 mg/l.

Palabras clave: Eutrofización, parámetros físicos, químicos y biológicos, lema
ABSTRACT

In this research work, three moments are analyzed in the reduction of contamination of the waters of the interior bay of Lake Titicaca, the first is the mechanical harvesting of duckweed, a second aspect is the bottom aeration in two control stations and the third refers to the monitoring of water quality based on the methodology of the National Water Authority. The water quality sampling was carried out in two zones and during the period from 2008 to 2017, being analyzed in the water quality laboratories of the Special Binational Lake Titicaca PELT Project. Physicochemical and microbiological parameters were analyzed using EPA and APHA guidelines, nutrients were determined using spectrophotometry. The main objective is to evaluate the reduction of water pollution, through the process of aeration and mechanical harvesting of lentil in the interior bay of Lake Titicaca in Puno. The aeration system allowed improvements in dissolved oxygen concentration levels, reaching levels up to 8.2 mg / l, which allowed reducing the organic load progressively from 2008 to 2013 (aeration period) and achieving its moderate control at from 2014 to 2017 (period without aeration), the turbidity conditions were controlled by increasing the appearance of the body of water with better visibility, reduction of odors and increased birdlife and the return of aquatic species. The lentil harvest has allowed better surface aeration, reducing production in 2007 was 12,683 m3 / year and in 2011 with 1,352 m3 / year. The water quality monitoring pH during aeration was 9.54 and after 10.25; dissolved oxygen (DO) before aeration was 1 mg / l. during aeration 8.20 mg / l and after aeration 4.94 mg / l; the average nitrate before aeration was 1.13 mg / l and after it was 6.13 mg / l, compared to the maximum standard of 13 mg / l, without exceeding the range; the BOD5 before the project was 27 mg / l, then 11.61 mg / l, all the values exceed the average range; and the thermotolerant coliforms during the process were 1645 NMP / 100 ml and afterwards it was 1716 NMP / 100 ml; the average dissolved oxygen (DO) during the process was 8.20 mg / l and after without aeration it was reduced to 4.94 mg / l, it is acceptable; nitrate before aeration 1.13 mg / l and after 6.13 mg / l.

Keywords: Eutrophication, physical, chemical and biological parameters, lemna
La presente investigación tuvo como objetivo evaluar la reducción de la contaminación de agua en la bahía interior de Puno por acumulación de vertimientos de aguas residuales domésticas, residuos sólidos municipales, y el arrastre de agua pluvial desde las quebradas de la ciudad de Puno; cuyas descargas fueron depositadas en el trayecto cronológico del desarrollo urbano de la ciudad desde 1668 se incrementaron con el crecimiento urbano acelerado desde 1950. A la fecha la población citadina supera los 175,000 habitantes, las actividades económicas de la localidad, la baja calidad de los servicios básicos de saneamiento y la baja prestación de los servicios de limpieza y recolección de residuos sólidos; aportan como contaminantes a la bahía interior del lago Titicaca. A ello se suma la baja salubridad de los espacios públicos del área inundable en las orillas del lago; donde existe la presencia de ingente cantidad de excretas humanas, esta área se ha convertido en un baño y botadero público, donde diariamente acuden moradores de las casas cercanas a botar basura (Enríquez 1999).

Actualmente el cuerpo de agua, presenta un excesivo crecimiento de micro algas, las cuales confieren el característico color verde de sus aguas, estrato en la cual se encuentra el mayor número de organismos desde la superficie hasta los 1.50 m de profundidad; en un intento de evaluar su trasparencia con disco Secchi, se midió que no pasa 0.70 m de profundidad, por lo que se estima que la calidad física química y biológica del agua se ha visto afectada por la alta productividad primaria a nivel superficial. Al ser muy elevada esta productividad genera el efecto “sombra”; y por lo tanto limita la fotosíntesis por debajo de los 0.70 m, reduciéndose la disponibilidad de oxígeno, dando lugar a la descomposición de la materia orgánica, que en su fase anaerobia libera CH₄ y H₂S el cual es percibido por la población, y genera rechazo e incomodidad (ALT 2011).

Para la recuperación de la bahía interior de Puno, varias son las instituciones que han puesto interés para darle solución al problema; en razón a que es el cuerpo receptor donde desembocan las aguas residuales generada por los habitantes de la ciudad de Puno; y se
genera problemas de salud y contaminación ambiental en la flora y fauna, que se agrava cada día más y más. Para el desarrollo del presente trabajo se ha planteado los siguientes objetivos e hipótesis:

Objetivos del estudio

1.3.5. **Objetivo general.**

Evaluar la reducción de la contaminación de agua, mediante el proceso de aireación y cosecha mecánica de lenteja en la bahía interior del lago Titicaca de Puno.

1.3.6. **Objetivos específicos.**

Determinar el efecto del sistema de aireación, en la remoción de materia orgánica de las aguas contaminadas en la bahía interior de Puno del lago Titicaca.

Cuantificar la cantidad de biomasa de lenteja de agua mediante el proceso de cosecha mecánica.

Evaluar los parámetros de calidad de agua en la bahía interior de Puno, a través de un programa de monitoreo ambiental.
II. REVISIÓN DE LITERATURA

2.1 LA CONTAMINACIÓN DE LAS AGUAS

Según James (2009), la contaminación puede definirse como la introducción de una sustancia en el medio ambiente a niveles que llevan a la pérdida del uso benéfico de un recurso o la degradación de la salud de los seres humanos, la vida silvestre o los ecosistemas. Los contaminantes de descargan en sistemas acuáticos desde fuentes puntuales (ubicaciones estacionarias como una tubería de efluentes) y desde fuentes no puntuales (llamadas difusas) como el escurrimiento desde la tierra y la atmósfera. El flujo de masa de un contaminante se denomina carga y se expresa en unidades de masa por unidades de tiempo. Los avances en cuanto al manejo de contaminación varían con el tipo de material en cuestión. Los macrocontaminantes como el nitrógeno, fosforo, materia orgánica y solidos suspendidos se descargan en los ríos del mundo en millones de toneladas por año.

2.2 TIPOS DE CONTAMINACIÓN

Según Arellano & Gusman (2011), existen diversas clasificaciones de la contaminación, las importantes son: por su origen y por el tipo de contaminante:

2.3.5. 2.2.1 Por su origen

a) Contaminación natural

Esta es la contaminación debida a fenómenos naturales, como la erosión y las erupciones volcánicas y está relacionada con la composición de suelos, aguas y los componentes de algunos alimentos. Esta clase contaminación no es tan grave como la antropogénica (Arellano & Gusman 2011).
b) Contaminación antropogénica

Es la generada por la actividad del hombre y es más grave por su naturaleza y la gran variedad de contaminantes generados. Dichas actividades son las industriales, mineras, agropecuarias, artesanales y domésticas (Arellano & Gusman 2011).

2.3.6. 2.2.2 Por el tipo de contaminante

a) Contaminación biológica

Esta contaminación se presenta cuando un microorganismo (virus, hongo o bacterias) se encuentra en un ambiente que no le corresponde y causa daños a los demás organismos que lo habitan. Con frecuencia, este tipo de contaminación es provocada por deficiencias de los servicios de saneamiento como drenajes y alcantarillados, abastecimiento de agua potable, sistemas de tratamiento de aguas negras, o debida a malos hábitos higiénicos. La contaminación biológica es relativamente de fácil prevención y control, ya que, si se llevan a cabo las medidas de recolección oportuna y adecuada de la basura, su confinamiento en lugares acondicionados para tal fin; campañas de educación para la salud, se podrán prevenir muchas de las enfermedades debidas a esta fuente (Arellano & Gusman, 2011).

b) Contaminación Física

Esta contaminación es la provocada por agentes físicos como las radiaciones ionizantes, energía nuclear. Ruido, presiones extremas, calor y vibraciones. Se presenta tanto en ambientes cerrados como en abiertos, y en estos últimos provocan daños a la población en general. Una característica de este tipo de contaminación es que en ocasiones sus efectos pueden presentarse a largo plazo, como es el caso del ruido, que después de que una persona está expuesta a este agente de manera permanente y prolongada, presentará problemas en su sistema auditivo como sordera. También provoca muerte de flora y fauna, cáncer y mutaciones entre otros (Arellano & Gusman 2011).

c) Contaminación química

La contaminación química es la provocada por diferentes sustancias de uso industrial y doméstico, que se encuentran dispersas en el ambiente. Puede considerarse a este tipo como el más grave de los tres, pues a dichas sustancias las podemos encontrar en los tres estados de la materia (líquido, sólido y gaseoso) y por lo tanto pueden depositarse en el agua, suelo
y aire, y por esta razón pueden entrar más fácilmente en los organismos vivos. También pueden incorporarse de manera fácil a los ciclos bioquímicos, provocando de esta forma daños severos en el ambiente (Arellano & Gusman 2011).

d) **Corruptores orgánicos.**

Los corruptores orgánicos proceden de los desperdicios de los organismos muertos. Los ríos y corrientes de agua, al pasar por lugares habitados, ciudades y fábricas se corrompen a causa de las basuras, los desechos de las fábricas, los contaminantes procedentes de embarcaciones, los fertilizantes, los desechos salinos de las minas, los ácidos, pinturas, detergentes, legúa, pesticidas, partículas de cobre, derrames de petróleo, etc. Por ello el curso de los ríos se ve sucio, esponjoso, grasiento y mal oliente, y a veces desembocan a los mares y lagos, causando graves problemas y reduciendo el oxígeno que necesita una fuente de agua para su limpieza. La pérdida de agua en tuberías rotas pérdida de presión, puede llevar a la succión de aguas contaminadas del subsuelo y al crecimiento de microorganismos que afectan a la salud de un pueblo (Arellano & Gusman 2011).

e) **Partículas que nublan el agua**

Las grandes partículas que nublan el agua y reducen la luz para la fotosíntesis, alteran el hábitat de los organismos (Arellano & Gusman 2011).

f) **Los pesticidas**

Bajo la denominación de pesticidas o plaguicidas se engloba a los productos químicos empleados para combatir parásitos de los cultivos, del ganado, de los animales domésticos, del hombre y su ambiente en general. Los pesticidas que se conocen según el objetivo o el campo de acción son: Insecticidas, (tóxicos para los insectos); fungicidas (combaten los mohos - hongos), los herbicidas atacan a las malas hierbas; los antibióticos (inhiben el desarrollo de los microorganismos patógenos); los esterilizantes (inhiben la reproducción de los insectos). El DDT es un pesticida orgánico sintético su enorme beneficio a la agricultura ha ido contrastando con graves problemas de carácter medioambiental y daños a la propia salud humana por su elevada persistencia y bioacumulación; su empleo se ha prohibido en los países desarrollados.
g) Aumento anormal de la temperatura.

La contaminación térmica es el aumento anormal de la temperatura en una masa de agua, causado por el calor de un proceso industrial como el de una planta de energía nuclear. El calor puede matar directamente a los seres vivos o aumentar su velocidad de respiración y, en consecuencia, su metabolismo; así los seres vivos no podrán asimilar el alimento con rapidez ni siquiera cuando tengan de sobra (Arellano & Gusman 2011).

h) Contaminación de los recursos

A los océanos y lagos, a través de los ríos, es a donde finalmente llegan los desechos que se originan en la tierra, como los procedentes de la manipulación de materiales por parte del hombre, de la sedimentación procedente de la erosión acelerada de los desechos de la minería terrestre, y el efecto secundario de la remoción de sedimentos del fondo por dragado y explotación de estaño, de la contaminación orgánica y biológica, de los metales pesados como resultado de las descargas fluviales, domesticas e industriales, entre otros (Arellano & Gusman 2011).

2.3. PRINCIPALES CONTAMINANTES DEL AGUA

Hay un gran número de contaminantes del agua que se pueden clasificar en los siguientes grupos (Sans 2000):

2.3.7. 2.3.1 Microorganismos Patógenos

Son los diferentes tipos de bacterias, virus, protozoos y otros organismos que transmiten enfermedades como el cólera, tifus, gastrointestinales diversas, hepatitis, etc. En los países en vías de desarrollo las enfermedades producidas por estos patógenos, son uno de los motivos más importantes de muerte prematura, sobre todo los niños (Sans 2000).

Normalmente estos microbios llegan al agua en las heces y otros restos orgánicos que producen las personas infectadas, por esto, un buen índice para medir a salubridad de las aguas, en lo que se refiere estos microorganismos, es el número de bacterias Coliformes presentes en el agua. La OMS recomienda que en el agua para beber existan cero colonias de Coliformes por 100 ml de agua (Sans 2000).
2.3.8. 2.3.2 Desechos Orgánicos

Son el conjunto de residuos orgánicos producidos por los seres humanos, animales, aves, insectos, etc. Incluyen heces y otros materiales que pueden ser descompuestos por bacterias aeróbicas, es decir en procesos con el consumo de oxígeno. Cuando este tipo de desechos se encuentran en exceso, la proliferación de bacterias agota el oxígeno, y ya no pueden vivir en estas aguas peces y otros seres vivos que necesitan oxígeno. Para lo cual se necesita buenos índices para medir la contaminación por desechos orgánicos; dentro de ellos se utilizan: la cantidad de oxígeno disuelto (OD) en agua o la DBO₅ (demanda biológica de oxígeno) (Sans 2000).

La materia orgánica biodegradable se mide en términos de DBO. El vertido de aguas residuales con elevada DBO y DQO en el entorno acuático, puede llevar al agotamiento de los recursos naturales de oxígeno y al desarrollo de condiciones sépticas (Sans 2000).

2.3.9. 2.3.3 Sustancias Químicas inorgánicas o Compuestos tóxicos.

Estos compuestos, tienen la misma problemática que los metales pesados, y algunos de ellos, tales como la plata, cobre, boro, cianuros, cromatos, cromo, plomo, y arsénico, son tóxicos en alguna medida para los microorganismos y, por lo tanto, pueden interferir en los procesos de depuración biológica (García 2020).

En este grupo están incluidos ácidos, sales y metales tóxicos como el mercurio y el plomo. Si están en cantidades altas pueden causar graves daños a los seres vivos, disminuir los rendimientos agrícolas y corroer los equipos que se usan para trabajar con el agua (García 2020).

2.3.10. 2.3.4 Nutrientes Vegetales Inorgánicos

Nitratos y fosfatos son sustancias solubles en agua que las plantas necesitan para su desarrollo, pero si se encuentran en cantidad excesiva inducen el crecimiento desmesurado de algas y otros organismos provocando la eutrofización del cuerpo de agua.

Cuando estas algas y otros vegetales mueren, son descompuestos por los microorganismos, se agota el oxígeno y se hace imposible la vida de los otros seres vivos. El resultado es un agua mal oliente e inutilizable.
Los principales nutrientes acuáticos son el nitrógeno, el fósforo y el carbono. Un agua residual que los contenga, y se vierta sin tratar, puede producir un crecimiento de una vida acuática no deseada, así como la contaminación de aguas superficiales y subterráneas.

2.4 LOS COMPUESTOS ORGÁNICOS

Muchas moléculas orgánicas como el petróleo, gasolina, plásticos, plaguicidas, disolventes, detergentes, etc. Acaban en el agua y permanecen, en algunos casos, largos periodos de tiempo, porque, al ser productos fabricados por el hombre, tienen estructuras moleculares complejas difíciles de degradar por los microorganismos.

2.3.11. 2.4.1 Sedimentos y Materiales Suspendidos

Cuando los sólidos en suspensión de un agua residual se vierten en lechos de ríos, lagos, etc., conducen al desarrollo de depósitos de fangos y aumentan las condiciones anaeróbias de vertido. Muchas partículas de suelos son arrastradas a las aguas, junto con otros materiales en suspensión que representan la mayor fuente de contaminación del agua, y es la turbidez quien dificulta la vida de algunos organismos vivos. Los sedimentos se van acumulando destruyendo sitios de alimentación o desove de los peces, rellenan lagos o pantanos y obstruyen el paso de canales, ríos y puertos (García 2020).

2.3.12. 2.4.2 Sustancia Radioactivas

Isotopos radioactivos solubles pueden estar presentes en el agua, muchas veces, se pueden ir acumulando a lo largo de las cadenas tróficas, alcanzando concentraciones considerablemente más altas en algunos tejidos vivos que las que tenían en el agua.

2.3.13. 2.4.3 Contaminación térmica

El agua caliente liberada por centrales de energía o procesos industriales eleva, en ocasiones, la temperatura de ríos o embalses con lo que disminuye su capacidad de contener oxígeno y afecta a la vida de los organismos.

2.5. CARACTERÍSTICAS FÍSICAS DEL AGUA

2.3.14. 2.5.1. Color

El color es la impresión ocular producida por las materias en el agua. Precisa distinguir el color aparente del color verdadero. El primero resulta ligado a la turbiedad. El color verdadero depende de las substancias minerales disueltas, especialmente sales de hierro,
manganeso y materias coloidales de naturaleza orgánica. El agua debe ser incolora, a pesar de que en grandes masas toma una coloración azulada, a veces verdosa. En la coloración influyen, además de la presencia de sales minerales en disolución y materiales coloidales, las algas microscópicas, tierras arcillosas, residuos industriales y putrefacción de materias orgánicas (Unda 1969).

El color verdadero del agua se acostumbra medir conjuntamente con el pH, pues la intensidad del color depende del pH; normalmente el color aumenta con el aumento del pH. Se determina el color por comparación con colores patrones según la escala de platino-cobalto, que toma como unidad de color la producido por 1 mg de platino (en la forma de ion cloroplatinado) por litro de agua. (Unda 1969).

2.3.15. 2.5.2. Temperatura.

La temperatura es un factor abiótico que regula procesos vitales para los organismos vivos, así también afecta como las propiedades químicas y físicas de otros factores abióticos en un ecosistema. Antes de discutir la naturaleza de dichas interacciones, es necesario una distinción entre los conceptos de temperatura y calor. La distinción entre estos dos conceptos es a menudo confusa, llevándonos a intercambiarlos erróneamente. El término calor implica energía transferida desde un cuerpo o sistema hacia un ambiente inmediato o viceversa (Fuentes 2002).

El flujo de energía procede siempre de un área de mayor concentración a un área de menor concentración, en conformidad con la segunda ley de termodinámica. Del otro lado, la temperatura es un parámetro que nos revela que existe un contraste o gradiente de energía que provoca la transferencia de calor (Fuentes 2002).

2.3.16. 2.5.3. Turbiedad

Según Palao (2010) la turbiedad es la dificultad del agua para transmitir la luz debido a la presencia de materias en suspensión finamente divididas: arcillas, limos, granos de sílice, materia orgánica, etc. La apreciación de la abundancia de estas materias mide el grado de turbidez. La turbidez es tanto mayor cuanto mayor es la contaminación del agua, por lo que es un indicador de interés en el control de la eficacia de los procesos de depuración. Las medidas de turbidez se realizan utilizando el efecto Tyndall, la opacidad (ley de absorción de Beer – Lambert).
Para Sierra (2011) la turbiedad de un agua es provocada por la materia insoluble en suspensión o en dispersión coloidal. Es un fenómeno óptico que consiste, esencialmente, en una absorción de la luz combinada con un proceso de difusión. Las partículas insolubles responsables de esta turbidez pueden ser aportadas tanto por procesos de arrastre como de remoción de tierras y también por vertidos urbanos e industriales. Esto reduce la tasa de producción y disminuye la comida para los peces. La turbiedad se mide en unidades nefelométricas NTU.

2.3.17. 2.5.4. Olor

Unda (1969) señala que el olor es una impresión producida por el olfato, por las materias volátiles contenidas en el agua. Los olores de las aguas naturales se clasifican en cuatro grupos:

a) Olores producidos por materias orgánicas naturales descompuestas: estos olores se dividen en olor vegetal u olor producido por la putrefacción de materia orgánica. La mayor parte del olor vegetal del agua superficial lo causa la vegetación coloidal. El olor a tierra es originado por partículas muy finas de materia orgánica y barro. Las aguas contaminadas pueden tener olor muy desagradable, dependiendo del estado y avance de la descomposición de la materia.

b) Olores causados por organismos vivos: la producción de este olor se debe en gran parte a las algas y otros microorganismos, y afecta a grandes masas de agua. En muchos casos se debe al aceite y substancias que ellas producen.

c) Olores causados por gases o combinación de ellos: la presencia de gases, tales como amoniaco, que se forma en la descomposición de la proteína; el hidrogeno sulfuroso que resulta de la descomposición de los descompuestos orgánicos con azufre y otros gases, añaden al agua sabor y olor desagradables.

d) Olores causados por residuos industriales: ciertas sales y residuos industriales pueden dar al agua olor y sabor desagradable, en especial los fenoles o compuestos fenólicos que le dan olor y sabor a yodoformo.
2.6. CARACTERÍSTICAS QUÍMICAS

2.3.18. 2.6.1. Potencial de hidrogeno (pH)

EPA (2000) señala que el potencial de hidrógeno es una medida de la actividad del ion hidrogeno. En las aguas naturales es una medida del equilibrio ácido – base, dado por los diferentes compuestos disueltos, sales y gases. El principal sistema para regular el pH en los sistemas naturales es el compuesto por carbonatos, bicarbonatos y ácido carbónico.

Según Hurtate (1995) el pH es influenciado por las condiciones climáticas, hidrológicas y por las actividades de organismos acuáticos. Es un parámetro importante de la calidad del agua porque el intervalo de concentración idóneo para la existencia de la mayoría de vida biológica es muy estrecho y crítico. Es un factor clave en el crecimiento de organismos, debido a que la mayoría no toleran niveles de pH por encima de 9.5 o por debajo de 4.

2.3.19. 2.6.2. Oxígeno disuelto (OD)

Según la APHA (1999) la cantidad de oxígeno disuelto es uno de los indicadores más importantes de contaminación. Este depende de la temperatura del agua y de la presión atmosférica; la concentración de oxígeno disuelto disminuye a medida que la temperatura del agua aumenta.

