UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO MAESTRÍA EN FITOPATOLOGÍA

"CARACTERIZACIÓN MOLECULAR DE TRES AISLAMIENTOS DE Sweet potato leaf curl virus Y SINERGISMO CON EL Sweet potato chlorotic stunt virus"

Presentada por:

MARCO ENRIQUE GÁLVEZ GARGUREVICH

TESIS PARA OPTAR EL GRADO DE

MAGISTER SCIENTIAE EN FITOPATOLOGÍA

Lima – Perú

2015

AGRADECIMIENTO

Agradezco al Centro Internacional de la Papa (CIP) por el financiamiento otorgado para la realización de mi tesis. En especial, al Doctor Jan Kreuze por haberme brindado su amistad, apoyo y sugerencias para la realización de mi trabajo, y al Doctor Wilmer Cuellar por darme la oportunidad de desarrollar mi tesis y asesoramiento en todo momento.

Quiero agradecer al ingeniero Segundo Fuentes por sus recomendaciones, enseñanzas y sobre todo por su amistad y ser un ejemplo como profesional.

Agradezco al ingeniero Cesar Fribourg, profesor y consejero, especialmente por enseñarme que para llegar a ser un buen Fitopatólogo se necesita mucho esfuerzo y dedicación.

Agradezco también el apoyo como profesional y sobretodo como amigo al Doctor Luis Salazar por sus recomendaciones y aliento en la última etapa de mi tesis.

Deseo hacer un agradecimiento muy especial a mi esposa Angie, quien me apoyo en toda el desarrollo de mi tesis, fue mi compañera en todo momento, y me hizo muy dichoso de ser padre de nuestra querida Avril, quien llego a nuestras vidas durante esta etapa de mi carrera para alegrárnosla y darnos un motivo inmenso para lograr nuestras metas.

A mi madre Elizabeth, por su amor y apoyo que siempre necesite para que me fortaleciera, por sus palabras de ánimo cuando las cosas se ponían difíciles. A mi madrina Maritza por haberme inculcado valores y siempre estar a mi lado, a mi padre Jorge por sus consejos y ánimos; a mis hermanos Coquí, Iván, José y Milagros y demás familiares, incluyendo a mis suegros Elba y Segundo que siempre me apoyaron en los momentos difíciles.

A mis compañeros y amigos del CIP: Marco Meza, Jaime Arellano, Ana Pérez, Joao De Souza, Rocío Silvestre, Catita, Octavio Zegarra, Giovanna Muller, Carlos Chuquillanqui, Heidy Gamarra, Martin Ramos, Betty Flores, Hugo Espinoza, Luciano Ponce y resto de compañeros por su amistad.

ÍNDICE GENERAL

ABSTRACT

I: INTRODUCCIÓN	1
II: OBJETIVOS	3
2.1. Objetivo principal	3
2.2. Objetivos secundarios	3
III: REVISIÓN DE LITERATURA	4
3.1. El Camote (Ipomoea batatas (L.) Lam.): Origen e importancia	4
3.2. Principales plagas que afectan el camote	6
3.3. Virus que afectan camote	6
3.3.1. Género Begomovirus	11
3.3.1.1. Distribución geográfica	11
3.3.1.2. Características del género	11
3.3.1.3. Transmisión	15
3.3.1.4. Rango de hospederos	15
3.3.1.5. Síntomas en plantas indicadoras y en camote	15
3.3.2. Sweet potato chlorotic stunt virus (SPCSV)	15
3.3.2.1. Distribución geográfica	15
3.3.2.2. Características del virus	16
3.3.2.3. Transmisión	16
3.3.2.4. Rango de hospederos	16
3.3.2.5. Síntomas en plantas indicadoras y en camote	16