Metcalf & Hedi (1991) señalan que, si el oxígeno disuelto no se recupera en un ecosistema, se favorecen los procesos anaeróbicos los cuales son responsables de la descomposición de la materia orgánica y la formación de malos olores.

Por otro lado, Merk (1991), menciona que, si los nutrientes disueltos entran en el agua a una tasa tal que el oxígeno disuelto se gaste más rápido de lo que se puede reponer, el agua se desoxigena. Al cesar los rápidos procesos de purificación, los contaminantes orgánicos se acumulan en el agua, produciéndose por procesos anaeróbicos sustancias mal olientes.

CIESE (2013) señala que, a veces, el agua se supersatura con oxígeno debido a que el agua se mueve rápidamente. Esto generalmente dura periodos cortos de tiempo, pero puede ser dañino para los peces y otros organismos acuáticos. Los valores del porcentaje de saturación del OD de 80 – 120% se consideran excelentes y los valores menores al 60% o superiores a 25% se consideran malos.
Wetzel (1981) indica que, todos los animales y la mayor parte de las plantas requieren de oxígeno para su metabolismo, los animales acuáticos usan el oxígeno disuelto presente en el agua. Por tanto, el oxígeno es el parámetro importante para los lagos, además del agua misma sus propiedades de solubilidad y distribución son muy importantes para comprender el comportamiento, crecimiento fisiológico y distribución de los organismos acuáticos.

2.3.20. 2.6.3. Demanda química de oxígeno (DQO)

Según la APHA (1999) la demanda química de oxígeno es un parámetro analítico de contaminación que mide el material orgánico contenido en una muestra líquida mediante oxidación química. La determinación de DQO es una medida de la cantidad de oxígeno consumido por la porción de materia orgánica existente en la muestra y oxidable por un agente químico oxidante fuerte (Merk 1991). La DQO es usada a menudo como una medida de contaminación de aguas residuales y aguas naturales. Otros valores analíticos relacionados son DBO, carbón orgánico total (COT) y la demanda de oxígeno total.

2.3.21. 2.6.4. Demanda bioquímica de oxígeno (DBO)

Se conceptualiza, que la demanda bioquímica de oxígeno es la cantidad de oxígeno necesaria para la degradación bioquímica de los componentes orgánicos por la acción de microorganismos, en condiciones aeróbicas. La determinación de la DBO es una prueba empírica en la que se utilizan procedimientos estandarizados de laboratorio para determinar los requerimientos relativos de oxígeno de aguas residuales y contaminadas. La prueba tiene su aplicación más extendida en la determinación de las cargas residuales en las instalaciones de tratamiento y en la evaluación de la eficacia de extracción de la DBO de tales sistemas de tratamiento.

Según Fernández, et al. (2005) la DBO representa la cantidad de oxígeno disuelto que se consume en un agua residual durante 5 días a 20 ºC por efecto de la oxidación biológica de la materia orgánica biodegradable presente en el agua residual. La oxidación se efectúa por los propios microorganismos presentes en el agua. Es decir, reproduce el consumo de oxígeno que se ocasionará con este vertido en el medio natural. Las aguas residuales urbanas presentan valores de DBO que oscilan entre 100 y 300 mg/l.
2.3.22. 2.6.5. Fosfato

El fósforo es un elemento esencial en el crecimiento de algas y otros organismos biológicos. Debido a que en las aguas superficiales ocurren nocivas proliferaciones incontroladas de algas; actualmente existe mucho interés en limitar la cantidad de fosforo que alcanzan las aguas por el vertimiento de aguas residuales municipales, aguas provenientes de la industria y los vertimientos de la escorrentía urbana como nutriente que descontrola el crecimiento de algas. Las aguas residuales domésticas cuyo contenido de fosforo como P puede variar entre 4 y 15 mg/l. Las algas requieren para su crecimiento de fósforo y consecuentemente, un exceso de fósforo produce un desarrollo exorbitante de algas, el cual es causa de condiciones inadecuadas para ciertos usos benéficos del agua. Las formas más frecuentes en que se presenta el fosforo en soluciones acuosas incluyen el ortofosfatos, el polifosfatos, pirofosfatos, tripolifosfatos y, metafosfatos.

La diversidad de formas de fosfatos se introduce en los ríos y lagos por una gran variedad de fuentes. Las causas más frecuentes las constituyen las descargas fecales, los detergentes con aditivos de fosfatos y los fertilizantes agrícolas. Cuando se producen descargas de fósforo que superan la capacidad amortiguadora, la cantidad de fosfato disuelta disponible constituye generalmente el nutriente que inicia el proceso de eutrofización. La Organización Mundial de Salud ha establecido un límite máximo permisible en agua potable de 1,300 mg/l (Herrera 1996) el fosforo como fosfato es un nutriente de los microorganismos en el tratamiento biológico de aguas residuales.

Carranza (2001) afirma que, el fosforo se presenta en el agua natural y residual en varias formas, comúnmente son clasificadas como Ortofosfatos, fosfatos condensados y orgánicos. Estas formas de fosfatos pueden presentarse en forma soluble, en partículas de detritos o en los cuerpos de organismos acuáticos. Los fosfatos orgánicos se forman principalmente en procesos biológicos, por ello la importancia de las aguas servidas y residuos de alimentos, también pueden formarse a partir de ortofosfatos en proceso de tratamiento biológico o por acción de organismos acuáticos en aguas receptoras.

2.3.23. 2.6.6. Fósforo total

Herrera (1996) señala que, el fósforo total es un indicativo de la reserva de contaminante eutrófico. Su medición conjuntamente con los fosfatos permite predecir un aumento de la eutrofización o el inicio de un proceso de depuración. Para que un cuerpo de agua sea
clasificado como eutrófico debe tener una concentración de fósforo total dentro del siguiente rango: 20 mg/l – 100 mg/l.

2.3.24. 2.6.7 Nitratos y Nitritos.

Fuentes (2002) reporta que, en la naturaleza, las distintas formas de nitrógeno se encuentran relacionadas. Las bacterias y las plantas son las responsables de la producción de proteínas (nitrógeno orgánico) a partir de compuestos inorgánicos. Las proteínas son degradadas por las bacterias o amoniaco, que es oxido a nitrito y nitrato. Ambos pueden convertirse nuevamente en nitrógeno por acción bacteriana, completándose el ciclo. Los nitritos y nitratos se reportan separadamente.

Miranda & Mollocondo (1991) manifiestan que, los animales y los humanos utilizan proteínas de plantas para su subsistencia. Los compuestos de nitrógeno no utilizados son arrojados en los excrementos, estos y la materia remanente de animales muertos y plantas, son convertidas en amoniaco por la bacteria. En condiciones anaerobias los nitratos son reducidos a nitritos y estos a gas nitrógeno por bacterias. El proceso se conoce con el nombre de desnitrificación y se supone que ocurre en dos pasos sucesivos (reducción inicial de los nitratos a nitritos y la de estos a nitrógeno gaseosos).

Camargo (2005) indica que, los niveles máximos de nitrato recomendados están entre 2.9 mg/l y 3.6 mg/L con el fin de asegurar la protección de la fauna acuática tanto continental como marina y un nivel máximo más restrictivo de 2 mg/l. para proteger aquellas especies más sensibles.

Metcalf & Heide (1991) afirman que, la presencia de nitratos en el agua es indicativo de contaminación de carácter fecal reciente. En aguas superficiales, bien oxigenadas. El nivel de nitrato no debe superar a 0.1 mg/l.

Prat, Munne et al. (1999) indican que, la concentración de aguas superficiales es muy baja, pero puede aparecer ocasionalmente en concentraciones inesperadamente altas debido a la contaminación de aguas residuales industriales y domésticas.

Así mismo, también el mismo autor afirma que, los valores de nitritos entre 0.1 mg/l y 0.9 mg/l pueden presentar problemas de toxicidad dependiendo del pH y los valores por encima de 1 mg/l son totalmente tóxicos y representan un impedimento para el desarrollo de la vida piscícola y un establecimiento de un ecosistema fluvial en buenas condiciones.
2.3.25. 2.6.8. Nitrato

El nitrato se presenta generalmente como trazas en el agua de superficie. El nitrato se encuentra sólo en pequeñas cantidades en las aguas residuales domésticas recientes, pero en el diluyente de las plantas de tratamiento biológico nitrificante, el nitrato puede encontrarse en concentraciones de hasta 30 mg/l de nitrato, es un nutriente esencial para muchos autótrofos fotosintéticos, y en algunos casos ha sido identificado como el determinante del crecimiento (APHA 1999).

2.3.26. 2.6.9. Nitrógeno total

La química del nitrógeno es compleja debido a los varios estados de valencia que puede asumir este elemento y al hecho de que los cambios en la valencia pueden ser afectados por organismos vivos.

Las formas de mayor interés son: nitrógeno amoniacal, nitrógeno de nitritos, nitrógeno de nitratos y nitrógeno orgánico. En el tratamiento biológico de aguas residuales, los datos de nitrógeno amoniacal y orgánico son importantes para determinar si el residuo contiene suficiente nitrógeno para nutrir los organismos. Además, los datos de nitrógeno son usados para controlar el proceso de aireación en pantas de lodos activados.

Unda (1996) indica que, en programas de control de contaminación de ríos y lagos, es necesario conocer los valores de las formas de nitrógeno en forma de nitratos. El nitrógeno en forma de nitratos, por una parte, es uno de los elementos esenciales para el crecimiento de algas y por otra parte, en forma de nitrógeno orgánico, causa una demanda de oxígeno al ser oxidado por las bacterias nitrificantes, reduciendo los niveles de oxígeno disuelto. En aguas residuales el contenido de nitrógeno total es de 20 mg/l a 70 mg/l, mientras que en ríos y en aguas sin contaminación fuerte es de 0.1 mg/l a 3 mg/l.

2.3.27. 2.6.10. Conductividad

La conductividad del agua es una expresión de su habilidad para trasportar una corriente eléctrica. La conductividad del agua depende de la concentración total de sustancias disueltas ionizadas en el agua y de la temperatura a la cual se haga la determinación. Por lo que cualquier cambio en la totalidad de sustancias disueltas, en la movilidad de los iones disueltos y en su valencia, implica un cambio en la conductividad.
Según Fernández, et al. (2005) para medir la conductividad del agua, se mide con un aparato llamado conductímetro, el cual se debe tener en cuenta la temperatura de la muestra ya que la conductividad está estrechamente relacionada con la temperatura.

Goyenola (2007) afirma que, al determinar la conductividad se evalúa la capacidad del agua para conducir la corriente eléctrica, es una medida indirecta de la cantidad de iones en solución (fundamentalmente cloruro, nitrato, sulfato, fosfato, sodio, magnesio y calcio). La conductividad en los cuerpos de agua dulce se encuentra primariamente determinada por la geología del área a través del cual fluye el agua.

Esparza (1995), señala que, en aguas residuales domésticas, la conductividad puede demostrar el grado degradación de las características del servicio de abastecimiento del lugar.

Fuentes (2002), indica que, la conductividad es una medida de la capacidad de una solución acuosa para trasmitir una corriente eléctrica y es igual al reciproco de la resistividad de la solución. Dicha capacidad depende de la presencia de iones; de su concentración, movilidad y valencia, y de la temperatura ambiental. Las soluciones de la mayoría de los compuestos inorgánicos (ej. Aniones de cloruro, nitrato, sulfato y fosfato) son relativamente buenos conductores.

2.3.28. 2.6.11. Sólidos totales

Es la expresión que se aplica a los residuos de material que quedan en un recipiente después de la evaporación de una muestra y su consecutivo secado en una estufa a temperatura definida. Los sólidos totales incluyen los sólidos totales suspendidos o porción de sólidos totales retenidos por un filtro y los sólidos disueltos totales o porción que atraviesa el filtro.

Los sólidos pueden afectar negativamente a la calidad del agua o su suministro de varias maneras. Las aguas con abundantes sólidos disueltos suelen ser de inferior potabilidad y pueden inducir una reacción fisiológica desfavorable en el consumidor ocasional. Los análisis de sólidos son importantes en el control de procesos de tratamiento biológico y físico de aguas residuales y para evaluar el cumplimiento de las limitaciones que regulan su vertido (Fernández et al. 2005).
2.7. CARACTERÍSTICAS BIOLÓGICAS

Coliformes Termotolerantes o Fecales

CYTED (2014) señala que, el grupo de microorganismos coliformes es adecuado como indicador de contaminación bacteriana ya que los coliformes: son contaminantes comunes del tracto gastrointestinal tanto del hombre como de los animales de sangre caliente, están presentes en el tracto gastrointestinal en grandes cantidades. Permanecen más tiempo en el agua que las bacterias patógenas. Se comportan de igual manera que los patógenos en los sistemas de desinfección.

Madigan et al. (1997) Afirma que, los coliformes termotolerantes son un subgrupo de los coliformes totales, capaz de fermentar la lactosa a 44.5°C. Aproximadamente el 95% del grupo de los coliformes totales presentes en heces fecales, están formados por escherichia coli y ciertas especies de klebsiella. Ya que los coliformes fecales se encuentran caso exclusivamente en las heces de animales de sangre caliente, se considera que reflejan mejor la presencia de contaminación fecal. Otro de los aspectos negativos del uso de los Coliformes totales como indicador es el hecho de que algunos coliformes son capaces de multiplicarse en el agua.

EPA (2000) manifiesta que, coliformes fecales y E. coli son bacterias cuya presencia indica que el agua podría estar contaminada con heces fecales humanas o de animales. Los microbios que provocan enfermedades (patógenos) y que están presentes en las heces, causan diarrea, retortijones, náuseas, cefaleas u otros síntomas. Estos patógenos podrían presentar un riesgo de salud muy importante para bebés, niños pequeños y personas con síntomas inmunológicos gravemente comprendidos.

2.8. EUTROFIZACIÓN.

Seoanez (2000) señala que sin nutrientes (nitrógeno, fosforo…), la vida en los ríos, lagos y mares no podría durar, por lo que inicialmente la entrada de nutrientes en él es imprescindible, pues produce múltiples efectos beneficiosos y, entre ellos, incrementa la pesca. Sin embargo, el exceso de nutrientes en el medio acuático da lugar a una superabundancia o eutrofización, que representa un serio problema de contaminación. Aunque este fenómeno es bastante común, y a veces irreversible en lagos y embalses, en las aguas marinas, dado el volumen de estas, los compuestos minerales y orgánicos de fosforo
y nitrógeno en exceso procedentes de diversas fuentes (detergentes, aguas de escorrentía, etc.), desencadenan un aumento de fitoplancton y cambios de especies, tanto en el zooplancton como en el necton y bentos. La explosión inicial de vida que sucede a la entrada de nutrientes en exceso, va seguida al poco tiempo de muerte masiva, y cuando mueren, los organismos se hunden y se descomponen por la acción de las bacterias aerobias del fondo, que acaban por desoxigenar el medio acuático, estableciendo condiciones muy difíciles para los demás seres que necesitan respirar el oxígeno disuelto. El detrito microscópico que resulta durante el proceso de eutrofización forma una espuma de fondo, constituyendo el alimento de varias especies, hasta que el oxígeno se agota y el medio se vuelve anóxico.

2.3.29. 2.8.1. Eutrofización Antropogénica

La eutrofización es un proceso dinámico que puede ser continuo y, dependiendo de su grado de contaminación, las aguas pueden ir desde oligotróficas (aguas con bajos niveles de materia orgánica, buenos niveles de oxígeno disuelto y poca contaminación bacterial), hasta aguas hipertróficas (aguas oscuras, ricas en nutrientes, con bajos niveles de oxígeno y alta actividad microbiana, que expiden fuertes valores). Estas últimas aguas están tan contaminadas y degradadas, que prácticamente no permiten el desarrollo de la vida acuática, si el exceso de nutrientes sigue fluyendo hacia los cuerpos de agua, las bacterias anaerobias predominan en ellos y quedan putrefactos, debido a la producción de ácido sulfhídrico y metano durante el proceso de descomposición de la materia orgánica. La fertilización de las aguas o presencia de nutrientes lleva a crecimientos exagerados de algas y plantas acuáticas que disminuyen con el tiempo la capacidad útil de un embalse y, por consiguiente, el periodo de operación para el cual fue diseñado.

OECD (1982) señala que muchas veces se confunde el término eutrofización con el de contaminación, conceptualmente ambas denominaciones son distintas. La palabra eutrofización proviene de la palabra eutrofia, la cual a su vez procede del adjetivo alemán “eutropho” y se refiere a un cuerpo de agua “rico en nutrientes”. Desde este punto de vista, la eutrofización se define como el enriquecimiento de las aguas (generalmente de un lago) con nutrientes, a un ritmo tal que no puede ser compensado por eliminación o mineralización total dentro del ecosistema.

El proceso de putrefacción consume gran cantidad de oxígeno disuelto y las aguas dejan de ser aptas para la mayor parte de los seres vivos. Los vertidos humanos aceleran el proceso
de eutrofización hasta convertirlo, muchas veces, en un grave problema de contaminación. Las principales fuentes de eutrofización son:

Los vertidos ganaderos y agrícolas, que aportan fertilizantes, desechos orgánicos y otros residuos ricos en fosfatos y nitratos.

Wetzel (1981) afirma que, cuando un lago ha alcanzado un grave estado de eutrofización, se producen agregaciones, masivas, que incrementan la turbidez y disminuyen la transparencia. La eutrofización se refiere a toda esta serie de sucesos que comienzan con el enriquecimiento de nutrientes, el crecimiento y la muerte de fitoplancton, la acumulación de detritos, el aumento de bacterias y, finalmente el agotamiento del oxígeno y la sofocación de los organismos que lo requieren. Así, las masas eutróficas de agua se caracterizan por una riqueza de nutrientes que sustentan el crecimiento abundante de fitoplancton y quizá de otras plantas acuáticas superficiales. Debajo de esta capa superficial, la presencia de vegetación disminuye o incluso desaparece por culpa del oscurecimiento y en el fondo se acumulan detritos (Tyler 2002).

Pesson (1979) afirma que, actualmente uno de los aspectos más frecuentes de la alteración de los Lagos es el que se conoce como eutrofización, que se trata de un desequilibrio de los procesos naturales de la vida de un Lago, por cuanto se produce una descomposición entre los procesos biológicos de síntesis y degradación de una materia viva.

2.3.30. 2.8.2. Proceso de eutrofización

Como antecedente en los años 80 del siglo pasado en la bahía de Chesapeake, el mayor estuario de Norteamérica, ejemplifica el proceso de eutrofication, el fenómeno de la eutrofización, como es de suponer, no es de exclusivo de dicha bahía, pero tal vez constituye el ejemplo más representativo a nivel mundial. Lagos, lagunas, represas y estanques de todo mundo vienen padeciendo tal problema por causa de desechos sólidos, arrastre de tierras y lodos de los deslaves, las descargas de las aguas negras, entre otras, sin embargo, si es posible recuperar y regenerar esas masas de agua (grandes y pequeñas) para restaurar en sus entornos los nichos originales, al menos en gran parte.

Antes de los 70, la bahía de Chesapeake era productiva en extremo; rendía con millones de kilogramos de pesca y mariscos, alberga grandes bandadas de aves acuáticas. Casi todas las cadenas alimentarias que mantienen esta zona generosa se originaban en la vegetación
marina. 200,000 hectáreas de “pasto” submarino que crecía a uno de dos metros debajo de la superficie. Los macizos de vegetación proveían alimento, hábitat para el desove, abrigo para las crías y oxígeno disuelto para respirar. Las aguas de la bahía de Chesapeake se habían vuelto turbias, y así permanecían durante lapsos prolongados. El aumento de la turbiedad bloqueaba la luz requerida para la fotosíntesis y por ello la vegetación moría. ¿Qué causaba esta turbiedad? El fitoplancton (phyto, vegetal; plancton, errante) compuesto de varias formas de plantas microscópicas que crecen y se multiplican al tiempo que flotan en el agua. El enriquecimiento del agua con nutrientes estimuló el crecimiento del fitoplancton, agravaban el problema de los sedimentos (sobre todo partículas de arcilla) en suspensión. Con la perdida de vegetación marina, ya no se realizaba la fotosíntesis y no había oxígeno disuelto. Todavía más perjudiciales fueron las bacterias descomponedores que se alimentaban de la materia muerta, pues consumían el oxígeno que se necesitaban peces y moluscos. La bahía de Chesapeake había caído víctima de la eutrofización, pero el fenómeno no es exclusivo solo de esa zona. En los últimos 40 años muchos de miles de charcas, lagos pequeños y ciertos ríos han sufrido esta suerte, y el problema se sigue difundiendo. Lo bueno es que hay medios para vigilar el problema, y en algunos casos han logrado recuperaciones notables.

2.3.31. 2.8.3. Plantas acuáticas

Para entender la eutrofización, se tienen que considerar las clases distintas de plantas acuáticas, a saber, la flora bénica y el fitoplancton. La flora bénica (bentos, profundidad); está compuesta de plantas acuáticas aferradas o enraizadas en el fondo. Son ejemplos todas las plantas y hiervas. La flora ventica se divide en dos categorías: Vegetación acuática sumergida, que suele encontrarse por completo bajo el agua y la vegetación emergente, cuyo pie se encuentra bajo el agua, pero las partes superiores sobresalen. El punto más importante para entender la eutrofización es que la vegetación acuática sumergida requiere que el agua sea lo bastante clara que deje pasar luz adecuada para la fotosíntesis. La profundidad hasta la que puede penetrar lo suficiente luz para que se produzca la fotosíntesis se conoce como zona eutrófica, en las aguas más diáfanas, alcanza hasta 200 metros. Si las aguas se enturbiian, la zona eufónica se reduce; en las situaciones extremas, disminuye hasta ser de unos cuantos centímetros. Así el aumento de la turbiedad disminuye la profundidad a la que la vegetación acuática sumergida llega a sobrevivir. La segunda característica importante de la vegetación acuática sumergida es que absorbe mediante las raíces los minerales de los
sedimentos de fondo, al igual que las plantas terrestres. No la perjudica que el agua que tenga pocos nutrientes, pues el agua enriquecida llega a ser contraproducente, porque estimula el crecimiento de fitoplancton.

El Fitoplancton, consiste en numerosas especies de algas y cianobacterias (bacterias con clorofila, antes conocidas como algas verdi azules) que prospera como células aisladas microscópicas, en pequeños grupos o en “hebras” de células. El fitoplancton vive suspendido en la superficie o cerca de ella. En situaciones extremas, el agua se torna de consistencia como de una sopa verdusca, y a veces flota un verdín de fitoplancton que absorbe de hecho toda la luz. Sin embargo, el plancton adquiere tales densidades solo en las aguas ricas en nutrientes porque al no estar enraizados en el fondo, debe absorberlos del agua. Un contenido escaso de nutrientes limita en concordancia el crecimiento del fitoplancton.

La condición oligotrófica. La condición original (antes del imperio de los seres humanos) de la mayor parte de los lagos, ríos, bahías y estuarios era **oligotrófica**, el termino que se aplica al agua con pocos nutrientes, en esencia compuestos de fosfato y de nitrógeno. A primera vista, quizá las corrientes naturales de agua tengan pocos nutrientes sin embargo la capacidad de retención de nutrientes del mantillo y del reciclado de estos en los ecosistemas naturales. Dicho en términos sencillos, si tomamos como ejemplo una cuenca arbolada, los nutrientes se conservan sin mengua en el ciclo del suelo a los árboles y detritos, y al final los vuelven a absorber los árboles. Se pierde poco por erosión y lixiviación, el agua que se mueve por el sistema o sale por manantiales y surtidores es relativamente pura; las concentraciones de nitrógeno y de fosfatos son de casi cero. Así, los arroyos, ríos y lagos alimentados por esta agua reciben también nutrientes de las corrientes naturales. Otro factor que contribuye al escaso contenido de nutrientes son las masas de agua palustres, es decir, esas zonas pantanosas de vegetación emergentes que se encuentran adyacentes a los cursos de agua, o las áreas cenagosas dentro de las líneas divisorias de las aguas. Estas charcas y lagunas son cruciales para filtrar y separar los nutrientes del agua que rezuma.

Aquí también, la escasez de nutrientes, al limitar el crecimiento de fitoplancton permite que la luz penetre y favorezca a las poblaciones de vegetación acuática sumergida, que se nutren de los sedimentos de fondo. A su vez la flora benthica mantiene al resto del variado ecosistema acuático suministrando alimento, hábitat y oxígeno disuelto. El oxígeno de la atmósfera tarda mucho en disolverse y mezclarse en el agua; por tanto, sin el que produce por fotosíntesis la vegetación acuática sumergida, los consumidores agotan rápidamente la provisión y sofocan
a todos, excepto las bacterias y los organismos que son capaces de sobrevivir sin oxígeno. Antes de la intervención de los seres humanos, casi todas las masas naturales de agua son oligotróficas, caracterizadas por concentraciones reducidas de nutrientes, el agua es clara y abundante flora béntica. Esta última, a su vez sostiene a un ecosistema variado de peces y crustáceos y provee un medio con cantidades elevadas de oxígeno disuelto de la superficie al fondo. Las masas oligotróficas de agua se aprecian por sus cualidades estéticas y recreativas, así como por su producción pesquera.

Entonces la Eutrofización; cuando el agua de una masa oligotrófica se enriquece de nutrientes, se inician muchos cambios, primero este enriquecimiento favorece el crecimiento y multiplicación del plancton, lo que aumenta la turbiedad del agua, por su parte, esta oscurece a la vegetación acuática sumergida. Incluso si la luz llega todavía al fondo, ocurriría que no se produzca la fotosíntesis de la flora béntica porque las hojas y tallos quedan cubiertos con algas epífitas que medran en tales aguas.

2.3.32. 2.8.4. Eutrofización de lagos.

Los lagos y lagunas cuya profundidad en muchos delos casos es menor a un (01) metro, la eutrofización sigue un curso un poco distinto, pero el resultado es el mismo. La vegetación acuática sumergida llega hasta alcanzar la superficie, de modo que no queda en la oscuridad si en agua se enriquece de nutrientes, lo que medra en abundancia, se extiende y a menudo cubre de toda la superficie, lo que impide remar, pescar o nadar. Cualquier vegetación por debajo queda en la sombra. Cuando las plantas se secan y se hunden en el fondo, crean una demanda bioquímica de oxígeno que suele agotar el oxígeno disuelto y causar la muerte en los organismos acuáticos, a excepción de las bacterias.

2.3.33. 2.8.5. Eutrofización natural y cultural.

En la naturaleza, sin la intervención de los seres humanos, la eutrofización es parte de la sucesión acuática. Las tasas de erosión del suelo y de lixiviación de los nutrimentos son bajas, pero no nulas. Las masas de aguas están sujetas al enriquecimiento gradual de nutrientes al cabo de cientos o miles de años, y lo observamos en lagos, que de otro modo son oligotróficos y que periódicamente sufren episodios de crecimiento de fitoplancton llamados florecimiento algas. Decimos que la eutrofización natural es un suceso normal. Lo que los seres humanos han hecho es acelerar en gran medida el enriquecimiento de las aguas.
Los nutrientes producidos por el hombre vienen sobre todo de las plantas de tratamiento de aguas residuales, los malos métodos agrícolas, los escurrimientos urbanos y otras actividades. Llamamos eutrofización cultural a la que causan los seres humanos. La opinión pública se inclina a culpar de todas formas de contaminación, entre ellas la eutrofización, a las emisiones industriales de contaminantes tóxicos. Pero es muy importante observar que la eutrofización cultural se debe a lo que en general consideramos sustancias benéficas, como nutrientes fertilizantes, en particular compuestos de nitrógeno y fósforo, luego, los sedimentos agravan el problema.

2.3.34. 2.8.6. Recuperación de la calidad del agua por eutrofización.

Es evidente que la condición eutrófica persistirá siempre que el aporte de nutrientes sea tal que se mantenga una tasa elevada de crecimiento del fitoplancton. Aun si ese aporte disminuyera, la eliminación de los nutrientes de los detritos en descomposición bastaría para que la eutrofización perdurara. No obstante, los nutrientes también fluyen del sistema o se estabilizan en los sedimentos de fondo. Cuando la entrada de nutrientes se acorta y los que están presentes se retiran del ciclo, disminuye el crecimiento del fitoplancton, los detritos son consumidos, las bacterias mueren y las concentraciones de oxígeno disuelto se recuperan, y también se recupera el ecosistema original, si las poblaciones no llegan a ser exterminadas por completo. Para este momento, quizá haya conjeturado que la clave para controlar la eutrofización es reducir el aporte de nutrientes.

El efecto de los sedimentos: la erosión de los campos de cultivo, los cerros deforestarados, los pastizales rosados en exceso, la urbanización, las operaciones mineras, las riberas y cualquier otro punto es fuente de los sedimentos que pasan a las corrientes de agua. Los sedimentos (arena, limo y arcilla) tienen repercusiones directas y graves en arroyos y ríos, y en última instancia contribuyen a la eutrofización. Cuando la erosión es muy ligera, los arroyos y los ríos de la cuenca corren limpios. Mantienen algas y otras plantas acuáticas que se adhieren a las rocas o arraigan en el fondo. Estos productores, más los detritos variados de hojas caídas y demás, sostienen una compleja red alimentaria de bacterias, protozoarios, gusanos, larvas de insectos, caracoles, peces, cangrejos y otros organismos. Todos ellos se aferran a las rocas o se abrigan debajo y/o atrás para evitar que los arrastre la corriente. Hasta los peces, que conservan su posición nadando todo el tiempo, necesitan de vez en cuando un refugio para descansar. Los sedimentos que entran en grandes cantidades a las corrientes de agua tienen numerosos efectos. Arena, arcilla, limo y humos son separados de inmediato por
la agitación del flujo y arrastrados a diferentes velocidades. La arcilla y las partículas orgánicas son acarreadas en suspensión, con lo que vuelven el agua lodosa e impiden el paso de la luz, por ende, obstruyen la fotosíntesis. Cuando estos materiales se asientan, lo cubren todo y sigue obstaculizado la fotosíntesis, además mata a los animales al tapar sus agallas y órganos de alimentación. Los huevos, peces y otros organismos acuáticos son vulnerados a quedar enterrados en los sedimentos. Igualmente, destructivo es el arrastre del lecho, la arena y el limo que no son acarreados en suspensión, sino que se deslizan por el fondo. Conforme las partículas ruedan y resbalan, arrancan organismos de las rocas, cubren y entierran la vida del fondo y colman los sitios de resguardo y descanso de peces y cangrejos. No es posible reinstalar las plantas acuáticas y otros organismos porque el fondo es un lecho de arena que se mueve todo el tiempo. Ademá, los sedimentos más gruesos se asientan y cierran el canal, lo que empeora las inundaciones y la erosión de las riberas. Los sedimentos no reciben la atención de los medios informativos conceden a los desechos tóxicos o a otros problemas de contaminación, pero la erosión esta tan extendida en el mundo que pocos arroyos y ríos se escapan a las secuelas graves de la excesiva carga de esos materiales. Los sedimentos son causantes de la destrucción de la pesca recreativa y comercial en innumerables ríos y arroyos. Al acabo los sedimentos se asientan en las aguas tranquilas de los embalses, lagos, bahías o estuarios, pero no sin consecuencias. Cada año los embalses pierden muchos de millones de metros cúbicos en capacidad de almacenamiento de agua a causa de la sedimentación. Los canales de riego y los navegables tienen que dragarse todo el tiempo. Los sedimentos incrementan la eutrofización las partículas de arcilla y humus en suspensión contribuyen a la turbiedad que impide la fotosíntesis de la flora báctica. Las mismas partículas acarrean nutrimentos que fomentan el crecimiento del fitoplancton.

Hay dos métodos de combatir la eutrofización. Uno es atacar sus manifestaciones: el crecimiento del fitoplancton, la falta de oxígeno disuelto o ambos. El otro es ir a la causa original: el exceso de nutrientes y sedimentos. Atacar las manifestaciones es práctico en ciertas situaciones en las que el objetivo es aplicar un remedio inmediato y los costos no son prohibitivos. Aun así, consideramos la eficacia a largo plazo de este método si la causa no cesa. El ataque a las manifestaciones incluye: Tratamiento químico, aireación, retiro de hierbas acuáticas, dragado.
2.3.35. 2.8.7 Aireación.

El agotamiento de oxígeno disuelto causado por los descomponedores de detritos y la consecuente sofocación de la vida acuática, es la etapa final y más destructiva de la eutroficación. La aireación artificial del agua sirve para alejar este escenario complejo y presenta un ambiente con concentraciones elevadas de oxígeno disuelto, el fosfato, un nutriente clave, forma con más facilidad los compuestos que se estabilizan en los sedimentos; así, este elemento importante es retirado de la solución acuosa. Un sistema de aireación que gana aceptación y confianza, consiste en tener una red de tuberías de plásticos con poros microscópicos en fondo de la columna de agua que se quiera tratar. El aire bombeado a presión hace que por los poros salgan burbujas pequeñísimas que se disuelven en el agua, (si las burbujas fueran mayores, flotarían a la superficie y se desperdiciaría la mayor parte del aire bombeado). El sistema ha resultado efectivo para acelerar la descomposición de los detritos acumulados, mejorar la calidad del agua y fomentar el regreso de la vida acuática más deseable. Sin embargo, es notable el costo de instalar y hacer funcionar el sistema. Con todo, el sistema es aplicable en puertos, atracaderos deportivos y en algunas represas en los que la demanda de agua de mejor calidad justifica la inversión.

Para Solar Bee (2002) los aireadores son bombas de aire apoyadas estructuras metálicas que trabajan con energía eléctrica para inducir oxígeno a las aguas que se encuentran bajo la superficie del lago. Por medio de la bomba produce un flujo vertical; extraen el agua del fondo hacia la superficie donde se oxigena, mejorando los niveles de oxígeno y la calidad del agua.

Devuelve el oxígeno a las aguas del lago, con lo cual se propiciará que haya gran biodiversidad de especies en flora y fauna, se recupera la fotosíntesis, se reducen los nutrientes como nitrógeno y fosforo permitiendo el intercambio de oxígeno entre la superficie y el fondo, rompiendo las capas tenso activas que actualmente no permiten el ingreso y evacuación de los carbonos por los que los lagos eutróficos son altamente alcalinos.

Según Laing (1999) la aireación artificial consiste en aplicarle oxígeno al agua mediante el uso de equipos mecánicos como bombas o compresores de aire, produciendo microburbujas, o haciendo fluir verticalmente el agua. La aireación aumenta los niveles de oxígeno, reduciendo la demanda bioquímica de oxígeno (DBO), mejora la calidad del agua, reduce significativamente el fosforo, nitrógeno, la clorofila A, e incrementa la claridad del agua.
Para Metcalf & Hedi (1991) la aireación ayuda al ecosistema a reducir el stress producido por procesos que degradan el agua y mantienen altos niveles de oxígeno disuelto. Las burbujas emergentes de la aireación llevan el agua del fondo a la superficie, donde intercambian grandes cantidades de gas por más oxígeno. Algunos de los beneficios documentados incluyen: Incremento de la expectativa de vida de los peces y de su crecimiento; aumento de la efectividad de la reducción de los nutrientes bacterianos; disminución de olores, oxidando el sulfuro de hidrógeno, metano y otros olores desagradables; reduce los nutrientes en el agua: N, P, C; reduce la concentración de algas verde azules; aumenta la vida aeróbica; precipitan los compuestos pesados; aumenta la transparencia del agua; ayuda a prevenir la intoxicación de peces por bacterias patógenas y algas verde azules; estabiliza la química del agua al descomponer niveles peligrosos de amonio – nitrógeno, nitrito y nitratos.

Clean – Flow (1999) menciona que algunos de los estudios indican que la aireación produce una mejora sustancial en la calidad del agua al reducir los niveles de fosforo y nitrógeno, incrementa los niveles de oxígeno disuelto y estabiliza el pH. El grosor promedio del sedimento orgánico se reduce gracias a la biodegradación aeróbica, compactación física, etc. El aireador reduce o elimina el florecimiento de algas, el mal olor y la estratificación en un cuerpo de agua. Mejora la absorción de oxígeno, al exponer una nueva capa de agua a la atmósfera constantemente, disminuyendo los nutrientes y aumentando la actividad biológica en general.

2.3.36. 2.8.8 Retiro de la lenteja acuática.

En lagos someros, en los que el problema radica en que la vegetación arraigada en el fondo alcanza y se difunde por la superficie, recoger las hierbas malas acuáticas es un medio adecuado de aumentar las posibilidades recreativas y estéticas. Se emplean dispositivos mecánicos comerciales, y los residentes de las cercanías también se reúnen para ventilar la vegetación a mano. Una tarima hecha con unas cuantas tablas atadas entre dos canoas es muy eficaz para el propósito. La vegetación recogida es buena como fertilizante orgánico. Aun así, este procedimiento tiene un efecto limitado, y la vegetación crece de nuevo porque quedan las raíces en el suelo rico de nutrimentos.

La remoción mecánica del fitoplancton no es del todo práctica. Hay que filtrar del agua las células microscópicas, y el volumen del líquido, incluso en un estanque de proporciones
modestas, es abrumador. Además, las inversiones para su aprovechamiento se frustran por el hecho de que el plancton obstruye accesorios y filtros que impiden el paso del agua.

2.3.37. 2.8.9 Dragado.

A veces se necesita dragar para quitar los sedimentos que obstaculizan la navegación. Sin embargo, el dragado tiende a aumentar la eutrofización porque se suele agitar buena parte del material asentado, que vuelve a quedar en solución, donde acrecienta la turbiedad y estimula el crecimiento del fitoplancton. También es un problema notable encontrar un lugar adecuado para desechar el material excavado.

2.3.38. 2.8.10 Estrategias de remediación a largo plazo.

En última instancia, controlar la eutrofización debe consistir en aminorar la entrada de nutrientes y sedimentos. El primer paso es identificar sus fuentes principales. Luego, es cuestión de establecer y poner en práctica las estrategias de corrección. La importancia de cada fuente o factor dependerá de la población humana y de los usos de la tierra en cada cuenca. Por ende, hay que analizar los casos por separado y tomar las medidas adecuadas para reducir los sedimentos y los nutrientes. En primer lugar, solo se necesita que falte un nutriente para suprimir el crecimiento. En los sistemas naturales de agua dulce, el fosforo es el agente limitante más común; en los marinos, el nitrógeno. Tanto en los sistemas ambientales como en los biológicos, el fosforo (P) se encuentra en forma de fosfato (PO_4^{3-}) y el nitrógeno aparece en una variedad de compuestos, en particular nitratos (NO_3^{-}) y amonio (NH_4^+). A diferencia de los ciclos naturales de nutrientes, los humanos han establecido un flujo unidireccional. Nitrógeno, fosfato y otros nutrientes que extraen del suelo las plantas de cultivo salen los excrementos humanos y son descargados en las corrientes de agua. Desde luego, primero estos desechos son recolectados y tratados. Sin embargo, los métodos acostumbrados de tratamiento se concentran solo en eliminar los elementos peligrosos a la salud y descomponer o retirar la materia orgánica para reducir la demanda bioquímica de oxígeno, sin ningún esfuerzo para recoger los nutrientes. Así en las áreas muy pobladas, los vertimientos de las plantas de tratamiento de aguas residuales son fuentes importantes de nutrientes que se introducen en las corrientes pluviales. Los niveles de fosfatos de esas emisiones son aún más elevados en las zonas en la que los detergentes los contienen. Estos compuestos añadidos con fines de limpieza pasan por el sistema y salen con las descargas. En las regiones donde la eutrofización es problema, un paso clave para prevenirlo es prohibir...
la venta de detergentes con fosfatos, al menos regular su contenido. Existen experiencias donde las prohibiciones fueron impuestas solo gracias al fuerte apoyo de los ambientalistas que superaron la respuesta opositora de las industrias de los detergentes. Pero ya se llegó al punto crítico y los principales fabricantes se están inclinando por una producción general sin fosfato, en lugar de elaborar fórmulas distintas para cada región. Puesto que esta transición se encuentra aún en progreso, conviene aconsejar a los consumidores que lean en el paquete los ingredientes activos. Además, se debe contar con un programa destinado a modernizar las plantas de tratamiento de aguas residuales para separar los nutrientes de los vertimientos o manejar estas de tal forma que impidan que los nutrientes pasen a las corrientes fluviales. Las prohibiciones de los detergentes con fosfatos y la modernización de las plantas de tratamiento de aguas residuales aportan mejoras a las escorrentías de aguas que habían sido muy dañadas por los vertimientos urbanos. Sin embargo, en cierto sentido se trata de medidas fáciles, puesto que el blanco de la corrección, los vertimientos de las aguas residuales es una fuente puntual concreta y los métodos de corrección están bien definidos. El remedio se vuelve más fácil, pero no menos importante, cuando la fuente es difusa, como en el caso de los escurrimientos rurales y urbanos. Subsanar estas fuentes no puntuales requiere que miles y quizás millones de propietarios adquieran nuevas costumbres en cuanto al manejo y uso de los fertilizantes y otros agentes químicos en sus tierras.

Control de escurrimientos agrícolas: cuando una parte significativa de la cuenca se dedica a la actividad agrícola, es muy probable que las fuentes principales de nutrientes y sedimentos sean la erosión y la lixiviación de fertilizantes de los campos de cultivo y el escurrimiento de los desechos animales de establos y comederos. Todas las medidas que se emprendan para reducir la erosión, los escurrimientos y la lixiviación se agrupan bajo un solo término: practica de manejo eficaz, que incluyen también los métodos de conservación del suelo. En los primeros lugares de la lista, se encuentran el mantener el suelo cubierto con vegetación o pajonales para evitar la erosión, cultivar en franjas, plantar trébol y otras legumbres para añadir nitrógeno en forma natural y utilizar fertilizantes orgánicos (como compostaje y estiércol) en lugar de los inorgánicos; pero hay otros aspectos también importantes. Se ha descubierto que es muy provechoso restablecer las arboledas ribereñas, o sea, las franjas de árboles, arbustos y otra vegetación a lo largo de los ríos y zonas de desagües que dan a las escorrentías de los drenes.

Cuando los desechos animales de comederos, establos de ordeña y cuadras van a los cursos de agua, se construyen buzones de inspección que intercepten los escurrimientos ricos en
nutrientes. Entonces este líquido se recicla como agua de riego, que devuelve los nutrientes al suelo. Los animales que beben a su antojo de los ríos naturales rompen las orillas y aceleran su erosión, además de que crean vías que facilitan los escurrimientos y arrojan los excrementos en el agua. La alternativa de prácticas de manejo eficaz de agua consiste en disponer bebederos lejos de la corriente y cercarla para proteger las arboledas ribereñas. La implantación de prácticas de manejo eficaz del agua en las granjas tiene tres puntos a favor. Primero, uno tiene que negociar con un número limitado y estable de agricultores; segundo, la adopción de prácticas eficaz del agua suele traerles beneficios económicos a largo plazo y tercero, hay un conjunto de subsidios al campo en Estados Unidos que pueden servir para que se tengan más incentivos. Así el establecimiento de prácticas de manejo en el campo está avanzando.

2.3.39. 2.8.11 Control de escurrimientos urbanos.