3.4. Indexado de virus de camote	17
3.5. Enfermedades por complejos virales en camote	17
3.6. Estudio de ARN de interferencia (siARN) producidos por la planta en	
respuesta a la infección viral	18
IV: MATERIALES Y MÉTODOS	20
4.1. Lugar	20
4.2. Métodos	20
4.3. Indexado de camote y detección de begomovirus por PCR	20
4.4. Pruebas moleculares	22
4.4.1. Extracción de ácidos nucleicos totales	22
4.4.2. Amplificación del ADN por PCR	23
4.4.3. Electroforesis	24
4.4.4. Clonamiento	24
4.4.5. Selección de colonias	24
4.4.6. Secuenciamiento	25
4.4.7. Análisis de secuencias	25
4.4.8. Prueba de hibridación molecular utilizando sonda no	
radioactiva para la detección de begomovirus	25
4.4.9. Detección del SPCSV por RT-PCR en tiempo real	27
4.5. Propagación, mantenimiento de virus e inoculación de los sweepovirus	28
4.6. Evaluación de la interacción sinérgica entre los begomovirus con	
SPCSV en camote	29
4.7. Purificación, análisis y secuenciamiento de ARN pequeños de	
interferencia (siARN)	36
V: RESULTADOS	39
5.1. Detección y síntomas de begomovirus	39
5.2. Caracterización y variabilidad de secuencia de sweepovirus	42

5.3. Diseño de iniciadores para la obtención de la secuencia de los genomas	
completos de sweepovirus seleccionados	44
5.4. Obtención de genomas de aislamientos de begomovirus	45
5.5. Estudio filogenético de aislamientos de sweepovirus	49
5.6. Interacción sinérgica del "Sweetpotato leaf curl virus" (SPLCV)	
con SPCSV en camote	51
5.6.1. Análisis estadístico	57
5.6.1.1. Programa R	58
5.6.1.2. Programa SAS	59
5.7. Secuenciamiento a gran escala (Deep sequencing) de siARN basado en el silenciamiento de ARN	64
VI: DISCUSIONES	71
VII: CONCLUSIONES	79
VIII: RECOMENDACIÓN	80
IX: REFERENCIAS BIBLIOGRÁFICAS	81
X: ANEXOS	92

ÍNDICE DE CUADROS

		Pag.
Cuadro 1:	Lista de virus que han sido reportados infectando camote.	8
Cuadro 2:	Especies y aislamientos del género <i>Begomovirus</i> utilizados Para el estudio de filogenia.	31
Cuadro 3:	Aislamientos de sweepovirus usados en este estudio	40
Cuadro 4:	Análisis de los porcentajes de identidad y divergencia de nucleótidos de los genomas completos y cubierta proteica entre los aislamientos de sweepovirus.	48
Cuadro 5a:	Análisis estadístico de la prueba de univariancia.	58
Cuadro 5b:	Análisis estadístico de la prueba de multivariancia.	58
Cuadro 6:	Análisis de varianza de las variables de contraste	59
Cuadro 7a:	Análisis estadístico del diseño completamente aleatorio de las variables en estudio (tiempo, aislamiento y tratamiento) en la primera semana.	60
Cuadro 7b:	Análisis estadístico del diseño completamente aleatorio de las variables en estudio (tiempo, aislamiento y tratamiento) en la tercera semana.	60
Cuadro 8:	Expresión relativa de SPCSV en infección mixta con seis aislamientos de sweepovirus en comparación con infección simple sobre todos los puntos en el tiempo basados en el análisis REST de los resultados de RT-qPCR	61

ÍNDICE DE FIGURAS

		Pag.
Figura 1:	Organización genómica del género Begomovirus.	14
Figura 2:	Flujograma de trabajo para el Indexado de virus de camote.	21
Figura 3:	Diseño experimental para la evaluación del sinergismo viral.	30
Figura 4:	Obtención del secuenciamiento a gran escala.	37
Figura 5:	Síntomas inducidos por los aislamientos seleccionados de begomovirus en plantas injertadas de <i>Ipomoea setosa</i>	41
Figura 6:	Árbol filogenético de los aislamientos de begomovirus sobre la base de un segmento del gen que codifica a la proteína asociada a la replicación (AC1).	43
Figura 7:	Diseño de iniciadores para la secuenciación del genoma completo de los aislamientos seleccionados de sweepovirus	44
Figura 8:	Detección de sweepovirus por la reacción en cadena de la Polimerasa (PCR) utilizando los cebadores diseñados	45
Figura 9:	Linearización de los productos amplificados con la polimersasa Phi29 para la obtención del genoma completo de sweepovirus.	46
Figura 10:	Organización genómica de aislamientos de sweepovirus	47
Figura 11:	Árbol filogenético construido con la secuencia de nucleótidos de los genomas completos de aislamientos de begomovirus.	47 50
Figura 12:	Evaluación de síntomas en la prueba de sinergismo (a los 21 y 70 días).	52
Figura 13a:	Detección de ADN y ARN de sweepovirus en plantas de camote con infección simple y doble (con SPCSV) por hibridación de ácidos nucleicos (dot-blot).	54
Figura 13b:	Detección de ARN ribosomal (ARNr) en plantas de camote con infección simple y doble (con SPCSV) por hibridación de ácidos nucleicos (dot-blot).	55

Figura 14:	Niveles de infección de los aislamientos de sweepovirus a la primera y tercera semana para los tratamientos con infección simple (S) y doble con SPCSV (D).	57
Figura 15:	Evaluación del sinergismo del SPLCV (aislamiento sweepovirus-StV1) con el SPCSV en plantas de camote "Huachano".	62
Figura 16:	Titulos de los virus en la prueba de sinergismo en plantas de camote Huachano.	63
Figura 17:	Lecturas obtenidas del secuenciamiento a gran escala (Deep Sequencing) de los ARN pequenos de interferencia (siARN) (Fasteris, Suiza) según su tamaño (rango), distribución (número) y abundancia (%) respecto al total. Representación del tamaño de lecturas (lecturas) (18-26 nucleótidos) respecto a su abundancia del secuenciamiento profundo (Deep sequencing).	64
Figura 18:	Distribución de las clases de ARN pequeños de interferencia (siARNs) (21, 22, 23 y 24 nucleótidos) correspondientes a StV1, SPCSV, en infección simple y doble, y en una planta transgénica RNase3 con infección StV1.	66
Figura 19a:	Distribución de las clases de ARN pequeños de interferencia (siARNs) (21, 22, 23 y 24 nucleótidos) correspondientes a SPFMV, SPCSV, en infección simple y doble.	67
Figura 19b:	Distribución de las clases de ARN pequeños de interferencia (siARNs) (21, 22, 23 y 24 nucleótidos) en una planta no infectada.	68
Figura 20:	Cobertura de los genomas virales por diferentes clases de tamaño de pequeños ARN de interferencia (siARN).	69
Figura 21:	Distribución de clases de tamaño de ARN pequeños de interferencia (siRNA)	70

ÍNDICE DE ANEXOS

Anexo 1:	Protocolo para la amplificación circulo rodante utilizando la Polimerasa Phi29.	93
Anexo 2:	Protocolo de extracción de ARN totales con Trizol.	93
Anexo 3:	Protocolo de extracción de pequeños ARN de interferencia (siARN).	94
Anexo 4:	Origen de las plantas, fecha de colecta, nombre de genotipo y números de accesiones de germoplasma de plantas seleccionados para los sweepoviruses en este estudio.	95
Anexo 5:	Árbol filogenético de la secuencia de nucleótidos del gen C3 que codifica a la proteína potenciadora de la replicación (REn) de begomovirus.	96
Anexo 6:	Árbol filogenético de la secuencia de aminoácidos del gen C3 que codifica a la proteína potenciadora de la replicación (REn) de begomovirus.	97
Anexo 7:	Árbol filogenético de la secuencia de nucleótidos del gen C4 que codifica a la proteína C4 de begomovirus.	98
Anexo 8:	Árbol filogenético de la secuencia de aminoácidos del gen C4 que codifica a la proteína C4 de begomovirus	99
Anexo 9:	Árbol filogenético de la secuencia de nucleótidos del gen V2 que codifica a la proteína de movimiento (MP) de begomovirus.	100
Anexo 10:	Árbol filogenético de la secuencia de aminoácidos del gen V2 que codifica a la proteína de movimiento (MP) de begomovirus.	101
Anexo 11:	Árbol filogenético de la secuencia de nucleótidos del gen C1 que codifica la proteína asociada a la replicación (Rep) de begomovirus.	102
Anexo 12:	Árbol filogenético de la secuencia de aminoácidos del gen C1 que codifica la proteína asociada a la replicación (Rep) de begomovirus.	103