En los hogares, los propietarios tienden a aplicar en céspedes y jardines de tres a cinco veces más fertilizantes y plaguicidas por unidad de área que los agricultores en los campos de cultivo. Con ello, los escurrimientos y las lixiviaciones de nutrientes de las áreas urbanas y suburbanas son mucho mayores que en los campos agrícolas de dimensiones similares. Los excrementos de los animales domésticos también contribuyen al contenido de nutrientes de aquellos escurrimientos. Los campos de golf son una cuestión aparte: los encargados acostumbran aplicar muchos fertilizantes; así los suelos se compactan, lo que propicia los escurrimientos. En las cuencas con ciudades de cierto tamaño, la principal fuente de nutrientes que causan eutrofización son los escurrimientos de las áreas urbanizadas. Desde luego, esta fuente crece con la población y la urbanización, y augura que será la más difícil de controlar. Los mismos conceptos de prácticas de manejo eficaz de las aguas son aplicables a prados y huertos. Sin embargo, el costo rara vez disuade al propietario de utilizar agentes químicos y tampoco hay algún sistema de subsidios que fomente un comportamiento responsable. Por tanto, queda por responder la pregunta sobre cómo hacer que comprendan y cooperen millones de propietarios de casas para reducir el uso de fertilizantes y otros agentes químicos. En algunas partes se ha iniciado programas educativos, pero aún se esperan los resultados.
2.9. EUTROFIZACIÓN EN LA BAHÍA INTERIOR DEL LAGO TITICACA DE PUNO.

JICA – INADE (2000) define como la sobreproducción de fitoplancton ocasiona pérdida de la transparencia del agua y el consumo excesivo de oxígeno durante su muerte y descomposición. El deterioro de la calidad del agua deprecia el valor del uso del agua tales como abastecimiento de agua, pesca y turismo.

La planta flotante *lemna* (lenteja de agua) presente en un cuerpo de agua se extiende a lo largo de la bahía interior de Puno debido a la significativa eutrofización. Cuando el viento sopla hacia el oeste, la *lemna* se acumula en la ribera occidental del lago y su densidad alcanza entre 10 a 15 cm. de espesor. En consecuencia, la densa capa de *lemna* no solo obstruye la navegación de los bates, sino también afecta la vista panorámica paisajística, lo que deprecia el valor de las atracciones turísticas.

La cosecha de *lemna*, fue conducida por el comité multisectorial para el mejoramiento medioambiental de la bahía interior de Puno desde el año de 1998. El recojo de *lemna* es efectiva contra la obstrucción de la actividad de las embarcaciones y la recuperación del escenario paisajístico, necesaria que la eliminación sea continua para mejorar eliminación de nutrientes en el lago, se prevé la formación de sedimentos debido a la presencia de *lemna*, en razón a su ciclo de vida, el que se extiende entre 16 y 20 días.

Los efectos adversos se manifiestan con problemas al ecosistema, en el deterioro de la calidad del agua, la pérdida de especies y disminución en abundancia de macrófitas sumergidas (y su fauna relacionada), debido principalmente a la falta de luz y a los bajos contenidos de oxígeno en las aguas profundas y fangos. La pérdida de bentos en gran parte del lago, causada por el bajo contenido de oxígeno en las aguas profundas y sedimentos de fondo. La pérdida de las áreas de desove y cría de peces, debido a la pérdida de macrofitas; la perdida de especies ictiológicas y su abundancia; el mal funcionamiento del ecosistema acuático de la bahía interior debido a las razones antes mencionadas.

2.3.40. 2.9.1. Tratamientos / eutrofización para la bahía interior del Titicaca.

Para JICA – INADE (2000) el nivel eutrófico en el resultado basado en los estudios de calidad de agua, se encontró que la concentración de nutrientes es alta. A juzgar por la
concentración de nutrientes, se presume que el estado eutrófico de la bahía interior de Puno ha alcanzado el nivel hiper – eutrófico (>0.1 mg/l de fosforo total).

2.3.41. 2.9.2. Monitoreo de calidad del agua.

Lead & Rodríguez (1998), definen al monitoreo como procedimiento continuo de observación, medición, y evaluación de las acciones del proyecto en forma objetiva, con el fin de identificar impactos ambientales y aplicar medidas de control ambiental en el momento y en el lugar apropiado. La información recopilada es de importancia para temas de investigación y para prevenir impactos ambientales de proyectos que ocasionen o perjudiquen el recurso natural y al medio ambiente.

Según Arellano & Gusman (2011) con la finalidad de mejorar la calidad del agua, es necesario realizar un buen monitoreo de los contaminantes, que es primordial en cualquier programa de control, ayuda determinar dónde, cuáles son y en qué concentraciones se encuentran los contaminantes, así como determinar la efectividad de los programas. Existen dos áreas básicas donde el monitoreo actual tiene lugar en el ambiente y en la fuente. Los contaminantes en el ambiente se encuentran en forma diluida. En la fuente de emisión, ya sea estacionaria o móvil, se encuentran más concentrados, y en la medida que se van moviendo de la fuente, se van diluyendo más. El monitoreo también nos ayuda a visualizar la tendencia de la calidad del agua todo el tiempo. Con esto se conforma una base de datos que nos puede ayudar a desarrollar modelos matemáticos que después nos ayudan a predecir el curso que tomará la concentración de los contaminantes, que servirán para predecir o identificar episodios potenciales de altas concentraciones de contaminantes, para responder situaciones de emergencia. También nos permite realizar investigación científica, encontrando la correlación de altas concentraciones de un contaminante determinado con sus efectos en la salud humana y al medio ambiente.

2.3.42. 2.9.3. Evaluación de la calidad de las aguas.

Guevara (1996) indica que evaluar consiste en realizar un número de mediciones y análisis que al compararlos con los parámetros, normas y métodos pre-establecidos permiten un control y manejo adecuado del proceso o sistema de tratamiento.

Correa, plantea evaluar e incluye acciones de supervisión, inspección, vigilancia y control con el propósito de prevenir, mantener, corregir, mejorar y optimizar los procesos
individuales en la calidad del agua (bofedales, ríos, lagos, etc.). Los criterios para la evaluación son la calidad requerida del efluente y lo que se desea controlar, todo depende del tamaño de las instalaciones, infraestructura, recursos existentes, personal disponible, laboratorios y gabinete. En el proceso de evaluación se realizan un número de mediciones y análisis que permitan un control y manejo adecuado del proceso de lagunas, este tipo de evaluación es necesaria, aunque consume tiempo, requiere personal con experiencia para interpretar los datos obtenidos, pero es el único medio para poder optimizar los sistemas lagunares.

Romero (2001) reporta que para la evaluación de las diferentes características de agua contaminada se deben seguir los métodos normales o estándar, además una caracterización acertada del agua residual que requiera una técnica apropiada de muestreo que asegure resultados representativos, en general para que la muestra sea representativa, se prefieren sitios de muestreo con flujo turbulento donde el agua residual esté bien mezclada. Sin embargo, el sitio de muestreo debe seleccionarse de acuerdo con cada problema individual.

La OMS (1993) señala que la evaluación de la calidad del agua es un estudio técnico, que determina las características organolépticas, físicas, químicas y biológicas del agua en sistemas de abastecimiento público, redes de suministro, drenajes municipales o industriales, descargas de aguas residuales, cuerpos receptores, canales y vasos de captación, etc. Se identifican los factores que inciden en la calidad del agua y se comparan sus características con valores de referencia y límites establecidos en la legislación.

Entonces desde el enfoque de salud pública se precisa que la evaluación de la calidad del agua es un proceso de enfoque múltiple que estudia la naturaleza física, química y biológica del agua con relación a la calidad natural, efectos humanos y acuáticos relacionados con la salud.

2.10. LAGOS

Para Alva (2010) el lago es aquella masa de agua permanente y relativamente extensa, más o menos profunda, depositada en una depresión del terreno y sin comunicación con las aguas oceánicas. Ramírez et al. (2011) los lagos, igual que los ríos, han sido de gran importancia para la humanidad. Estas grandes masas de agua que se encuentran almacenadas en las depresiones de la corteza terrestre, las cuales se alimentan principalmente de las
precipitaciones y de las corrientes superficiales. La mayor parte de los lagos son de agua dulce; sin embargo, también existen lagos salinos, debido a que fueron mares.

Según Ramírez et al. (2011) los lagos son de gran importancia regional, gracias a estos el clima de los lugares cercanos se regula, además son una fuente de alimentación para la fauna de la región y representan una reserva de agua para riego de cosechas, así como para consumo humano (Tyler, 2002) los ecólogos clasifican los lagos por el contenido de nutrientes y productividad primaria. Los que tienen pocas existencias de nutrientes vegetales se llaman oligotróficos u oligotrofos (mal alimentados). Con frecuencia esta clase de lagos son profundos y tienen riberas escarpadas. Por lo habitual, poseen agua cristalina con pequeñas poblaciones de fitoplancton y peces.

Dado su limitado nivel de nutrientes, su productividad primaria neta es muy baja. Con el tiempo, el sedimento, el material orgánico y los nutrientes inorgánicos llegan a los lagos oligotróficos, y las plantas crecen y se descomponen formando sedimentos en el fondo. Los lagos que contienen grandes concentraciones de nutrientes que necesitan los productores se llaman eutróficos o eutrofos (bien alimentados), por lo habitual son poco profundos y su agua es muy turbia, de tono café o verde.

Debido a sus altos niveles de nutrientes, su productividad primaria neta es muy elevada. Las entradas de nutrientes de la atmósfera y de las zonas urbanas y agrícolas cercanas, derivadas de las actividades humanas, aceleran la eutrofización de los lagos, en un proceso llamado eutrofización cultural, que muchas veces introduce una cantidad excesiva de nutrientes a los lagos, los cuales se describen como hipereutróficos.

2.3.43. 2.10.1. Propiedades del lago

Para Margalef (1983) el agua del Lago ha ido cambiando de ser pobre en nutrientes a ser muy rica en nutrientes se le llama eutrofización. Cuando algunos nutrientes como el fósforo y el nitrógeno se lavan al lago por lluvia o erosión, fertilizan el agua y promueven el crecimiento de algas y plantas. Según Clean – Flow (1999) cuando las plantas y animales que se alimentan de estos nutrientes se mueren y descomponen, luego se van acumulando en el fondo como sedimentos.
2.3.44. 2.10.2. Presencia del oxígeno en el lago.

La presencia de oxígeno en el agua de lagos determina donde se pueden encontrar los peces y el plancton. Cuando el oxígeno está presente en todas las profundidades, los seres vivos se encuentran distribuidos en todo el lago. Durante el verano, cuando los estratos están más marcados se encuentran cantidades pocas o nada de oxígeno en la capa del fondo, y los seres vivos deben subir para poder sobrevivir. Cuando ocurre la inversión térmica el recambio de agua hace que se vuelva a oxigenar el agua del fondo.

Cuando los niveles de oxígeno son muy bajos los peces y otros organismos acuáticos, morirán. Cada Lago tiene su demanda bioquímica de oxígeno que, sin quererlo, puede causar que los peces se vuelvan vulnerables a enfermedades y mueran. La demanda bioquímica de oxígeno cambia como consecuencia de: Contaminación; Sobreabundancia de alga, que limita el paso de luz a través del agua; desechos orgánicos de algas, plantas y peces muertos; y el crecimiento de bacterias anaeróbicas que liberan gases tóxicos.

2.3.45. 2.10.3. Presencia de nutrientes en el Lago.

Gil (2001) manifiesta que los compuestos nutritivos esenciales para el crecimiento de algas y otros microorganismos vivos, son el nitrógeno y el fosforo. El aporte artificial de estos nutrientes en el lago es debido a la actividad de aguas residuales urbanas, actividad agrícola, urbana e industrial. El aumento del nitrógeno total es debido a la incorporación de las descargas de proteínas animales y vegetales, el aumento de las descargas de fosforo es debido al rápido crecimiento demográfico (desechos, pérdida de los bosques y pavimentación); la industrialización (procesos alimenticios y preparación de ácido fosfórico) y la intensificación de la agricultura.

Las plantas y las algas requieren de fosforo y nitrógeno para su crecimiento. La concentración de estas sustancias en el agua y los sedimentos regulan la cantidad total de plantas y algas que pueden crecer. En la mayoría de los lagos el fosforo es escaso y cuando se encuentra en abundancia provoca un crecimiento acelerado de las algas. Este exceso de fosforo proviene de otras fuentes. Bajo ciertas condiciones, especialmente cuando hay poco oxígeno en el agua del fondo, se libera fosforo de los sedimentos al agua superior. Como resultado las algas abundan, reduciendo la claridad del agua y la penetración de la luz.
2.3.46. 2.10.4. Algas en el ecosistema lacustre.

Arellano & Gusman (2011) indican que las algas son organismos microscópicos parecidos a las bacterias, son autótrofas y contienen clorofila. Cuando son muy numerosas le dan un color, olor y sabor desagradable al agua. Las algas microscópicas se encuentran diluidas en toda el agua donde hay luz y se dominan en su conjunto plancton y no suelen ser visibles, a menos que estén en abundantes cantidades, en cuyo caso le dan al agua un color verdoso. Son una fuente de alimento y energía para los peces y otros organismos que habitan en el lago. Sin embargo, inhiben el crecimiento de otras plantas, vuelven turbia el agua, tapan la luz del sol y contribuyen a la falta de oxígeno y muerte de los peces, provocando problemas en el sabor y olor del agua y los peces.

Las algas verdes – azules son la causa primaria del desagradable sabor y olor del agua. Esto se puede reducir disminuyendo los nutrientes que producen el sobre - crecimiento del alga, para esto se utiliza el sulfato de aluminio y la aireación que produce un recambio en las capas del agua y lleva las algas verde - azules al fondo del lago, donde ya no reciben luz y mueren. El exceso de algas produce grandes masas de residuos desagradables de color verde que flotan en la superficie y producen mal olor. La frecuente aparición de brotes de algas indica que los niveles de nutrientes especialmente de fósforo, están muy altos.

2.3.47. 2.10.5. Presencia de sedimentos en el Lago.

El aire y el agua mueven la tierra de la cuenca hacia el lago. La tierra se va al fondo, sedimentándose, y se reduce la profundidad como parte del llenado natural del lago. Sin embargo, la sedimentación es acelerada grandemente por las actividades humanas que dejan la tierra expuesta sin vegetación por periodos prolongados. La tierra se torna vulnerable a la erosión cuando quedan pendientes deforestadas como resultado del desarrollo urbanístico y las actividades agrícolas cerca del lago o de los ríos de la cuenca. La sedimentación está íntimamente asociada con la eutrofización.

2.11. MARCO LEGAL.

2.3.48. 2.11.1. Declaración de Dublín sobre el agua y el desarrollo sostenible.

En la Conferencia Internacional sobre el Agua y el Medio Ambiente celebrada en Dublín, Irlanda del 26 al 31 de enero de 1992 en reunión de quinientos expertos participantes
designados por cien países y representantes de ochenta organizaciones internacionales intergubernamentales y no gubernamentales. Se precisa una acción concertada para invertir las actuales tendencias de consumo excesivo, la contaminación y las amenazas crecientes derivadas de la sequía y las crecidas. El informe se centra en cuatro principios rectores:

Principio Nº 1. - El agua dulce es un recurso finito y vulnerable, esencial para sostener la vida, el desarrollo y medio ambiente.

Dado que el agua es indispensable para la vida, la gestión eficaz de los recursos hídricos requiere un enfoque integrado que concilie el desarrollo económico y social y la protección de los ecosistemas naturales. La gestión eficaz establece una relación entre el uso del suelo y el aprovechamiento del agua en la totalidad de una cuenca hidrológica o un acuífero.

Principio Nº 2. - El aprovechamiento y la gestión del agua debe inspirarse en un planteamiento basado en la participación de los usuarios, los planificadores y los responsables de las decisiones a todos los niveles.

El planteamiento basado en la participación implica que los responsables de las políticas y el público en general cobren mayor conciencia de la importancia del agua, este planteamiento entraña que las decisiones habrían de adoptarse al nivel más elemental apropiado, con la realización de consultas públicas y la participación de los usuarios en la planificación de ejecución de los proyectos sobre el agua.

2.3.49. 2.11.2. Constitución política del Perú 1993

No hay precisión exacta sobre espacios contaminados que permita contribuir a problematizar o reflexionar y acerquen a relacionar políticas de gobierno y el control ambiental. Está ausente la ecología política en torno a los recursos hídricos, energéticos, la biodiversidad, el mar y los océanos, los bosques, las ciudades, los desechos y de articulación entre la democracia y el medio ambiente, etc. La Constitución Política del Perú está a la espera de incorporar las Garantías Institucionales al servicio del ambiente para que se asegure un reparto competencial ambiental mediante las correspondientes reservas constitucionales en su dimensión nacional, regional y local.

En el inciso 22 del artículo 2 del título referido a la persona y la sociedad – prescribe que toda persona tiene derecho a “A la paz, a la tranquilidad, al disfrute del tiempo libre y al descanso, así como de gozar de un ambiente equilibrado y adecuado al desarrollo de su vida”.
Y con respecto al régimen económico se incorpora un capítulo (“del ambiente y de los recursos naturales’’), donde hace referencia a las condiciones para el aprovechamiento de los recursos naturales:

En el Artículo. 66º, señala que los recursos naturales, renovables y no renovables son patrimonio de la Nación. El estado es soberano en su aprovechamiento.

Entonces por ley orgánica se fijan las condiciones de su utilización y de su otorgamiento a particulares. La concesión otorga a su titular un derecho real, sujeto a dicha norma legal.

Art. 67º.- El Estado determina la política nacional del ambiente. Promueve el uso sostenible de sus recursos naturales. Lo que se concreta con el decreto supremo N° 012 – 2009-MINAM.

Art. 68º.- El Estado está obligado a promover la conservación de la diversidad biológica y de las áreas naturales protegidas.

2.3.50. 2.11.3. Ley general del ambiente ley 28611.

Que reemplaza al código del medio ambiente y de los recursos naturales D. Leg. 613 (1990). Expresa como un proceino amplio de evolución del sistema jurídico ambiental peruano frente a la crisis ambiental y de los modelos de desarrollo denominado insostenibles con enfoque transectoriales en gestión ambiental y una tributación ambiental, sin embargo, hay un imperativo dirigido, paradójicamente, más a los gobiernos locales que a los regionales, de contar con un sistema de gestión ambiental, cuando su implementación debería ser más gradual.

Art. 31º Del Estándar de Calidad Ambiental

En el numeral 31.1.- El estándar de calidad ambiental – ECA, está referida al control de la medida que establece el nivel de concentración o el grado de elemento o sustancia o parámetro físico, químico y biológico, presentes en el aire, agua, suelo, en su condición de cuerpo receptor, que no represente riesgo significativo para la salud de las personas ni al ambiente. Según el parámetro particular al que se refiera, la concentración o grado podrá ser expresada en máximo, mínimos o rangos.
Art. 32º Del Límite Máximo Permissible.

Las actividades cuyo residuo líquido puedan vulnerar la calidad del agua en el cuerpo receptor se explica en el numeral 32.1.- El Límite Máximo Permissible – LMP, es la medida de la concentración o grado de elemento, sustancias o parámetro físico, químico y biológico que caracterizan a un efluente o una emisión o que al ser excedida causa o puede causar daños a la salud, al bienestar humano y al ambiente. Su cumplimiento es exigible legalmente por la respectiva autoridad competente. Según el parámetro en particular a la que se refiera, la concentración o grado podrá ser expresada en máximo, mínimo o rango.

Art. 90º.- Del Recurso Agua Continental.

En la ley general del ambiente el estado promueve y controla el aprovechamiento sostenible de las aguas continentales a través de la gestión integrada de los recursos hídricos, previniendo la afectación de su calidad ambiental y de las condiciones naturales de su entorno, como parte del ecosistema en el que se encuentra; regula su asignación en función de los objetivos sociales, ambientales y económicos; y promueve la inversión y participación del sector privado en el aprovechamiento sostenible del recurso.

Art. 120º.- De la protección de la calidad de las aguas.

El Estado a través de las entidades señaladas en la ley, está a cargo de la protección, de la calidad de los recursos hídricos del país, en el numeral 120.2, donde se pone que el estado promueve el tratamiento de las aguas residuales con fines de su reutilización, considerando como premisa la obtención de la calidad necesaria para su reúso, sin afectar la salud humana, el ambiente o las actividades en las que se reutilizaran.

Art. 142.- De la responsabilidad por daños ambientales.

La responsabilidad por daño ambiental en el numeral 142.1; indica aquel que mediante el uso o aprovechamiento de un bien o en el ejercicio de una actividad pueda producir un daño al ambiente, a la calidad de vida de las personas, a la salud humana o al patrimonio está obligado a asumir los costos que se deriven de las medidas de prevención y mitigación de daño, así como los relativos a la vigilancia y monitoreo de la actividad y de las medidas de prevención y mitigación adoptadas, en el numeral 142.2, explica la norma y denomina daño ambiental a todo menoscabo material que sufre el ambiente y/o alguno de sus componentes,
que puede ser causado contraviniendo o no disposición jurídica, y que genera efectos negativos actuales o potenciales.

2.3.51. 2.11.4. Ley de recursos hídricos ley 29314.

Por otro lado, la autoridad nacional del Agua hace referencia a los vertimientos de aguas residuales como fuente principal de contaminación para el caso de la bahía interior de Puno, deben estar sujetos a los mecanismos periódicos de renovación que permita evaluar su impacto en el ambiente de acuerdo a los límites máximos permisibles (LMP) y los estándares de calidad ambiental (ECA) vigentes y su adecuación a los mismos, de ser el caso. En caso este afecte la salud humana o el medio ambiente, la Autoridad Nacional del Agua (ANA) suspende las autorizaciones otorgadas, con el fin de evitar el prolongado aporte de contaminantes orgánicos a la BIP.

Art. 103º- Protección del Agua.

El agua es necesaria para la vida; sin agua los seres humanos y otros seres morirían y sería el fin del sistema hidrográfico de la tierra. En el numeral 103.1, pone de manifiesto que la protección del agua tiene por finalidad prevenir el deterioro de su calidad; proteger y mejorar el estado de sus fuentes naturales y los ecosistemas acuáticos; establecer medidas específicas para eliminar o reducir progresivamente los factores que generan su contaminación y degradación.

También; la Autoridad Nacional del Agua, en coordinación con el Ministerio del Ambiente, Ministerio de Salud y demás sectores cuando corresponda emite disposiciones, directivas y normas complementarias al Reglamento, para la conservación y protección de la calidad de las aguas.

Art. 106º Clasificación de los cuerpos de agua.

Los cuerpos naturales de agua se clasifican en función a sus características naturales y los usos a los que se destinan, en el numeral 106.2, aclara que la Autoridad Nacional del Agua clasifica los cuerpos de agua, tomando como base la implementación progresiva de los Estándares Nacionales de Calidad Ambiental para el agua (ECA – Agua), que apruebe el Ministerio del Ambiente de acuerdo con los usos actuales y potenciales al que se destina el agua.
Art. 123°- Acciones para la prevención y el control de la contaminación de los cuerpos de agua.

La extracción o desvío de las aguas a gran escala afecta no solo los sistemas circundantes, sino también a los que se encuentran lejos. Las aguas que desembocan en el lago no se desperdician, puesto que la escorrentía evita impactos desastrosos para el entorno litoral y los pueblos indígenas y personas de la región, cuyo modo de vida depende de los recursos naturales del lugar.

En el numeral 123.1, manifiesta que la Autoridad Nacional del Agua, ejerce de manera exclusiva acciones de control, supervisión, fiscalización y sanción para asegurar la calidad del agua en sus fuentes naturales y en la infraestructura hidráulica pública, y es la Autoridad Administrativa del Agua quien ejerce acciones de vigilancia y monitoreo del estado de la calidad de los cuerpos de agua y del control de los vertimientos, ejerciendo la potestad sancionadora exclusiva por incumplimiento de las condiciones establecidas en las resoluciones que autorizan vertimientos o por ellos vertimientos no autorizados.

Art. 124°- Plan nacional de vigilancia de la calidad del agua

El plan Nacional de vigilancia de la Calidad del Agua es el conjunto de actividades orientadas a la evaluación de la calidad de los cuerpos de agua con el objetivo de determinar el cumplimiento de la ley, el Reglamento y demás normas de calidad de agua, identificar las fuentes de contaminación y establecer medidas para su recuperación. Los resultados de vigilancia y monitoreo de la calidad del agua serán tomados en cuenta para la adopción de medidas correctivas con el fin de controlar la contaminación. Asimismo, serán sistematizados y registrados en el Sistema Nacional de Información de Recursos Hídricos.

Art. 125°.- De la participación de los Consejos de Recursos Hídricos de Cuencas en la Protección del Agua.

Los consejos de recursos hídricos en cuencas, para el caso de Puno, es el consejo que se encuentra en conformación quien en cumplimiento de las funciones que le asigna el artículo 24° de la Ley, participan en la planificación estratégica y acciones necesarias para el cumplimiento de las funciones de vigilancia y fiscalización a fin de evitar y combatir los efectos de la contaminación de los cuerpos de agua.
Art. 126°- Protocolo para el monitoreo de la calidad de las aguas.

El monitoreo de la calidad de las aguas, en el Marco del Plan Nacional de Vigilancia de la Calidad del Agua, se efectúa de acuerdo con el protocolo aprobado por la Autoridad Nacional del Agua. Y es el propio protocolo de monitoreo de aguas superficiales el que ilustra los mecanismos de recolección, preservación y análisis de muestra de agua podrá realizarse de acuerdo con los métodos y procedimientos establecidos en las normas técnicas peruanas aprobadas por el Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual - INDECOPI, o en su defecto por los métodos de análisis internacionales reconocidos.

2.3.52. 2.11.5. Reglamento de La Ley de Recursos Hídricos.

A cada generación le toca asegurar que sus actividades no redunden en un empobrecimiento de la abundancia de la calidad del agua. La escasez del agua y la contaminación viene causada por los valores económicos que propician un consumo abusivo. Todas las especies dependen de la recuperación de los ecosistemas que funcionan al son de la naturaleza.

Art. 131°- Aguas Residuales y Vertimientos.

Aguas residuales, aquellas cuya característica original han sido modificadas por actividades antropogénicas, tengan que ser vertidas a un cuerpo natural de agua o reusadas y que por sus características de calidad requieren de un tratamiento previo.

Vertimiento de aguas residuales, es la descarga de aguas residuales previamente tratadas, en un cuerpo natural de agua continental o marítima. Se excluyen las provenientes de naves y de artefactos navales.

Art. 133°- Condiciones para autorización de vertimiento de aguas residuales tratadas.

El futuro que pueda garantizar el agua, reposa en cuidar los límites ecológicos dentro de una región o cuenca y factor clave para el desarrollo de una sociedad sostenible y protegido por todos los niveles de gobierno.

133.1.- La Autoridad Nacional del Agua podrá autorizar el vertimiento de las aguas residuales únicamente cuando:
a) Las aguas residuales sean sometidas a un tratamiento previo, que permitan el cumplimiento de los Límites Máximos Permisibles – LMP.

b) No se transgredan los Estándares Nacionales de Calidad Ambiental para Agua, ECA – Agua en el cuerpo receptor, según las disposiciones que dicte el Ministerio del Ambiente para su implementación.

c) Las condiciones del cuerpo receptor permitan los procesos naturales para su purificación.

d) No se cause perjuicio a otro uso en cantidad o calidad del agua.

e) No se afecte la conservación del ambiente acuático.

f) Se cuente con un instrumento ambiental aprobado por la autoridad ambiental sectorial competente.

g) Su lanzamiento submarino o subacuático, con tratamiento previo, no cause perjuicio al ecosistema y otras actividades lacustre, fluviales o marino costeras, según corresponda.

Art. 135°.- Prohibición de efectuar vertimientos sin previa autorización.

El agua es un bien público, y su reglamentación estará para protegerla mediante instituciones democráticas. Por consiguiente, ningún vertimiento de aguas residuales podrá ser efectuado en las aguas marítimas o continentales del país, sin autorización de la Autoridad Nacional del Agua. Y el numeral 135.2, pone rigor donde en ningún caso se podrá efectuar vertimientos de aguas residuales sin previo tratamiento en infraestructura de regadío. Sistemas de drenaje pluvial ni en los lechos de quebrada seca.

Art. 146°.- Vertimiento de sistemas de drenaje urbano o alcantarillado.

Corresponde a la autoridad a la autoridad sectorial competente la autorización y control de las descargas de agua residual a los sistemas de drenaje urbano o alcantarillado.

2.3.53. 2.11.6. Sunnas, Normas Oficiales para calidad del agua Perú, reglamento de Calidad del agua para consumo humano Perú.

Art. 21-. Para determinar si el agua satisface las condiciones de consumo humano, o de ser el caso aquellas exceptuadas por la autorización dada para consumo humano, el abastecedor de agua debe tomar y analizar, el número de muestras de agua reglamentadas a las salidas
de la planta de tratamiento, fuentes de aguas subterránea, reservorios de servicios y en cada una de las zonas de abastecimiento de agua.

2.3.54. 2.11.7. Ley N° 29906 Ley que declara de necesidad y utilidad pública la prevención y recuperación ambiental integral del Lago Titicaca y sus afluentes.

Art. 1º.- Objetivo de la Ley

A partir de los problemas de contaminación de la bahía interior de Puno y los espacios de desembocadura de las diferentes cuencas y declara de necesidad y utilidad pública la prevención y la recuperación ambiental integral del Lago Titicaca y sus afluentes, reconocido como humedal de importancia internacional por la convención sobre los humedales de importancia internacional, suscrita, aprobada y ratificada por el estado peruano.

El Artículo 2º de la Ley enfatiza las acciones para la recuperación de la calidad del agua y es el estado en sus tres niveles de gobierno, quienes priorizan las acciones de prevención y de recuperación ambiental del Lago Titicaca. Para tales efectos:

a) El gobierno nacional establece los lineamientos y criterios para el desarrollo de las acciones orientadas a la recuperación ambiental del Lago Titicaca. El gobierno Regional de Puno y los gobiernos locales desarrollan los planes, actividades, programas y proyectos orientadas a la recuperación del lago Titicaca, en el marco de sus competencias y priorizando en sus presupuestos anuales el financiamiento para su implementación.
III. MATERIALES Y MÉTODOS.

3.1 CARACTERÍSTICAS DE LA ZONA.

La zona de estudio está localizada en toda el área de la bahía interior de Puno presentada en la figura 1, la que comprende un área total de 17.3 km². Está ubicada a 15º50'30" latitud Sur, 59º60'43" longitud oeste a 3,810 m.s.n.m, que comprende por el lado Norte desde Uros Chulluni, Isla Esteves, Huaje y la UNA – Puno; por el lado Sur las Comunidades de Chimu y Aziruni; por el lado Oeste la Ciudad de Puno desde el barrio Vallecito hasta Chejona.del Departamento, Provincia y Distrito de Puno.

La bahía interior de Puno, es un espejo de agua de forma elíptica; mide 2,4 km de ancho desde isla Esteves hasta la isla Espinar, tiene una longitud de 3,5 km desde el Puerto de Puno hasta la boca del canal hacia Chimu (MINAM, 2013). La profundidad máxima encontrada es de 7 a 8 metros y la profundidad promedio es de aproximadamente 2,4; el área de superficie menor a 2m de profundidad corresponde al 50% del área total de la bahía interior de Puno, sin tomar en cuenta la profundidad de la laguna confinada de la costanera de Puno. Al este de la bahía, el acceso se encuentra bloqueado por extensos totorales, dejando abierto un canal de aproximadamente 30 m de ancho, cerca de Chimu, que la une a la bahía exterior; este canal tiene una profundidad de 6 a 7 m aproximadamente.

Asimismo, existe otro canal de navegación que conduce hacia las islas flotantes de los Uros, localizado en la parte noreste de la bahía en las proximidades de la Isla Esteves, que tiene una profundidad media variable de 1 a 4 m. la extensión de la bahía interior de Puno, está considerada entre los espolones de Uros Chulluni y Chimu que mide 2,193.00 has (MINAM, 2013).
3.3.5. 3.2. DESCRIPCIÓN DEL PROBLEMA.

El deterioro de las aguas de la bahía interior de Puno, es causado por las descargas de aguas residuales domésticas a través de canales de drenaje pluvial (población no atendida por la cobertura de la red de alcantarillado sanitario) y por el aporte del vertimiento de aguas residuales parcialmente tratadas de la planta de tratamiento mediante lagunas de estabilización El Espinar. Estos vertimientos fueron identificados en el estudio realizado por (JICA 2000) donde se midieron las cantidades de carga contaminante vertidas desde la planta de tratamiento y desde los cinco (5) canales de drenaje, los que se muestran en la Tabla 1:

<table>
<thead>
<tr>
<th>Estación Temporal</th>
<th>Contaminante Externo a la BIP</th>
<th>DBO₅</th>
<th>N-T</th>
<th>P-T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planta de Tratamiento Espinar</td>
<td>94</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Canales de Drenaje</td>
<td>6</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Planta de Tratamiento Espinar</td>
<td>82</td>
<td>68</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Canales de Drenaje</td>
<td>18</td>
<td>32</td>
<td>38</td>
</tr>
</tbody>
</table>

Fuente: JICA (2000)

Evidentemente se puede observar que la planta de tratamiento de aguas residuales Espinar genera el mayor aporte de contaminación al medio ambiente acuático de la bahía interior de
Puno. El área de estudio muestra un escenario de profundidad somera y poco movimiento de sus aguas superficiales, con características que combinan altas entradas de nutrientes provenientes de los desagües clandestinos de la ciudad de Puno, cuya población actual es de 155,000 habitantes (PIGARs 2013), dando lugar a un cuerpo severamente contaminado.

Es necesario resaltar que la ciudad de Puno, cuenta con una planta de tratamiento de aguas residuales por “laguna de estabilización”, la cual data del año 1972; fue diseñada para servir a una población de 45,000 habitantes, razón suficiente para saber que en la actualidad esta planta ha colapsado y ha quedado sub dimensionada. Presenta islas de lodos colmatados, influyendo en el tiempo de retención hidráulica, a ello se suman las condiciones climáticas del altiplano en época de invierno, con bajas temperaturas; lo que influye en el débil tratamiento de aguas residuales en la PTAR; esto hace ineficiente la remoción de materia orgánica, microorganismos patógenos y nutrientes. Este problema se incrementa por el vertimiento descontrolado de residuos sólidos y arrastre de suelos agrícolas desde las partes altas, donde hay presencia de actividad agrícola; el arrastre de contaminantes es causado por la acción de las precipitaciones pluviales de alta intensidad, especialmente en los meses de enero, febrero y marzo. Los suelos con contenido de soluciones nitrogenadas, sirven como nutriente y permiten el crecimiento de algas y otras especies de vida vegetal, como es el caso de la lenteja de agua, las cuales aceleran el proceso en la eutrofización del cuerpo de agua de la bahía interior del lago.

3.3. PLANTEAMIENTO DE SOLUCIONES

Los problemas ambientales identificados en la Bahía Interior de Puno, han generado conflictos entre las autoridades locales, regionales y con la sociedad; quienes ven la necesidad de encontrar solución al problema que busca recuperar un medio ambiente sano y saludable. Las medidas a tomar incluyen la reducción de la carga contaminante externa a la bahía, luego de haber sido identificados los agentes contaminantes (aguas residuales domésticas y comerciales).

Para ello se plantearon tres etapas que permiten enfrentar el problema identificado:

- Aireación en los sectores de baja concentración de oxígeno disuelto con valores menor a 1 mg/l (figura 3).
- Cosecha mecánica de lenteja en toda la bahía interior de Puno, apoyada con equipo mecánico
• Monitoreo de la calidad del agua, priorizando dos (02) estaciones pilotos de los doce (12) puntos de muestreo identificados en el programa de monitoreo del Proyecto Especial Binacional Lago Titicaca “PELT”.

3.3.6. 3.3.1. Instalación del sistema de aireación.

Para llevar adelante el proyecto, desde la Autoridad Binacional del Lago Titicaca (ALT), se implementa un sistema de aireación, con la instalación de difusores de fondo proyectadas para 19 bases de concreto ciclópeo; el cual se apoya en casetas de bombeo instaladas en lugares críticos con condición de baja calidad ambiental (presencia de oxígeno disuelto menor a 1 mg/l). Considerado parte del componente de gestión ambiental de la Autoridad Binacional del Lago Titicaca, donde se priorizaron con fines de investigación dos (02) estaciones de observación; la base o estación Nº 05 ubicada entre el frontis de la Universidad Nacional del Altiplano y el extremo norte del malecón eco turístico con 02 casetas de bombeo y la base o estación Nº 07 ubicada en el extremo derecho del Puerto Muelle con 01 caseta de bombeo. Cada estación cuenta con 02 equipos de bombeo de aire (sopladores), con 25 HP de potencia. Cada bomba suministra 02 ramales de tubería de polietileno de alta densidad y cada ramal cuenta con 30 a 31 difusores, logrando un área de influencia de cada ramal de 900 m². El proceso de aireación consiste esencialmente en la inducción de aire de la atmósfera, hacia el cuerpo de agua, mediante la aplicación de burbuja fina a través de difusores de fondo de forma cilíndrica, este volumen de aire logra un desplazamiento vertical hacia la superficie, logrando formar un burbujeo circular en cada difusor de 2 m de diámetro.

Los difusores quedan suspendidos a una altura de 50 cm por encima de la superficie de fondo, y están sujetos mediante boyas; el oxígeno concentrado en el aire, se diluye en el cuerpo de agua y permite dotar de actividad a la biomasa de microrganismos autóctonos, siendo estos los encargados de remover la materia orgánica presente en el agua. Los tiempos aplicados en la aireación se ordenaron en tres ciclos; el primero entre las 6.00 a.m. y las 7.45 a.m.; el segundo entre las 10.45 a.m. y las 12.30 p.m.; y el tercer ciclo de aireación entre las 4.15 p.m. hasta las 6.00 p.m.; dejando libre la aireación durante la noche. Por otro lado, el área del proyecto se encuentra zonificada dentro del plan de desarrollo urbano, como zona de protección ecológica y es parte de la zona de amortiguamiento de la Reserva Nacional del Titicaca, donde no se puede generar ruido por la noche a pesar de que los motores en las estaciones de bombeo – soplador cuentan con silenciador (ver figura 2).
El proceso de aireación fue propuesto por la Autoridad Autónoma Binacional del Sistema Hídrico Titicaca, Río Desaguadero, Lago Poopo y Salar de Coipasa “ALT”; basados en la experiencia del proceso de lodos activados como alternativa innovadora para reducir la contaminación del lago Titicaca.

Figura 2: Imagen satelital del Área con degradación ambiental
3.3.7. 3.3.2. Cosecha de lenteja (lemna sp.)

La lemna se acumula en la ribera occidental del lago y su densidad alcanza un espesor entre 10 cm y 15 cm. (ver área de intervención en las fig. 4 al 8). La cosecha de “lemna sp” se consideró una práctica oportuna, debido a la obstrucción de la actividad de embarcaciones de lanchas de pasajeros que zarpan desde el puerto muelle; así mismo ayuda a la oxigenación superficial de las aguas, razón por la cual se decidió la cosecha continua, para evitar la formación de sedimentos debido al periodo vegetativo terminal de la Lemna sp. Indirectamente también se buscó mejorar el escenario ambiental paisajístico lacustre. La cosecha consideró todas las acciones referentes a la recolección, carguío, transporte y disposición final de la lenteja a una distancia de 10 Km del área de intervención, muy cerca de los terrenos del relleno sanitario Cancharani; estas actividades se realizaron en forma paralela al sistema de aireación, durante los años 2008 al 2010, se intervinieron los sectores de San José (32 Ha.), Puerto Muelle (24 Ha.), Laykakota (44 Ha.) y Chejoña (100 Ha), estimándose una superficie de 200 Has. La frecuencia de recolección se planteó para realizar tres campañas por año. El equipamiento considero: una unidad de bastidor metálico con dos
hojas móviles con tejido de malla galvanizada en el interior del bastidor y aditadas como implemento para recolección de lenteja, el implemento se sujeta a la cuchara del brazo extendible de una excavadora con capacidad de 200 m³/día. Como complemento a los trabajos de recolección de la lemnana sp., se utilizaron malla long - lay (malla de pesca) y flotadores que sirvieron para el arrastre del material superficial flotante. La excavadora empleada de marca CAT tenía un brazo largo extendido de 19 m de longitud, de 180 HP de potencia con capacidad de 100 ciclos/día, y los camiones volquete utilizados en el transporte tenían una capacidad de tolva para 6 m³ y 15 m³.

Figura 4: Área de intervención de la cosecha de lemnana 2007
Figura 5: Área de intervención de cosecha de lemna 2008

Figura 6: Área de intervención de cosecha de lemna 2009
Figura 7: Área de intervención de cosecha acumulada de lemna 2007 - 2009

Figura 8: Presencia de Lemna en la BIP

3.3.8. 3.4. MONITOREO DE LA CALIDAD DEL AGUA.

El monitoreo de la calidad del agua fue parte de la meta 14 del Proyecto Espacial Binacional Lago Titicaca “PELT”, a través de la Dirección de Estudios y proyectos, área encargada de ejecutar el programa de monitoreo de la calidad del agua en la Bahía Interior de Puno en 12 puntos de muestreo, teniendo en cuenta las características del recurso hídrico y las condiciones hidrodinámicas del cuerpo de agua, con periodos mensuales. Las muestras se analizaron en el laboratorio de calidad de agua del PELT, implementado en el año 2009 por el PNUD, el laboratorio está ubicado en el distrito de Chucuito a 18 km. al sur de la ciudad de Puno. Los parámetros seleccionados para analizar la calidad del agua se ajustaron a las normas de calidad ambiental ECA – Agua, categoría IV considerando para el monitoreo de: conductividad eléctrica, pH, Temperatura ºC, Oxígeno Disuelto, Nitratitos, Nitratos, Fosfatos, Sulfatos, DBO₅, Coliformes Termotolerantes, Coliformes Totales.

Tabla 2: Parámetros en estudio.

<table>
<thead>
<tr>
<th>ESTACIóN Nº 05</th>
<th>ESTACIóN Nº 07</th>
</tr>
</thead>
<tbody>
<tr>
<td>COORDENADAS</td>
<td>COORDENADAS</td>
</tr>
<tr>
<td>ESTE</td>
<td>ESTE</td>
</tr>
<tr>
<td>NORTE</td>
<td>NORTE</td>
</tr>
<tr>
<td>391,502 E</td>
<td>391,384 E</td>
</tr>
<tr>
<td>8°249,561 N</td>
<td>8°249,164 N</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Se relacionaron datos de dos (2) estaciones, que estuvieron cercanos a los escenarios pilotos de aireación. La frecuencia de monitoreo fue mensual entre los días 20 al 24 de cada mes. El muestreo se inició con la preparación de los materiales, indumentarias de protección individual, equipos y personal capacitado. El tipo de muestras fue simples y puntuales, tomando dos (2) muestras por cada estación; al 20% y al 80% de profundidad con respecto a la superficie del agua; en la tabla 3, se listan los materiales y equipos utilizados en el programa de monitoreo.
Tabla 3: Preparación de materiales y equipos.