Anexo 13:	Árbol filogenético de la secuencia de nucleótidos del gen C2 que codifica la proteína activadora de la transcripción (TrAP) de begomovirus.	104
Anexo 14:	Árbol filogenético de la secuencia de aminoácidos del gen C2 que codifica la proteína activadora de la transcripción (TrAP) de begomovirus.	105
Anexo 15:	Árbol filogenético de la secuencia de nucleótidos del gen V1 que codifica la cubierta proteica (CP) de begomovirus.	106
Anexo 16:	Árbol filogenético de la secuencia de aminoácidos del gen V1 que codifica la cubierta proteica (CP) de begomovirus	107
Anexo 17:	Cuadro de porcentaje de identidad y divergencia de las secuencias de nucleótidos (a) y aminoácidos (b) de la proteína activadora de la transcripción (C2) de begomovirus.	108
Anexo 18:	Cuadro de porcentaje de identidad y divergencia de las secuencias de nucleótidos (a) y aminoácidos (b) de la proteína activadora de la transcripción (C2) de begomovirus.	109
Anexo 19:	Cuadro de porcentaje de identidad de la secuencias de nucleótidos de los genomas completos de sweepovirus.	110
Anexo 20a:	Amplificación y condiciones para la detección del SPCSV por PCR en tiempo real (RT-qPCR).	111
Anexo 20b:	Cantidades de reactivos para el PCR en tiempo real (RT-qPCR).	111
Anexo 21:	Análisis estadísticos para la evaluación del sinergismo para la detección de sweepovirus utilizando los programas estadísticos R y SAS	112
Anexo 22:	Graficas obtenidas del análisis estadístico para la cuantificación de begomovirus en infección simple y doble.	119
Anexo 23:	Títulos de la expresión relativa de SPCSV en plantas coinfectadas con begomovirus con relación a la infección simple de SPCSV.	122
Anexo 24a:	Curvas de regresión obtenidas con el Quantity-One de la prueba de hibridación de ácidos nucleícos (Dot Blot) para la detección de begomovirus en infección simple y doble.	123

Anexo 24b:	Curvas de regresión obtenidas con el Quantity-One de la prueba de hibridación de ácidos nucleícos (Dot Blot) para la detección de begomovirus en infección simple y doble en la novena y décima semana.	124
Anexo 25:	Estimación relativa de la concentración de sweepovirus utilizando el programa Quantity One.	125
Anexo 26:	Evaluación del sinergismo del <i>Sweet potato leaf curl virus</i> [(SPLCV) (aislamiento sweepovirus-StV1)] con el <i>Sweet potato</i> <i>chlorotic stunt virus</i> (SPCSV) en planta de camote transgénico cultivar 'Huachano' que expresa el gen ARNasa3 del SPCSV.	129
Anexo 27:	Purificación de los pequeños ARN de interferencia (siARN) en gel de agarosa al 3%	130
Anexo 28:	Ensamblaje del sweepovirus-San Vicente (StV1) a partir del secuenciamiento a gran escala de los pequeños ARN de interferencia (siARN) producidos por la planta	131
Anexo 29:	Síntomas de pararetroviruses [<i>Sweet potato vein clearing virus</i> (SPVCV) y <i>Sweet potato collusive virus</i> (SPCV)] en camote transgénico cultivar 'Huachano' que expresa el gen RNase3 del SPCSV.	132

"CARACTERIZACIÓN MOLECULAR DE TRES AISLAMIENTOS DE Sweet potato leaf curl virus Y SINERGISMO CON EL Sweet potato

chlorotic stunt virus"

RESUMEN

Trescientos noventa y cuatro accesiones de camote de América Latina y el este de África fueron testeadas por la reacción en cadena de la polimerasa (PCR) para detectar la presencia de begomovirus, y 46 resultaron ser positivos. Todos eran asintomáticas en camote y generó enrollamiento de hojas hacia arriba y/o clorosis en Ipomoea setosa. El Sweet potato leaf curl virus (SPLCV) fue la especie de begomovirus predominante. Los seis aislamientos más divergentes, basados en secuencias del genoma completo, se utilizaron para estudiar las interacciones con el Sweet potato chlorotic stunt virus (SPCSV) conocido por causar enfermedades sinérgicas con otros virus. Las co-infecciones condujeron a un aumento de los títulos de begomovirus y la disminución de los títulos de SPCSV en todos los casos, aunque el alcance de los cambios varió notablemente entre los aislamientos de begomovirus. Los síntomas de enrollamiento de hojas hacia arriba sólo se desarrollaron temporalmente en combinación con el aislamiento StV1 y coincidieron con la presencia de las concentraciones más altas de begomovirus en la planta. El análisis de las secuencias de los pequeños ARN de interferencia (siRNA) reveló que la co-infección de SPCSV con el aislamiento StV1 condujo a un aumento relativo de siRNA correspondiente de la parte central del genoma SPCSV y una reducción en las regiones correspondientes a los extremos del genoma, pero ningún cambio relativo correspondiente a StV1 en cualquiera de las infecciones simples o dobles de los virus. La infección en plantas transgénicas que expresaron la ARNasa3 mostró que esta proteína era suficiente para mediar esta interacción sinérgica con los virus de ADN, similares a los virus de ARN. La información obtenida en la presente investigación contribuye al diagnóstico e identificación de begomovirus y el incremento significativo de sus títulos presentes en algunas interacciones sinérgicas puede tener un impacto negativo en el rendimiento.

Palabras claves: begomovirus, sinergismo, sweet potato, Sweet potato cholortic stunt virus, ARNasa3

MOLECULAR CHARACTERIZATION OF THREE ISOLATES OF Sweet potato leaf curl virus AND SYNERGISM WITH Sweet potato chlorotic stunt virus

ABSTRACT

Three hundred and ninety-four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. Sweet potato leaf curl virus (SPLCV) was the predominant species of begomovirus. The six most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co-infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with the begomovirus isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co-infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. Infection in RNase3-expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses. The information obtained in this study contribute to the diagnosis and identification of begomovirus, as the significant increase in their titles in some synergistic interactions, this suggest that it have a negative impact on yield.

Keywords: begomovirus, RNase3, sweet potato, Sweet potato chlorotic stunt virus, synergism.

I. INTRODUCCIÓN

El camote [*Ipomoea batatas* L. (Lam)] es un cultivo que crece en todas las regiones tropicales y subtropicales alrededor del mundo siendo considerado como la tercera raíz alimenticia más importante en Sudamérica (Kreuze y Fuentes, 2008). La planta de camote es versátil y puede ser adaptada a sistemas de agricultura con alto y bajos insumos. La capacidad de los cultivos para prosperar en entornos de bajos insumos hace que sea una opción viable para la producción y consumo en las regiones donde la seguridad alimentaria es un problema persistente. El camote es un alimento de alta energía. Sus raíces tienen un contenido de carbohidratos de 25-30%, de los cuales el 98% se considera de fácil digestión. Es una excelente fuente de provitamina A y su alto contenido de vitamina C y minerales lo hace un producto agrícola elemental como fuente de alimento (Mukasa *et al.*, 2003).

Se conocen más de 30 virus que infectan al camote en todo el mundo, sin embargo, el conocimiento de su distribución, impacto en el rendimiento, impacto ecológico y control es todavía limitado (Kreuze y Fuentes, 2008; Loebenstein *et al.*, 2009). La mayoría de estos virus, en infección simple, inducen síntomas leves o ninguno. Sin embargo, la infección del camote por dos o más virus en sinergismo ocasiona un daño más grande que la producida por la infección de cada virus en forma individual. Un ejemplo es la enfermedad viral del camote [*Sweet potato virus disease* (SPVD)] causada por el sinergismo del virus del enanismo clorótico del camote [*Sweet potato feathery mottle virus* (SPFMV)] que llega a reducir el rendimiento hasta un 80% (Valverde *et al.*, 2007).

La interacción del SPCSV con virus cuyo genoma es ADN (familias *Caulimoviridae* y *Geminiviridae*) es un tema que requiere mayores estudios, la cual se ve limitada debido al número reducido de virus con ADN que han sido caracterizados en este cultivo (Kokkinos *et al.*, 2006).