<table>
<thead>
<tr>
<th>materiales</th>
<th>laboratorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia cartográfica.</td>
<td>Frascos de polietileno.</td>
</tr>
<tr>
<td>Tablero, fichas de registros de campo.</td>
<td>Frascos de vidrios ámbar.</td>
</tr>
<tr>
<td>Libretas de campo.</td>
<td>Frascos de vidrio transparentes.</td>
</tr>
<tr>
<td>Etiquetas para la identificación de frascos.</td>
<td>Guantes descartables.</td>
</tr>
<tr>
<td>Cadena de custodia.</td>
<td>Coolers, grandes y pequeños.</td>
</tr>
<tr>
<td>Sogas, baldes de plástico transparente.</td>
<td>Refrigerantes.</td>
</tr>
<tr>
<td>Muestreador con brazo telescopico.</td>
<td>Reactivo para preservación de muestras.</td>
</tr>
<tr>
<td>Papel secante (tissue).</td>
<td>Pizeta.</td>
</tr>
<tr>
<td>Cinta adhesiva.</td>
<td>Gotero.</td>
</tr>
<tr>
<td>Plumón indeleble.</td>
<td>Agua destilada.</td>
</tr>
<tr>
<td>Buffers de pH y conductividad.</td>
<td>Indumentaria de protección.</td>
</tr>
<tr>
<td>Bolsa Ziploc para guardar envases de preservantes.</td>
<td>Zapato de seguridad</td>
</tr>
</tbody>
</table>

3.3.9.

3.3.10. 3.4.1. Medición de parámetros de campo y registro de información.

Los equipos fueron calibrados (Multiparamétrico, GPS, Turbidimetro) antes de iniciar el trabajo de campo. Antes de realizar la medición se enjuagaron los electrodos con la muestra de agua, estando el equipo apagado, también se agitó ligeramente el sensor antes de medir y registrar la lectura cuando se estabilizó la lectura. Las mediciones se realizaron directamente en el cuerpo de agua; en campo fueron medidos el pH, temperatura y el oxígeno.

Las muestras para laboratorio, se tomaron en frascos de muestreo sin preservantes; se utilizaron frascos de plástico y vidrio, limpios y de boca ancha. Los envases de vidrio fueron previamente esterilizados y se utilizaron para el análisis de coliformes totales y termotolerantes.

3.3.11. 3.4.2. Materiales y método de ejecución:

Para cumplir con los objetivos del proyecto de investigación se menciona el material utilizado en el trabajo de investigación.
a) Equipos utilizados en el sistema de aireación.

Motor Eléctrico de 25 HP, 1800 rpm, 60hz, 230/460V.
Sopladores rotatorios tipo blower.
Tablero eléctrico armado adosable.
Base de concreto armado para soporte de equipo.
Equipo soplador de aire, aditados con silenciador de entrada y salida.
Medidor de temperatura al ingreso y descarga.
Medidor de presión (manómetros), al ingreso y descarga.
Difusores de aire tubular de burbuja fina EDI “T” con micro perforaciones
Manguera pesada de 5/8” de alta densidad (HDPE).
Rollo de tubería manguera WD1 de 50 psi de diámetro interior 5/8” y exterior de 1 1/8”, pesada subacuático de 1700 m de longitud.

b) Material de laboratorio para monitorear la calidad de agua.

Asa y Aguja de Kolle. Baldes de plástico
Buretas graduadas Cajas de Polietileno (conservar muestras)
Celdas de vidrio de 25ml. Para el DR 4 000 Vasos de precipitados
Envases de Polietileno (para las muestras) Escobillas para lavado de materiales.
Espátula. Fiolas
Frascos con tapas Frascos para DBO
Gradillas. Frascos para DBO
Matraz Kitasato Matraz Erlenmeyer
Pipetas Mechero Bunsen.
Pacatas Petri. Piscetas
Probetas Porta y cubre objetos.
 Tubos de ensayo.

b) Equipo de campo y laboratorio.

Autoclave, Balanza analítica, Botellas muestreadoras, Cronómetro, Destilador de agua.

Espectofotometro de absorción atómica DR 4000, Incubadoras, Lavador de pipetas.

Medidor de oxígeno HANNA, Microscopio, Multiparámetro HORIBA, Mutiparámetro HANNA, Refrigeradora, Turbidímetro y medidor de iones específicos HANNA.
d) Material Reactivo.

Ácido Sulfúrico concentrado al 97%
Almidón.
Caldo Lactosado.
Hidróxido de potasio (KOH).
Ioduro de potasio (KI).
Sachet de nutrientes para DBO.
Agua destilada.
Bicromato de Potasio (Cr₂K₂O₇).
Caldo Verde Brillante Vilis.
Hidróxido de sodio en lentejas (NaOH).
Ioduro de sodio (NaI).
Sachet Nitraver 5 reactiv para determinación de Nitrato (NO₃-N).
Sachet Nitriver 3 reactivo para determinación de Nitrito (NO₂-N).
Sachet PhosVer 3 reactivo para determinación de Fosfato (PO₄²⁻).
Sachet SulfaVer 4 reactivo para determinación de Sulfato (SO₄²⁻).
Sulfato de Manganeseo mono hidratado (MnSO₄.H₂O).
Tiosulfato de sodio penta hidratado (Na₂S₂O₅.5H₂O).

e) Para la determinación de los parámetros físico – químicos

La calidad de aguas está determinada por las propiedades físicas, químicas, durante las campañas de monitoreo se evaluaron los siguientes parámetros:

Temperatura (°C) pH
OD (mg/l) Conductividad (µS/cm)
Turbidez (NTU). Salinidad (%).
Sólidos Totales disueltos (mg/l).

3.5. ANÁLISIS ESTADÍSTICOS

El diseño estadístico aplicado fue el diseño de bloque completo al azar, adoptado al experimento factorial 2² es igual a 2ⁿ, donde n es el número de factores, en este caso 2, tomados a dos niveles. En un diseño completamente al azar, que involucra “t” tratamientos y “n” unidades experimentales.

\[Y_{ijk} = \mu + \beta i + \alpha_j + \gamma_k + (\alpha\gamma)_{jk} + \epsilon_{ijk} \]
i = 1,2,\ldots, r; j=1,2,\ldots, a ; k = 1,2, \ldots, b

Donde:

\(\mu \) = Efecto verdadero medio

\(\beta_i \) = efecto del i-ésimo del año

\(\alpha_j \) = Efecto verdadero del j-ésimo nivel del factor profundidad

\(\gamma_k \) = Efecto verdadero del j-ésimo nivel del factor zona de estudio

\((\alpha\gamma)_{jk} \) = Efecto de la interacción del j-ésimo nivel del factor profundidad con el k-ésimo nivel del factor zona de estudio

\(\varepsilon_{ijk} \) = Error experimental
IV. RESULTADOS Y DISCUSIÓN

4.1 EL EFECTO DEL SISTEMA DE AIREACIÓN.

La aireación mejoró las condiciones de reducción de la contaminación en la bahía interior de Puno, resolvió el problema de baja concentración de oxígeno disuelto (menor a 1 mg/l) en las aguas contaminadas, mejoró el aspecto paisajístico y se eliminó los malos olores producto de la descomposición anaerobia de la materia orgánica. En la tabla N° 4 se observan los costos de aireación del proyecto piloto en las dos (02) estaciones; desde la instalación y la operación del sistema, suman un valor de un millón quinientos cuarenta y siete mil soles (1´547,000.00), ver tabla 7; se evaluaron otras propuestas como la de succión de lodo de fondo, que superó los doscientos cincuenta millones de soles (250’000,000.00), o el encapsulamiento con material granular (hormigón de río), que supera los ochocientos millones (800’000,000.00). La propuesta de aireación para resolver el problema de contaminación por materia orgánica en toda la bahía interior de Puno, alcanzó la suma de catorce millones seiscientos noventa y seis mil quinientos nuevos soles (14´696,500.00).

Tabla 4: Resumen de resultados de la investigación al inicio y al final de aireación

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.7</td>
<td>9.21</td>
<td>9.54</td>
<td>10.24</td>
<td>6.5 - 9</td>
<td>ECA - 2017</td>
</tr>
<tr>
<td>Turbiedad (mg/l)</td>
<td>8.825</td>
<td>6.41</td>
<td>5.42</td>
<td>< 1000</td>
<td>OMS</td>
<td></td>
</tr>
<tr>
<td>Óxigeno Disuelto (mg/l)</td>
<td>1</td>
<td>9.17</td>
<td>8.2</td>
<td>4.94</td>
<td>≥ 5</td>
<td>ECA - 2017</td>
</tr>
<tr>
<td>Temperatura (ºC)</td>
<td>16</td>
<td>7.99</td>
<td>6.04</td>
<td>6.91</td>
<td>12 +/- 3</td>
<td>ECA - 2017</td>
</tr>
<tr>
<td>Sólidos Totales Disueltos (mg/l)</td>
<td>494.97</td>
<td>1180</td>
<td>1115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitratos (mg/l)</td>
<td>2.26</td>
<td>1.12</td>
<td>6.12</td>
<td>13</td>
<td>ECA - 2017</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (mg/l)</td>
<td>2.32</td>
<td>1.34</td>
<td>1.21</td>
<td>< 0.7</td>
<td>DIRECTIVA CEE</td>
<td></td>
</tr>
<tr>
<td>Sulfato (mg/l)</td>
<td>268.1</td>
<td>264.2</td>
<td>229.75</td>
<td>< 400</td>
<td>OMS</td>
<td></td>
</tr>
<tr>
<td>BDO₅ (mg/l)</td>
<td>27</td>
<td>34.75</td>
<td>11.33</td>
<td>11.6</td>
<td>5</td>
<td>ECA - 2017</td>
</tr>
<tr>
<td>Coliformes Termotolerantes (NMP/100ml)</td>
<td>1387.5</td>
<td>1645</td>
<td>1716</td>
<td>< 1000</td>
<td>ECA - 2017</td>
<td></td>
</tr>
</tbody>
</table>
Resultados promedio de cada parámetro evaluado al inicio (2008) y al final de la aireación (2013), y se comparan con los datos tomados de la línea base del proyecto JICA (2000) y los ECAs agua categoría IV.

En la Tabla 4 se observa el incremento del OD, comparándolo con los resultados de JICA en el año 2000 donde fue de 1 mg/l; con la aireación el OD sube a 9.171 mg/l (año 2008 y al final de la aireación (2013) fue de 8.2 mg/l. valor superior que Ecas – Agua (5 mg/l). En el 2017 sin aireación, el análisis de agua reporta un valor de 4.94 mg/l, ligeramente debajo de la norma. La DBO5, se reduce en el año 2000, la agencia del JICA reportó 27 mg/l, y al inicio de actividades del proyecto en el 2008, se obtuvo 34.75 mg/l; por la activación de la biomasa microbiana se logra reducir al año 2013 a 11.33 mg/l, valor aún superior al establecido en el ECA Agua para la categoría IV (5 mg/l). Al 2017, sin aireación, este valor reporta 11.6 mg/l. Adicionalmente a las medidas de aireación, es importante controlar el ingreso de nuevas cargas contaminantes desde la ciudad.

4.2 LA COSECHA DE LENTEJA

4.3.5. 4.2.1. Volumen de cosecha colectada

En la Tabla 5 se muestran los volumenes de lenteja cosechada anualmente entre los años 2007 y 2011. El volumen fue decreciendo anualmente durante la intervención, alcanzándose una reducción de 10,7% en cinco años. Los factores de clima como el viento, han permitido que en el día, las brisas desplacen la lenteja hacia la zona costera (oeste) de la bahía interior de Puno, se considero oportuno usar estos espacios para la cosecha de lenteja utilizando retroexcavadora y malla long-lay, en un volumen total de 26,303 m³.

Tabla 5: Prueba de significancia de Tukey (P ≤ 0.05) de la cosecha de lenteja de agua en la bahía interior de Puno

<table>
<thead>
<tr>
<th>Orden</th>
<th>Años</th>
<th>Volumen (m³)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007</td>
<td>12683.00</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2008</td>
<td>5833.00</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2009</td>
<td>4375.00</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>2010</td>
<td>2060.00</td>
<td>d</td>
</tr>
<tr>
<td>5</td>
<td>2011</td>
<td>1352.00</td>
<td>d</td>
</tr>
</tbody>
</table>

En la prueba de rango múltiple de tukey P ≤ 0.05 se aprecia que el rendimiento mayor se obtuvo en el año 2007 con un volumen de 12683.00 m³, este valor es bastante superior a los
demás años de cosecha. El promedio de la biomasa de la lenteja de agua en la Bahía interior fue de 6.94 kg/m².

![Figura 9: Evolución de la cantidad de Lemna en la bahía Interior de Puno](image)

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre años</td>
<td>4</td>
<td>1542679889.00</td>
<td>385669972.00</td>
<td>159.85</td>
<td>0.000001</td>
</tr>
<tr>
<td>Error</td>
<td>98</td>
<td>236442791.00</td>
<td>2412682.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>1779122679.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R^2=86.72%

En la Tabla 6 se muestra el análisis de variancia entre años de cosecha de lenteja de agua, donde se observa que existe alta significancia estadística en cuanto al rendimiento en volumen metro cubico. Las estrategias de manejo de lenteja estuvieron enmarcadas dentro de un plano social, económico y ambiental, para permitir su sostenibilidad en beneficio de la población de Puno y del ecosistema del lago Titicaca.

4.3.6. **4.2.2. Disposición de lehma cosechada.**

La técnica de eliminación de la lehma en un área objetivo de 200 hectáreas concentradas en la parte occidental de la bahía interior de Puno se desarrolló aplicando una adaptación tecnológica a una excavadora de 19 metros de longitud de brazo largo y una yarda cubica
(yd³) de capacidad en la cuchara, con un rendimiento de 300 a 400 tn/día. La lema cuyas características denotan un tipo de macrófita flotante, tiene un aproximado de 2 mm, su temperatura de supervivencia está en el orden de 8°C a 45 °C y se reproduce a través de dos tipos de procesos; reproducción sexual y reproducción asexual o vegetativa. El ciclo de reproducción es corto, aproximadamente un mes. La eliminación/cosecha de lema de la superficie del lago, es una medida simple y directa. Esto contribuye a la reducción, no solamente de la lema sp. de la superficie del lago, sino también de los nutrientes contenidos en la misma. El proceso disposición incluyó: eliminación/cosecha, transporte, disposición final y/o utilización.

La Autoridad del lago Titicaca y el Proyecto Especial Binacional Lago Titicaca realizaron campañas de limpieza y eliminación de lema desde 1998, a través de campañas organizadas o apoyadas por diferentes instituciones. La intención de la eliminación de lema es prevenir su muerte, debido a que precipita y se acumula en el fondo del lago. La lema ha sido cosechada de manera periódica durante cada año desde el 2007 al 2011, tomando en cuenta el ciclo de reproducción; para fomentar conciencia en la población se ha hecho participe a las instituciones y sociedad civil, y también se contó con la participación permanente del personal del proyecto en un número de 16 obreros. El volumen cosechado en base a la capacidad de cosecha del equipo mecánico fue de aproximadamente 300 a 400 Tn/día, pudiendo alcanzar un rendimiento de 90,000 m³/año, considerando como desperdicio el 30%. La lenteja tuvo su destino final en el explanado derecho del relleno sanitario de Cancharani; una parte (aproximadamente el 30% del volumen recolectado) se ha destinado al alimento de ganado ovino y el resto ha quedado confinado en dichas instalaciones del relleno sanitario.

4.3.7. 4.2.3.Costo estimado de la cosecha y disposicion.

| Tabla 7: Estimado de costos realizados en la cosecha de lenteja |
Adquisición de maquinaria excavadora	S/. 780,000.00
Gastos de personal	S/. 625,000.00
Alquiler de (Botes, Vehículos, entre otros)	S/. 188,600.00
Costos de Administración (2% del gasto del personal)	S/. 12,500.00
Costo total cosecha de lema	S/. 1’606,100.00
4.3. CALIDAD DE AGUA

La calidad del agua de la bahía interior de Puno, acoge criterios basadas en observaciones científicas de los efectos de diferentes contaminantes encontrados en el cuerpo de agua y fue monitoreada año tras año entre los años 2008 y 2013.

4.3.8. 4.3.1. La variación del pH

En el Anexo 1 se presenta el análisis de variancia para el efecto del pH, durante el proceso de aireación; y en la remoción de materia orgánica de las aguas contaminadas. Se ha evaluado a través del análisis factorial adoptado en diseño de bloque completo al azar; donde el año se ha considerado como bloques y los factores profundidad (P), zona (Z) y la interacción profundidad por zona (P*Z). De acuerdo a la prueba de F para número de observaciones por año, existe alta significancia estadística a la probabilidad P≤0.01, se obtuvo la probabilidad de P=0.00010, la cual indica que existe variabilidad de pH entre años. Sin embargo, para los factores profundidad, zona de estudio y la interacción, no existen diferencias estadísticas con valores de probabilidades P_p=0.13980, P_z= 0.6303, P_p*z=0.4901 en comparación con la probabilidad P≤0.01. Esto indica que los valores calculados son superiores a 0.001, por lo tanto, son no significativos estadísticamente. El coeficiente de determinación r^2 es igual a 94.32% que es un valor que indica una asociación muy buena, y el coeficiente de correlación r= 0.9712 es muy alto y el coeficiente de variabilidad CV= 1.10033% es muy aceptable para este tipo de trabajo.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>Parametro pH prom. anual</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2017</td>
<td>10.2475</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2011</td>
<td>9.6025</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2012</td>
<td>9.5400</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>2013</td>
<td>9.5400</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>2009</td>
<td>9.5000</td>
<td>b c</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>9.4575</td>
<td>b c</td>
</tr>
<tr>
<td>7</td>
<td>2016</td>
<td>9.4125</td>
<td>b c</td>
</tr>
<tr>
<td>8</td>
<td>2008</td>
<td>9.2125</td>
<td>c d</td>
</tr>
<tr>
<td>9</td>
<td>2015</td>
<td>9.0750</td>
<td>d e</td>
</tr>
<tr>
<td>10</td>
<td>2014</td>
<td>8.8775</td>
<td>e</td>
</tr>
</tbody>
</table>
En la Tabla 8, se observa la prueba de rango múltiple de Tukey (P=0.05) para el efecto del pH, para diez años de observación durante el proceso del sistema de aireación. En el año 2017 se obtuvo un valor 10.25 de pH, que es el valor más alto y superior a los demás años de observación. En los años 2011, 2012, 2013, 2009, 2010, y 2016 se obtuvieron valores 9.60, 9.54, 9.50, 9.46, y 9.41 de pH respectivamente, valores que estadísticamente son similares.

Según JAPAC (2013) mantener un pH balanceado en el agua es crítico para la vida acuática sana. Los peces y otros organismos dependen de la alta calidad del agua con la cantidad justa de oxígeno disuelto y de nutrientes. Un alto o bajo pH puede romper el balance de los químicos del agua y movilizar a los contaminantes, causando condiciones tóxicas. Los organismos acuáticos pueden experimentar problemas haciendo que las poblaciones declinen. Por esa razón, generalmente los científicos de la calidad del agua, la analizan para determinar la salud de los arroyos, los lagos, los ríos y el agua del suelo. El proceso de aireación permite que el pH tienda a ser alcalino, siendo 9.41 el valor promedio, generando mayor presencia de biomasa. Sin embargo, valores por encima de 10 originan cambios en la fauna y en la flora del cuerpo de agua, ejerciendo influencia sobre la toxicidad de ciertos compuestos como el amoniaco, metales pesados y el hidrogeno sulfurado.

\textbf{4.3.9. 4.3.2. La turbiedad}

En el Anexo 2, se muestra el análisis de variancia de la turbiedad de las aguas contaminadas; mediante el análisis adoptado de diseño de bloque completo al azar, donde el año se ha considerado como bloques y los factores profundidad (P), zona (Z) y la interacción profundidad por zona (P*Z). De acuerdo a la prueba de F para número de observaciones por año, existe alta significancia estadística a la probabilidad \(P \leq 0.01 \), se obtuvo \(P = 0.00010 \) la misma que indica alta significancia estadística.

En la Tabla 9, se observa la prueba de rango múltiple de Tukey (P=0.05) para el efecto de turbiedad para diez años de observación, durante el proceso de aireación. En el año 2015 se obtuvo un valor 9.998 NTU (Unidades Nefelométricas de Turbidez), que es el valor más alto y superior a los demás años de observación, en los años 2011, 2012, 2013, 2009, 2010, y 2017 se obtuvieron valores 5.3, 6.7, 6.4, 5.92, 6.7 y 5.4 de turbidez respectivamente que estadísticamente son similares.
Tabla 9: Prueba de significancia de Tukey (P=0.05) efecto de turbiedad para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>Parametro (NTU)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2015</td>
<td>9.998</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2008</td>
<td>8.825</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>8.04</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>2012</td>
<td>6.685</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>2010</td>
<td>6.685</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>2013</td>
<td>6.413</td>
<td>a</td>
</tr>
<tr>
<td>7</td>
<td>2009</td>
<td>5.925</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>2011</td>
<td>5.335</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>2017</td>
<td>5.425</td>
<td>b</td>
</tr>
<tr>
<td>10</td>
<td>2016</td>
<td>3.438</td>
<td>c</td>
</tr>
</tbody>
</table>

Según la OMS (1993) “Organización Mundial para la Salud”, la turbidez del agua impacta en los ecosistemas acuáticos afectando el proceso de la fotosíntesis (limita el paso de la luz sola, restringe la respiración y reproducción de la vida acuática. Hay varios factores que influyen en la turbidez del agua como la presencia del fitoplancton (plantas microscópicas), partículas de suelos en suspensión, sedimentos depositados en el fondo del lago, las descargas directas de aguas residuales de la población de Puno, crecimiento de algas y escorrentía urbana. El valor encontrado en promedio corresponde a 9.5 NTU, siendo el valor límite establecido por el ECA agua, sub categoría B, aguas superficiales destinadas para la recreación, es de 100 NTU.