Los virus en el género *Begomovirus* (familia *Geminiviridae*) se caracterizan por presentar ADN como genoma. Aquí están comprendidos aquellos que solo infectan camote y conforman el grupo sweepovirus. Se ha reportado que el *Sweet potato leaf curl virus* (SPLCV) puede reducir el rendimiento de raíces reservantes en un 30% (Clark y Hoy, 2006). Los sweepovirus comúnmente causan infección asintomática en el cultivo de camote pasando inadvertidos (Valverde *et al.*, 2007) y su prevalencia y distribución es desconocida en algunas regiones del mundo.

En el presente trabajo se buscó caracterizar molecularmente los genomas completos de diferentes aislamientos de sweepovirus que se encuentran infectando accesiones de camote provenientes de diferentes países de América, que se mantienen y conservan en el Banco de Germoplasma del Centro Internacional de la Papa (CIP) y realizar un estudio de sinergismo con el SPCSV el cual, es el principal virus que se encuentra en combinaciones sinérgicas en camote.

II. OBJETIVOS

2.1 Objetivo general

• Caracterización molecular de seis aislamientos de sweepovirus que afectan a *Ipomoea batatas* (L.) Lam.

2.2 Objetivos específicos

- Diseñar iniciadores en sentido inverso y realizar la amplificación circulo rodante (RCA) para la obtención de genomas completos de los aislamientos de sweepovirus.
- Evaluar el sinergismo viral de cada aislamiento de sweepovirus mediante la respuesta a la infección junto con el SPCSV.
- Hacer un estudio del secuenciamiento de los ARNs pequeños de interferencia (siARN) producido por la planta en respuesta a la infección viral por sweepovirus en infecciones simples y dobles (con SPCSV).

III. REVISIÓN DE LITERATURA

3.1 El Camote [Ipomoea batatas (L.) Lam.]: Origen e importancia

El camote es un importante cultivo que crece en muchas áreas alrededor del mundo, principalmente en las regiones tropicales y subtropicales, lo cual pone de manifiesto la idoneidad del camote para una amplia gama de climas y altitudes (Clark *et al*, 2013). Se encuentra entre los 10 cultivos alimenticios más importantes a nivel mundial en cuanto a su producción en peso seco, produciendo alrededor de 130 millones de toneladas por año en cerca de 9 millones de hectáreas (Clark, 2012). En el 2013, se registró una producción de 103 109,367 toneladas en el mundo, aproximadamente el 70% fue producido por China (70 526,000 toneladas), donde es el segundo cultivo por detrás del arroz en términos de producción. En Sudamérica es considerado como la tercera raíz alimenticia más importante después de la yuca y la papa, con una producción de 1 375,722 toneladas, donde Perú presento 292,116 toneladas (FAOSTAT, 2014).

La clasificación sistemática del camote es la siguiente (Huamán, 1992):

Reino: Plantae

División: Magnoliophyta Clase: Magnoliopsida Orden: Solanales Familia: Convolvulaceae Género: *Ipomoea*

Especie: Ipomea batatas

El camote fue originalmente domesticado hace 5,000 años en América tropical (Austin, 1988). Basado en el análisis de caracteres morfológicos de camote y

especies silvestres del género *Ipomoea*, Austin (1988) postuló que se originó en la región entre la Península de Yucatán de México y el río Orinoco en Venezuela. Sin embargo, reportes recientes usando marcadores moleculares indican que el camote se originó en algún lugar entre América Central y el norte de Sudamérica (Huang y Sun, 2000) con un centro secundario de diversidad en el Pacífico sureste (Zhang *et al.*, 2000; Zhang *et al.*, 2004).

En el Perú, el camote es sembrado en la costa central y norte, en los valles interandinos (hasta una altura de 2800 msnm) y en la selva Amazónica. El camote posee ciertas características agronómicos que lo hacen muy atractivo para el agricultor. Crece en trópicos y en zonas templadas de los hemisferios sur y norte. Es tolerante al estrés hídrico y termal así como también tiene la habilidad de crecer en suelos relativamente pobres y sobre todo con una mínima inversión por el agricultor (Clark *et al*, 2013).