4.3.10. 4.3.3. Niveles de oxígeno disuelto (OD)

Para la evaluación del oxígeno disuelto se efectuó el análisis de variancia del sistema de aireación, el cual se muestra en el Anexo 3, mediante el diseño bloque completo al azar adoptado al experimento factorial, donde los años son considerados bloques. Se obtuvieron los valores de probabilidad P=0.00010, para años y la probabilidad P=0.0037 para la profundidad de la medición; estos valores indican alta significancia estadística; sin embargo los factores de zona en estudio (Z) y la interacción de las mismas es decir profundidad por zona (P*Z), dan valores de P=0.3216 y P=0.1656, los que en comparación con la probabilidad de P≥0.05 son mayores, por lo tanto indican que no existe significancia estadística se acepta la hipótesis nula y se rechaza la hipótesis alterna previamente planteada.
El oxígeno disuelto (OD) mide la cantidad de oxígeno gaseoso disuelto (O₂) en una solución acuosa. El oxígeno se introduce en el agua mediante difusión desde el aire que rodea la mezcla, por aeración y como un producto de desecho de la fotosíntesis. El oxígeno gaseoso disuelto en el agua es vital para la existencia de la mayoría de los organismos acuáticos.

Tabla 10: Prueba de significancia de Tukey (P=0.05) efecto de OD para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>Parametron (OD)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008</td>
<td>9.1775</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2013</td>
<td>8.2000</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2015</td>
<td>8.1525</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>2009</td>
<td>7.9975</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>2014</td>
<td>7.1275</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>2011</td>
<td>6.9450</td>
<td>c</td>
</tr>
<tr>
<td>7</td>
<td>2012</td>
<td>6.9125</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2010</td>
<td>6.9125</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>2016</td>
<td>6.0475</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>2017</td>
<td>4.9350</td>
<td>e</td>
</tr>
</tbody>
</table>

El oxígeno es un componente clave en la respiración celular tanto para la vida acuática como para la vida terrestre. La concentración de oxígeno disuelto (OD) en un ambiente acuático es un indicador importante de la calidad del agua ambiental. La concentración de oxígeno disuelto puede variar desde 0 hasta 15 mg/L. Las corrientes frías de montaña tendrán probablemente concentraciones de OD desde 7 hasta 15 mg/L, dependiendo de la temperatura del agua y de la presión del aire. Es una de las condiciones más importantes para que exista crecimiento y reproducción de la población normal de peces y otros organismos acuáticos. Para la categoría IV de las normas nacionales ECA Agua, corresponde un valor mínimo de 5 mg/l. Sin embargo, el valor medio obtenido en el proceso de aireación es de 7.12 mg/l, muy por encima del valor límite, y para la condición extrema sin aireación en el 2017 llega a 4.93 siendo ligeramente bajo, pero mayor con respecto al valor de línea base antes de la intervención que fue de 1 mg/l (JICA 2000).

4.3.11. 4.3.4. La temperatura (°C)

En el Anexo 4, se observa el análisis de variancia para el efecto de temperatura en el proceso de sistema de aireación en aguas de la bahía interior del lago Titicaca, en donde entre bloques (años), factor profundidad (P), factor zona (Z) existe alta significancia estadística de acuerdo a la probabilidad P≤0.01, es decir que la temperatura es diferente a nivel profundidad, zona de estudio y también entre años. Por lo tanto, se acepta la hipótesis alterna y se rechaza la
hipótesis nula; y para la interacción profundidad y zona, no existe diferencia estadística por lo tanto se acepta la hipótesis nula y se rechaza la hipótesis alterna.

En la Tabla 11, se observa la prueba de significancia de Tukey (P=0.05) para el efecto de temperatura para dos profundidades, durante el proceso del sistema de aireación, se observa que a la profundidad al 20%, se ha registrado mayor temperatura, ocupando el primer lugar con un valor de 15.83°C, y a la profundidad de 80% ocupa el segundo lugar con un valor de 15.42°C, estos valores han demostrado que a mayor contacto con rayos solares mayor temperatura.

Tabla 11: Prueba de significancia de Tukey (P=0.05) efecto de temperatura para dos profundidades en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Profundidad</th>
<th>Parametron (°C)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(20%)</td>
<td>15.8305</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>(80%)</td>
<td>15.4263</td>
<td>b</td>
</tr>
</tbody>
</table>

En la Tabla 12, se muestra la prueba de significancia de Tukey (P=0.05) para el efecto de temperatura para dos zonas de estudio, en la zona del muelle de Puno es ligeramente superior en relación a la zona frente a la Universidad Nacional del Altiplano de Puno (UNA), con valores de temperatura 15.76°C y 15.50°C respectivamente, debido probablemente a su ubicación geográfica, puesto que en el muelle es un espacio abierto y hay mayor movimiento de circulación de agua, y en la zona de UNA la geografía es más estrecha y presencia de túnel de viento.

Tabla 12: Prueba de significancia de Tukey (P=0.05) efecto de temperatura para dos zonas de estudio en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Zona</th>
<th>parametro</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (Muelle de Puno)</td>
<td>15.7590</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2 (Frente a la UNAP)</td>
<td>15.5016</td>
<td>b</td>
</tr>
</tbody>
</table>

En la Tabla 13, se muestran los resultados de la prueba de significancia de Tukey (P=0.05), para el efecto de temperatura para diez años de observación en el proceso del sistema de aireación, en el año 2011 se registró la temperatura promedio diario más alta, con un valor
9.18°C, que respecto a los demás años es superior, los años 2009, 2014, y 2008, han ocupado el segundo lugar con valores de temperatura 8.2°C, 8.15°C y 7.99°C respectivamente que estadísticamente son similares; es necesario mencionar que en el año 2016 con 4.93°C es la observación más baja.

Tabla 13: Prueba de significancia de Tukey (P=0.05) efecto de temperatura para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>parametro</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2011</td>
<td>9.1775</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2009</td>
<td>8.2000</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>8.1525</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>2008</td>
<td>7.9975</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>2010</td>
<td>7.1275</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>6.9450</td>
<td>c</td>
</tr>
<tr>
<td>7</td>
<td>2017</td>
<td>6.9125</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2015</td>
<td>6.9125</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>6.0475</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>2016</td>
<td>4.9350</td>
<td>e</td>
</tr>
</tbody>
</table>

Alrededor del lago Titicaca, las temperaturas son superiores a 8 °C debido al efecto térmico de la masa del agua. El lago tempera el clima, disminuyendo la amplitud de las temperaturas, pero no parece ocasionar en su contorno un aumento de la temperatura media anual superior a 2 °C. El gradiente térmico es de 0,76 °C/100 m.

Para la zona comprendida entre 3 800 y 4 000 msnm, la dispersión de las temperaturas es grande debido a los efectos de exposición de abrigo y de distancia al lago. En las partes altas de la cuenca, la temperatura media anual desciende bajo cero alrededores de 5100 msnm. Las normas ECA Agua categoría IV indica una variación $\Delta 3$ (variación de +/- 3 °C respecto a la variación media mensual multianual evaluada), para nuestro caso hay una variación de $\Delta 2$ aproximadamente, estando dentro del rango establecido, cuando las variaciones de este parámetro superan lo establecido, generan un cambio en el ambiente de desarrollo de la fauna y la flora presente en él, elevan el potencial tóxico de ciertas sustancias disueltas en el agua y originan la disminución del oxígeno disuelto, lo que conduce a condiciones anaerobias del cuerpo de agua (MINAM 2013).
4.3.12. Los sólidos totales disueltos (TDS)

Los sólidos disueltos totales TDS son la cantidad total de iones móviles cargados incluyendo minerales, sales o metales disueltos en un volumen determinado de agua, expresada en unidades de mg por unidad de volumen de agua (mg/l), está directamente relacionado con la pureza del agua y la calidad de los sistemas de purificación de agua y afecta a todo lo que consume, vive o utiliza el agua, ya sea orgánico o inorgánico.

En la Tabla 14, se presenta el análisis de varianza para el efecto de sólidos totales disueltos (TDS) en el proceso del sistema de aireación de las aguas de la bahía interior, como resultado se aprecia que existe variabilidad entre las observaciones anuales y no existe diferencia estadística entre factores de zona y profundidad.

De acuerdo a la prueba de significancia de Tukey (P=0.05), el efecto de temperatura para diez años de observación en el proceso muestra que los años 2015, 2016, 2013 y 2014 con valores 1192.00, 1185.00, 1180.00 y 1164.34 (mg/l), presentan valores estadísticamente similares, por lo tanto, se acepta la hipótesis nula y se rechaza la hipótesis alterna; los valores inferiores han sido los años 2009 y 2008 con valores 530.75 y 494.97 (mg / L) respectivamente.

Tabla 14: Prueba de significancia de Tukey (P=0.05) efecto de sólidos totales disueltos (TDS) para 10 años en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>TDS (mg/l)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2015</td>
<td>1192.00</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2016</td>
<td>1185.00</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>2013</td>
<td>1180.00</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>2014</td>
<td>1164.34</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>2017</td>
<td>1115.00</td>
<td>b</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>882.50</td>
<td>c</td>
</tr>
<tr>
<td>7</td>
<td>2010</td>
<td>882.42</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2011</td>
<td>874.65</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>2009</td>
<td>530.75</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>2008</td>
<td>494.97</td>
<td>d</td>
</tr>
</tbody>
</table>

Según las normas ECAs Agua el valor límite de concentración para la categoría IV es de 25 mg./l, en el estudio las concentraciones superan los 1000 mg/l, por consiguiente, los sólidos totales en suspensión ocasionan depósitos de lodos y condiciones anaerobias; cuando los
desechos no tratados son vertidos al medio acuático generando problemas en la calidad del agua de carácter estético, depósito de lodos, adsorción de contaminantes y protección de patógenos.

4.3.13. El nitrito (NO$_2^-$)

El análisis de variancia del Anexo 6, para el efecto de nitrito (NO$_2^-$), muestra que no existe diferencia estadística para diez años de observación, zona de estudio, y profundidad y para la interacción entre zona y profundidad. El ion nitrito es menos estable que el ion nitrato, es muy reactivo y puede actuar como agente oxidante y reductor, por lo que solo se lo encuentra en cantidades apreciables en condiciones de baja oxigenación. Esta es la causa de que los nitritos se transformen rápidamente para dar nitratos, generalmente, estos últimos predominen en las aguas tanto superficiales como subterráneas. Típicamente en aguas superficiales el valor que muestran es de 0,1 mg/l. a pesar de que su presencia suele darse en concentraciones pequeñas, los nitritos tienen gran importancia en los estudios de aguas, dada su gran toxicidad para la fauna piscícola y demás especies acuáticas.

4.3.14. El nitrato (NO$_3^-$)

Los niveles naturales de nitratos en aguas superficiales y subterráneas son generalmente de unos pocos miligramos por litro, se ha observado un incremento de los niveles de nitratos debido a la presencia de aguas residuales municipales y la intensificación de las prácticas agrícolas y ganaderas. Las concentraciones pueden alcanzar varios cientos de miligramos por litro. En el análisis de variancia solamente existe variabilidad entre años de observación a la probabilidad de $P \leq 0.01$.

La prueba de significancia de Tukey ($P=0.05$), para el efecto del nitrato (NO$_3^-$), se muestra en la tabla 15, donde se observa que para diez años de observación muestra que en el año 2017 registró un contenido elevado con un valor de 6.1250 ml/l, los años 2012, 2010, 2009, 2008, 2016, y 2011, registraron 2.430, 2.415, 2.357, 2.257, 2.125, y 1.900 respectivamente; estadísticamente estos valores son similares. El menor valor se registró en el año 2014 con un valor 1.080 mg/l; y al inicio de la investigación 2008, se registró un valor promedio de 2.26 mg/l. de NO$_3^-$. Según las normas nacionales ECAs – Agua, el valor tolerable máximo es de 13 mg/l para la categoría IV.
Tabla 15: Prueba de significancia de Tukey (P=0.05) efecto de de nitrato (NO$_3^-$) para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>(NO$_3^-$) (mg/l)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2017</td>
<td>6.1250</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2012</td>
<td>2.4300</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2010</td>
<td>2.4150</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>2009</td>
<td>2.3575</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>2.2575</td>
<td>bc</td>
</tr>
<tr>
<td>6</td>
<td>2016</td>
<td>2.1250</td>
<td>bc d</td>
</tr>
<tr>
<td>7</td>
<td>2011</td>
<td>1.9000</td>
<td>b c d</td>
</tr>
<tr>
<td>8</td>
<td>2015</td>
<td>1.2275</td>
<td>c d</td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>1.1250</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>2014</td>
<td>1.0800</td>
<td>d</td>
</tr>
</tbody>
</table>

Sin embargo, se ha comprobado que para valores mayores a 45 mg/l. de NO$_3^-$ se produce una enfermedad en los niños llamada metahemoglobinemia. Las concentraciones de nitrato en efluentes de aguas residuales, pueden variar entre 0 y 20 mg/l. Cuando existen actividades antrópicas, las aguas superficiales pueden tener concentraciones de hasta 5 mg/l de NO$_3^-$, los que usualmente indican contaminación, ya sea por desechos domésticos, de animales o de escorrentía, para el caso de lagos, concentraciones por encima de 0.2 mg/l de NO$_3^-$ empiezan a generar problemas de eutrofización en el agua, lo que favorece el crecimiento indeseable de vida acuática.

4.3.15. El fosfato (PO$_4^{3-}$)

Los compuestos del fósforo, son nutrientes de las plantas y conducen al crecimiento de algas en las aguas superficiales. La concentración de fosfato existente en el agua, puede producir la eutrofización; tan sólo un gramo de fosfato-fósforo (PO$_4$-P) provoca el crecimiento de hasta 100 g de algas. Cuando estas algas mueren, los procesos de descomposición dan como resultado una demanda de oxígeno de alrededor de 150 gramos. En el análisis de variancia mostrada en el Anexo 8, existe alta variabilidad entre diez años de observación, a la probabilidad de P≤0.01, entre los factores de profundidad, zona de estudio, y la interacción no existen diferencias estadísticas.

Se ha efectuado la prueba de significancia de Tukey (P=0.05), para el efecto del fosfato para diez años de observación, en la tabla 16 se muestra que en el año 2008 se registra un valor elevado de 2.322 mg/l, que estadísticamente supera a los demás años de observación, los
años 2016 y 2014 registraron valores 1.848 y 1.44 mg/l ocuparon el segundo lugar en cuanto se refiere al contenido de fosfato. Las concentraciones críticas para una eutrofización incipiente se encuentran entre 0,1 - 0,2 mg/l PO₄₃⁻ en el agua corriente y entre 0,005 - 0,01 mg/l PO₄₃⁻ en aguas tranquilas. En vista del peligro potencial para las aguas superficiales, la directiva EU 91/271/CEE especifica parámetros de calidad de agua para vertido de compuestos de fosfato a las aguas receptoras, que inducen a la toxicidad para los peces.

Tabla 16: Prueba de significancia de Tukey (P=0.05) efecto de fosfato (PO₄³⁻) para diez años de observación en el proceso del sistema de aireación en la remoción de materia orgánica

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>(PO₄³⁻) (mg/l)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008</td>
<td>2.3225</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2016</td>
<td>1.8488</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>1.4463</td>
<td>b c</td>
</tr>
<tr>
<td>4</td>
<td>2009</td>
<td>1.4005</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>2015</td>
<td>1.3603</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>2013</td>
<td>1.335</td>
<td>c</td>
</tr>
<tr>
<td>7</td>
<td>2017</td>
<td>1.212</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2010</td>
<td>1.1275</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>2012</td>
<td>1.1275</td>
<td>c</td>
</tr>
<tr>
<td>10</td>
<td>2011</td>
<td>1.0975</td>
<td>c</td>
</tr>
</tbody>
</table>

Las altas concentraciones de fosfatos favorecen el crecimiento de algas y otros organismos biológicos, y esto se observa en el lago, debido a que en las aguas ocurren nocivas proliferaciones de lemla sp.

4.3.16. El sulfato (SO₄²⁻)

En el análisis de variancia mostrado en el Anexo 9, solamente existe alta variabilidad entre años de observación a la probabilidad de P≤0.01, entre los factores de profundidad, zona de estudio, y la interacción, no existen diferencias estadísticas. Considerando las normas del reglamento técnico – sanitario español, se señala que los valores sean menores a 300 mg/l, los valores encontrados en el estudio son menores a los señalados en las normas de referencia. En lagunas bajo la acción de bacterias anaerobias, los sulfatos se reducen hasta la formación de sulfuros, que luego en condiciones aerobias favorecen la formación de ácido sulfúrico, generando problemas de olor y corrosión asociados a estos compuestos. Los sulfuros son los grandes causantes de olor y disminución del pH. Es un estado intermedio de la reducción de los sulfatos bajo condiciones anaerobias y bacterias sulfurosas, siendo tóxicos para los peces y otros organismos acuáticos.
Tabla 17: Prueba de significancia de Tukey (P=0.05) para el efecto de sulfato para diez años de observación.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>(SO₄²⁻) (mg/l)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2011</td>
<td>296.35</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2016</td>
<td>275.65</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>2008</td>
<td>268.125</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>2015</td>
<td>266.875</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>2014</td>
<td>264.198</td>
<td>b</td>
</tr>
<tr>
<td>6</td>
<td>2013</td>
<td>264.15</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>2017</td>
<td>229.75</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2009</td>
<td>195.475</td>
<td>d</td>
</tr>
<tr>
<td>9</td>
<td>2012</td>
<td>186.865</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>2010</td>
<td>186.72</td>
<td>d</td>
</tr>
</tbody>
</table>

En la Tabla 17 se presenta, la prueba de significancia de Tukey (P=0.05), para el efecto del sulfato para diez años de observación; se aprecia que en los años 2011 y 2016 con valores 296.35 y 275.65 mg/l respectivamente, ocuparon los primeros lugares respecto a los demás años (valores elevados) y en los años 2009, 2012, y 2010 con valores 195.47, 186.86, y 186.72 respectivamente ocuparon los últimos lugares (concentración de valores más bajos), donde los valores estadísticamente son similares. Las normas españolas Real Decreto 817/2015, indica que la concentración de sulfatos con fines de recreación, no deben superar los 500 mg/l.

4.3.17. Demanda bioquímica de oxígeno (DBO)

En el Anexo – 10, se presenta el análisis de variancia para el efecto de demanda bioquímica de oxígeno (DBO), demuestra que, solamente existe alta variabilidad entre años de observación a la probabilidad de P≤0.01, entre los factores de profundidad, zona de estudio, y la interacción no existe diferencias estadísticas. La DBO₅ es el parámetro de mayor significación cuando se trata de determinar la carga polucional que puedan generar los desechos domésticos orgánicos al ser descargados en el Lago Titicaca.
Tabla 18: Prueba de significancia de Tukey (P=0.05) para el efecto de demanda bioquímica de oxígeno (DBO) para diez años en el proceso del sistema de aireación.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>DBO (mg O₂/l)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008</td>
<td>34.748</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2009</td>
<td>20.313</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2010</td>
<td>12.430</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>2017</td>
<td>11.605</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>2015</td>
<td>11.528</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>2013</td>
<td>11.335</td>
<td>c</td>
</tr>
<tr>
<td>7</td>
<td>2011</td>
<td>10.808</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2016</td>
<td>10.590</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>2012</td>
<td>10.140</td>
<td>c</td>
</tr>
<tr>
<td>10</td>
<td>2014</td>
<td>9.308</td>
<td>c</td>
</tr>
</tbody>
</table>

La prueba de significancia de rango múltiple de Tukey (P=0.05) para efecto de demanda bioquímica de oxígeno (DBO) para diez años de observación; la tabla 18 muestra que en los años 2008 y 2009 se obtuvieron valores de 34.75 y 20.31 mg O₂/l, respectivamente ocuparon los primeros lugares con valores de mayor concentración de carga orgánica, estadísticamente estos valores son similares. Los demás años de observación se han mantenido estadísticamente con valores también similares. La carga orgánica está compuesta principalmente de proteínas, carbohidratos y grasas. La descarga al cuerpo de agua residual sin tratar tienda agotar el oxígeno y desarrollar condiciones sépticas, lo que ocasiona en el cuerpo de agua, la mortandad de peces. La calidad del agua presenta valores por encima de los establecidos por el ECA Agua para la categoría IV; indica valor límite de 5 mg/l, se observa que, a lo largo de los años, el valor de la DBO ha descendido, a pesar de la aireación la calidad del agua presenta valores por encima de lo establecido en el ECA Agua para la categoría IV (5 mg/l).

4.3.18. Los coliformes termotolerantes (CTE)

En el análisis de variancia para el efecto coliformes termotolerantes, en la tabla 19 se aprecia que de acuerdo a la probabilidad de P≤0.01, existe alta significancia estadística entre años de observación, sin embargo, para las variables de profundidad y zona de estudio no se aprecia diferencia estadística.

Realizada la prueba de significancia de Tukey (P=0.05), para el efecto de coliformes termotolerantes para diez años de observación se aprecia la calidad microbiológica del agua en la bahía interior de Puno. Este indicador mide el riesgo potencial de contaminación con
bacterias o virus de carácter patógeno (organismos que causan enfermedades a los seres vivos), ya que los coliformes termotolerantes siempre están presentes en las heces humanas y de los animales. El límite máximo de concentración debe ser 1000 NMP/100 ml; los valores encontrados en el monitoreo superan los 2000 NMP/100 ml.

Tabla 19: Prueba de significancia de Tukey (P=0.05) efecto de coliformes termotolerantes para diez años de observación.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Año</th>
<th>Parametro (CTE)</th>
<th>Tukey (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010</td>
<td>2385.3</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2016</td>
<td>2189.0</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>2015</td>
<td>1770.0</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>2014</td>
<td>1734.6</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>2017</td>
<td>1716.0</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>1659.3</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>2013</td>
<td>1645.0</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>2011</td>
<td>1530.8</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>2008</td>
<td>1387.5</td>
<td>c</td>
</tr>
<tr>
<td>10</td>
<td>2009</td>
<td>1097.3</td>
<td>c</td>
</tr>
</tbody>
</table>

4.3.19.

4.4. LÍNEA BASE.

El área de la bahía de acuerdo a los estudios de la ALT, alcanzó aproximadamente los 16 km² de superficie, el volumen de agua total tuvo variaciones desde los 39 a 41 millones de m³. La profundidad máxima se presentó en el año 1975 con 7.40 m y la menor en el 2012 con 7.19 m. El perímetro fue mayor en el año 2010 con 22 km, y menor en el año 1975 con 19 km. Los valores de desarrollo de línea costera (DLC) son índices que explican la medicación del contorno de un lago; para el caso de la bahía interior de Puno, cada año estos valores fueron casi constantes (de 1.45 a 1.51) e indican baja sinuosidad en el contorno y una forma circular, que no tuvo considerables modificaciones desde 1975 hasta el 2012. La profundidad relativa explica baja profundidad con respecto a la superficie indicando que se trata una cubeta relativamente somera. El índice área de la cuenca/volumen (Ac/V) se relaciona con los parámetros tróficos, mientras este valor sea más bajo mayor oligotrofia; el valor de este índice en la BIP fue de 1.81, lo cual indica efectivamente que se trata de un cuerpo eutrófico (Loza et al. 2016).

Sin embargo, el equipo de estudios del (JICA 2000) reportaron en septiembre de 1999 resultados de investigación del cuerpo de agua en la bahía interior del Titicaca con características de calidad de agua que se mencionan a continuación:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor encontrado</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>10 °C – 16 °C</td>
<td>enero a setiembre</td>
</tr>
<tr>
<td>pH.</td>
<td>7.8 – 9.5</td>
<td></td>
</tr>
<tr>
<td>OD.</td>
<td>1 mg/l – 1.3 mg/l</td>
<td></td>
</tr>
<tr>
<td>Sólidos Sedimentables</td>
<td>27mg/l</td>
<td>periodo de lluvia</td>
</tr>
<tr>
<td>Nitrógeno Total (N-T)</td>
<td>2 mg/l – 6 mg/l</td>
<td></td>
</tr>
<tr>
<td>Fósforo Total (P-T)</td>
<td>0.2 mg/l – 1.6 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

4.5 LÍNEA FINAL

La línea final es el estado de las variables cuantitativas y cualitativas que describen como ha quedado el medio ambiente después de la aireación, considerándose los valores de los parámetros que describen este estado a los obtenidos en el año 2017. De acuerdo de las tablas A 13 al A 24 del anexo, donde se muestra los promedios antes y después de la aireación, se comenta:

El pH promedio antes de la aireación (año 2008) fue de 9.54 y después de la aireación (año 2013) fue de 10.25; en comparación al ECA agua categoría 4 (cuyo rango es de 6.5 a 9.0), antes y después de la aireación el pH promedio excede el estándar. Se considera que el agua de la bahía es alcalina y dura, con un pH elevado que contiene gran concentración de minerales disueltos, por lo tanto, rompe el balance de los químicos del agua y moviliza a los contaminantes, causando condiciones tóxicas que afectan directamente al ecosistema acuático en la bahía del Lago Titicaca.

En cuanto al oxígeno disuelto (OD) en la línea base publicada en el año 2000 por el JICA fue de 1 mg/l, al inicio de la aireación (año 2008) subió a 8.20 mg/l y después de la aireación (2013) se mantuvo 8.0 mg/l, y al final sin aireación (año 2017) bajó a 4.94 mg/l; en comparación con el ECA agua categoría IV (rango en lagos y áreas de conservación debe ser mayor o igual a 5 mg/l), se mantuvo adecuado durante la aireación; después de la aireación se redujo por debajo del rango aceptable. El oxígeno es responsable de la respiración de los seres vivos, y de la descomposición de la materia orgánica por acción de la biomasa aerobia, gracias a su capacidad oxidante por bacterias y hongos que degradan los desechos orgánicos y los mineraliza en gas y agua.

El nitrato antes de la aireación (año 2008) fue de 1.13 mg/l y después de la aireación (año 2013) subió a 6.13 mg/l; en comparación con el ECA agua categoría IV (13 mg/l).
Los fosfatos, presentan una concentración al inicio de la aireación (2008) de 2.32 mg/l; al final de la aireación (2013) el valor se redujo a 1.34 mg/l; y en el año 2017 (proyecto sin aireación) el valor se reduce a 1.21 mg/l, lo que demuestra que hay una remoción progresiva siendo el valor límite por norma debajo de 0.7 mg/l. en cuerpos de agua lenticos, lo que significa que el fosfato sigue siendo el alimento de las algas y es factor contaminante en la bahía del Titicaca.

La DBO₅ tuvo un valor promedio antes de la aireación (año 2008) fue de 34.75 mg/l y después de la aireación (año 2013) de 11.61 mg/l; en comparación al ECA agua categoría IV (5.00 mg/l), excede el rango, antes y después de la aireación. El proceso de oxidación microbiana o mineralización de la materia orgánica es una de las principales reacciones que ocurren en los cuerpos naturales de agua, ejercida por microorganismos heterotróficos.

Los coliformes termotolerantes fueron en promedio antes de la aireación (año 2008) de 1645 NMP/100 ml; y después de la aireación (año 2013) 1716 NMP/100 ml. En comparación al ECA agua categoría IV (el rango es de 2000 NMP/100 ml), no se excedió el rango después de la aireación. Es necesario hacer notar el incremento desordenado de algunos parámetros después de la aireación; debido probablemente al ingreso de desagües clandestinos y residuos líquidos y sólidos de diferentes orígenes, que ingresan por diferentes vías al interior de la bahía de Puno.
V. CONCLUSIONES.

- El sistema de aireación permite el incremento de la concentración de oxígeno disuelto, lo que influye en la remoción de la materia orgánica biodegradable tal como se observa en los resultados, de la DBOs, que inicia con un valor de 34.75 mg/l (2008) y finaliza con una concentración de 9.3 mg/l (2014), mostrando una mejora en la calidad del agua, logrando beneficios ambientales en el cuerpo de agua y la recuperación de la biodiversidad lacustre.

- La biomasa de lenteja de agua se ha logrado erradicar en cinco campañas (05 años), mediante un proceso de cosecha mecánica. En el primer año se extrajeron 12,683 m3 de lemna sp, reduciéndose a 1352 m3 en el 2011, logrando beneficios directos en el ecosistema lacustre, permitiendo oxigenación natural en las aguas superficiales de la bahía y la mejora la biomasa bacterial a partir del proceso de fotosíntesis, aumentando la población de especies acuáticos y aduciendo la presencia de olores en el área del proyecto.

- El programa de monitoreo de la calidad del agua permitió un control del conjunto de actividades ejercidas en forma continua, con el objeto de verificar la calidad del agua y el cumplimiento de la legislación ambiental permitiendo estudiar los indicadores de contaminación con una periodicidad adecuada, encontrando al fosfato como el contaminante persistente aun en la bahía de Puno con valores que superan las normas de calidad ECA - Agua.
VI. RECOMENDACIONES

- Respecto al sistema de aireación, en el control de la remoción de la carga orgánica se tiene valores de la DBO₅ por encima de los ECA Agua (5 mg/l) evaluando solo la reducción de la materia orgánica biodegradable, quedando pendiente la materia orgánica no biodegradable, se sugiere monitorear el parámetro ambiental de la DQO, para poder encontrar el valor de materia orgánica no biodegradable.

- Es necesario monitorear el crecimiento y producción de la macrófita de la lema s.p (lenteja de agua) así como también investigar y observar las diferentes etapas de su crecimiento biológico a fin de lograr su aprovechamiento en otros espacios contaminados como la bahía Cohana en Bolivia.

- Se recomienda el uso de normas internacionales, en los programas de monitoreo como las de la comunidad europea para controlar algunos parámetros que están ausentes en la legislación nacional como el ECA Agua, para los casos de Coliformes Totales, Sulfatos, Nitritos entre otros.

Palao, L. 2010. descontaminación de la bahía interior de Puno con biotecnología de microorganismos eficaces (EM) responsabilidad social y acción comunitaria. Puno Peru: Informe final de investigación UNA.

Prat, N., Munne, A. 1999. La calidad ecológica del lago lobregat, área de medio ambiente. La diputación de Barcelona- España, 154 pág.

VIII. ANEXOS

Anexo: 1 Efecto del pH en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>4.816400</td>
<td>0.535100</td>
<td>49.530</td>
<td>0.00010</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>0.025000</td>
<td>0.025000</td>
<td>2.310</td>
<td>0.13980</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.002560</td>
<td>0.002560</td>
<td>0.240</td>
<td>0.63030</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>0.005290</td>
<td>0.005290</td>
<td>0.490</td>
<td>0.49010</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.291700</td>
<td>0.010804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>5.140910</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 2 Efecto de la turbiedad en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior expresada en NTU (Unidades Nefelométricas de turbidez) 2018.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>125.9805</td>
<td>13.997800</td>
<td>5.91</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>0.8266</td>
<td>0.826560</td>
<td>0.35</td>
<td>0.5596</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>8.2719</td>
<td>8.271902</td>
<td>3.49</td>
<td>0.0726</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>4.7266</td>
<td>4.726562</td>
<td>2.00</td>
<td>0.1692</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>63.9586</td>
<td>2.368836</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>203.7641</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 3 Análisis de variancia para el efecto de oxígeno disuelto (OD) en el proceso del sistema de aireación en la remoción de materia orgánica expresada (mg/L)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>52.524952</td>
<td>5.836106</td>
<td>54.49</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>1.079123</td>
<td>1.079123</td>
<td>10.07</td>
<td>0.0037</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.109203</td>
<td>0.109203</td>
<td>1.02</td>
<td>0.3216</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>0.217562</td>
<td>0.217562</td>
<td>2.03</td>
<td>0.1656</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>2.892037</td>
<td>0.107113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>56.822878</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 4 Análisis de variancia para el efecto de temperatura en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>40.597900</td>
<td>4.510800</td>
<td>105.22</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>1.380120</td>
<td>1.38120</td>
<td>32.19</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.522120</td>
<td>0.522120</td>
<td>12.18</td>
<td>0.00017</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>0.018062</td>
<td>0.055022</td>
<td>0.42</td>
<td>0.52180</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>1.157552</td>
<td>0.042871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>43.675790</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo: 5 Análisis de variancia para el efecto de sólidos totales disueltos (TDS) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>2551805.22</td>
<td>283533.914</td>
<td>1128.18</td>
<td>0.00010</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>895.01</td>
<td>895.011</td>
<td>3.56</td>
<td>0.06990</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>24.51</td>
<td>24.508</td>
<td>0.10</td>
<td>0.75720</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>6.68</td>
<td>6.683</td>
<td>0.03</td>
<td>0.87170</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>6785.64</td>
<td>251.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>2559517.06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 6 Análisis de variancia para el efecto de nitrito (NO_2^-) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>0.3719960</td>
<td>0.0413320</td>
<td>1.31</td>
<td>0.2791</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>0.0537289</td>
<td>0.0537289</td>
<td>1.70</td>
<td>0.2035</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.0221841</td>
<td>0.0221841</td>
<td>0.70</td>
<td>0.4097</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>0.0384400</td>
<td>0.0384400</td>
<td>1.22</td>
<td>0.2800</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.8540580</td>
<td>0.0316317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>1.3404070</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 7 Análisis de variancia para el efecto de nitrato (NO_3^-) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>75.502400</td>
<td>8.3891500</td>
<td>44.22</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>0.008700</td>
<td>0.0087025</td>
<td>0.05</td>
<td>0.8320</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.020300</td>
<td>0.0202500</td>
<td>0.11</td>
<td>0.7464</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>0.044900</td>
<td>0.0448900</td>
<td>0.24</td>
<td>0.6306</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>5.121932</td>
<td>0.1897000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>80.698120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 8 Análisis de variancia para el efecto de fosfato (PO_{4}^{3-}) en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>5.311901</td>
<td>0.590211</td>
<td>17.46</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>0.078234</td>
<td>0.078234</td>
<td>2.31</td>
<td>0.1399</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.062647</td>
<td>0.062647</td>
<td>1.85</td>
<td>0.1847</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>0.144360</td>
<td>0.14436</td>
<td>4.27</td>
<td>0.0485</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.912917</td>
<td>0.033811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>6.510060</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo: 9 Análisis de variancia para el efecto de sulfato en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>59044.870</td>
<td>6560.542</td>
<td>54.62</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>4.563</td>
<td>4.563</td>
<td>0.04</td>
<td>0.8469</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>123.869</td>
<td>123.869</td>
<td>1.03</td>
<td>0.3139</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>7.302</td>
<td>7.302</td>
<td>0.06</td>
<td>0.8071</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>3243.170</td>
<td>120.1173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>62423.779</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 10 Análisis de variancia para el efecto de demanda bioquímica de oxígeno (DBO) en el proceso del sistema de aireación en la remoción de materia orgánica en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>2198.70690</td>
<td>244.3007</td>
<td>100.6</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>7.11492</td>
<td>7.11492</td>
<td>2.93</td>
<td>0.0984</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>0.17822</td>
<td>0.17822</td>
<td>0.07</td>
<td>0.7885</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>1.11890</td>
<td>1.11890</td>
<td>0.46</td>
<td>0.5031</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>65.57032</td>
<td>2.42853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>2272.68920</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 11 Análisis de variancia para el efecto de coliformes termotolerantes en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas de la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>4832095.640</td>
<td>536899.510</td>
<td>6.74</td>
<td>0.0001</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>51852.241</td>
<td>51852.241</td>
<td>0.65</td>
<td>0.4270</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>164902.838</td>
<td>164902.838</td>
<td>2.07</td>
<td>0.1619</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>443572.039</td>
<td>443572.039</td>
<td>5.56</td>
<td>0.0258</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>2152364.790</td>
<td>79177.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>7644787.560</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo: 12 Análisis de variancia para el efecto de coliformes totales en el proceso del sistema de aireación en la remoción de materia orgánica de las aguas contaminadas en la bahía interior

<table>
<thead>
<tr>
<th>F. de V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año (A)</td>
<td>9</td>
<td>80111103.72</td>
<td>8901233.8</td>
<td>2.07</td>
<td>0.0694</td>
</tr>
<tr>
<td>Profundidad (P)</td>
<td>1</td>
<td>1271642.73</td>
<td>1271642.7</td>
<td>0.30</td>
<td>0.5909</td>
</tr>
<tr>
<td>Zona (Z)</td>
<td>1</td>
<td>3896718.32</td>
<td>3896718.3</td>
<td>0.91</td>
<td>0.3493</td>
</tr>
<tr>
<td>P*Z</td>
<td>1</td>
<td>3850934.72</td>
<td>3850934.7</td>
<td>0.90</td>
<td>0.3522</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>115994095.00</td>
<td>4296077.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>205124494.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo: Resultados del análisis del parámetro químico pH

<table>
<thead>
<tr>
<th>Parámetro Químico pH (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
</tbody>
</table>

Anexo: Resultados de análisis del parámetro químico Turbiedad (NTU)

<table>
<thead>
<tr>
<th>Parámetro Químico Turbiedad (NTU) (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación N° 7)</td>
<td>6.60</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación N° 5)</td>
<td>7.60</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación N° 7)</td>
<td>12.10</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación N° 5)</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Anexo: Resultados de análisis del parámetro químico Oxígeno Disuelto (mg/l)

<table>
<thead>
<tr>
<th>Parámetro Químico Oxígeno Disuelto (mg/l) (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación N° 7)</td>
<td>9.50</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación N° 5)</td>
<td>9.20</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación N° 7)</td>
<td>9.02</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación N° 5)</td>
<td>8.99</td>
</tr>
</tbody>
</table>
Anexo: 16 Resultados de análisis del parámetro químico Oxígeno Disuelto (mg/l)

<table>
<thead>
<tr>
<th>Parámetro Químico Oxígeno Disuelto (mg/l) (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>9.50 8.13 7.21 7.24 7.21 8.1 7.38 8.88 6.06 5.60</td>
</tr>
<tr>
<td>Frente a las residencias universitarias (estación Nº 5)</td>
<td>9.20 8.35 6.94 9.18 6.94 8.8 7.06 7.90 6.28 5.14</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>9.02 7.68 6.78 7.12 6.78 7.9 7.42 7.86 5.59 4.40</td>
</tr>
<tr>
<td>Frente a las residencias universitarias (Estación Nº 5)</td>
<td>8.99 7.83 6.72 7.24 6.72 8.0 6.65 7.97 6.26 4.60</td>
</tr>
</tbody>
</table>

Anexo: 17 Resultados de análisis del parámetro químico Sólidos Totales Disueltos (mg/l)

<table>
<thead>
<tr>
<th>Parámetro Químico Sólidos Totales Disueltos (mg/l) (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>496.9 535 879 859 879 1176 1156.0 1189.0 1125.0</td>
</tr>
<tr>
<td>Frente a las residencias universitarias (estación Nº 5)</td>
<td>494.3 532 878 862 878 1172 1160.0 1181.0 1141.0</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>493.1 7 530 884.0 0 887.5 0 884 1182 1222.0 1196.0 1090.0</td>
</tr>
<tr>
<td>Frente a las residencias universitarias (estación Nº 5)</td>
<td>495.5 526 888.5 890 889 1190 1230.0 1178.0 1104.0</td>
</tr>
</tbody>
</table>

Anexo: 18 Resultados de análisis del parámetro químico Nitrito NO\(^2\)-N (mg/l)

<table>
<thead>
<tr>
<th>Parámetro Químico Nitrito NO(^2)-N (mg/l) (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>0.180 0.024 0.070 0.022 0.070 0.032 0.25 0.035 0.016 0.018</td>
</tr>
<tr>
<td>Frente a residencias universitarias (estación Nº 5)</td>
<td>0.150 0.021 0.016 0.016 0.016 0.032 0.022 0.032 0.020 0.018</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>0.254 0.032 0.093 0.039 0.033 0.032 0.020 0.035 0.025 0.042</td>
</tr>
<tr>
<td>Frente a residencias universitarias (estación Nº 5)</td>
<td>0.217 0.023 0.128 0.024 1.167 0.036 0.013 0.033 0.017 0.038</td>
</tr>
</tbody>
</table>
Anexo: 19 Resultados de análisis del parámetro químico Nitrato (NO₃ -N)

<table>
<thead>
<tr>
<th>Parámetro Químico Nitrato (NO₃ -N)(con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>2.20</td>
</tr>
<tr>
<td>Frente a residencias universitarias</td>
<td>3.10</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>1.93</td>
</tr>
<tr>
<td>Frente a residencias universitarias</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Anexo: 20 Resultados de análisis del parámetro químico Fosfato PO₄³⁻ (mg/l)

<table>
<thead>
<tr>
<th>Parámetro Químico Fosfato PO₄³⁻ (mg/l)(con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno</td>
<td>2.00</td>
</tr>
<tr>
<td>Frente a residencias universitarias</td>
<td>2.60</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno</td>
<td>2.30</td>
</tr>
<tr>
<td>Frente a residencias universitarias</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Anexo: 21 Resultados de análisis del parámetro químico Sulfato SO₄²⁻ (°C)

<table>
<thead>
<tr>
<th>Parámetro Químico Sulfato SO₄²⁻ (°C) (con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno</td>
<td>291.20</td>
</tr>
<tr>
<td>Frente a residencias universitarias</td>
<td>285.60</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno</td>
<td>243.90</td>
</tr>
<tr>
<td>Frente a residencias universitarias</td>
<td>251.80</td>
</tr>
</tbody>
</table>
Anexo: 22 Resultados de análisis del parámetro químico DBO₅ (mg/l)

<table>
<thead>
<tr>
<th>Parámetro Químico DBO₅ (mg/l)(con aireación)</th>
<th>DQO</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>32.21</td>
<td>18.56</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación Nº 5)</td>
<td>32.38</td>
<td>18.79</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>34.10</td>
<td>23.80</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación Nº 5)</td>
<td>40.30</td>
<td>20.10</td>
</tr>
</tbody>
</table>

Anexo: 23 Resultados de análisis del parámetro Biológico Coliformes Termotolerantes (NMP)

<table>
<thead>
<tr>
<th>Parámetro Biológico Coliformes Termotolerantes (NMP)(con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>1171</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación Nº 5)</td>
<td>1728</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>957.1</td>
</tr>
<tr>
<td>Frente a las residencias universitarias (Estación Nº 5)</td>
<td>1692</td>
</tr>
</tbody>
</table>

Anexo: 24 Resultados de análisis de parámetro biológico Coliformes Totales (NMP)

<table>
<thead>
<tr>
<th>Parámetro Biológico Coliformes Totales (NMP)(con aireación)</th>
<th>Después de la aireación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 20% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>2986</td>
</tr>
<tr>
<td>Frente a residencias universitarias (Estación Nº 5)</td>
<td>5600.0</td>
</tr>
<tr>
<td>Al 80% de profundidad</td>
<td></td>
</tr>
<tr>
<td>Muelle de Puno (estación Nº 7)</td>
<td>2342.9</td>
</tr>
<tr>
<td>Frente a las residencias universitarias (Estación Nº 5)</td>
<td>6157.1</td>
</tr>
</tbody>
</table>