El cultivo de camote tiene una importancia social y económica, siendo un alimento de bajo costo y nutritivo, forma parte importante de la dieta humana, especialmente en los países en vías de desarrollo. Consumir una combinación de legumbres y camote podría combatir la desnutrición proteico-calórica en algunas áreas del mundo (Clark *et al*, 2013). Sin embargo con el aumento del área cultivada, han ido surgiendo una serie de problemas fitosanitarios producidos por patógenos, algunos de ellos con efectos importantes sobre el rendimiento de este cultivo. El Camote es una excelente fuente de carotenoides provitamina A, además, su alto contenido de vitamina C y minerales (calcio, potasio y hierro) lo hace un producto agrícola elemental para la salud como fuente de alimento (Clark *et al*, 2013; Fuentes y Chujoy, 2009; Mukasa *et al.*, 2003).

3.2 Principales plagas que afectan el camote

Las plagas comunes y de importancia económica que afectan camote son: el complejo viral [Sweet potato virus disease (SPVD)], el nematodo del nódulo *Meloidogyne incognita* y el complejo de gusanos blancos conocidos como "chacarero". La enfermedad fungosa causada por *Rhizopus stolonifer* puede causar pérdidas en post-cosecha. El gorgojo *Euscepes postfasciatus* es una plaga menor usualmente encontrada en campos con manejo pobre o abandonados, aunque puede causar daños cuando la cosecha es tardía (Fuentes y Chujoy, 2009).

3.3 Virus que afectan camote

Una limitación importante en la producción de camote es la disminución del cultivo, probablemente debido al efecto acumulativo de infección por virus en este cultivo que se propaga vegetativamente (Clark et al, 2012). Por lo tanto, las enfermedades virales se consideran un factor limitante en la producción de camote en todo el mundo (Carey et al, 1999). Se conocen más de 30 virus que infectan camote, asignados en 9 familias: Bromoviridae (1 virus), Bunyaviridae (1), Caulimoviridae (3), Closteroviridae (1), Comoviridae (1), Flexiviridae (1), Geminiviridae (15), Luteoviridae (1), y Potyviridae (9), sin embargo, el conocimiento de su distribución, impacto ecológico y control es todavía limitado (Cuadro 1) (Clark et al, 2013; Clark et al, 2012; Loebenstein et al., 2009). La mayoría de estos virus, en infecciones simples, no causan síntomas o inducen síntomas muy leves (Valverde et al., 2007). Sin embargo, comúnmente la infección de camote por dos o más virus distintos (infecciones múltiples) causa daños mayores que las causadas por la infección de cada virus en forma separada. Estas infecciones múltiples (complejos virales) son comunes en camote, lo que implica la ocurrencia de interacciones sinérgicas. El más común de estos complejos es el SPVD causado por la infección mixta del potyvirus transmitido por áfidos, Sweet potato feathery mottle virus (SPFMV), y el crinivirus transmitido por mosca blanca, Sweet potato chlorotic stunt virus (SPCSV) (Gutierrez et al., 2003). La enfermedad SPVD es caracterizada por presentar clorosis, enanismo, deformación

de hojas y severo retardo en el crecimiento, lo que conlleva a reducir la producción de las plantas infectadas hasta un 99% (Gibson *et al.*, 1998). SPVD es la enfermedad más importante que afecta el camote en África y Perú, y parece ser la enfermedad viral más importante de camote en diversas regiones del mundo esto es explicado por la alta distribución geográfica tanto del vector como de los virus componentes del SPVD. La interacción del SPCSV o de la proteína ARNasa 3 (RNase3) que suprime el silenciamiento genético postranscripcional (Cuellar *et al.*, 2009) con virus de ADN (caulimovirus y geminivirus) en camote es un tema que requiere aún más estudios y se ve limitado debido a que son pocos los virus de ADN en este cultivo que han sido caracterizados (Valverde *et al.*, 2007). Aunque nuevos métodos mejorados de detección de virus genéricos basado en las nuevas tecnologías de secuenciación de ADN (Mardis *et al.*, 2011) y el uso de amplificación por círculo rodante (RCA) están avanzando en el proceso de caracterización de los virus a nivel molecular, la caracterización biológica y la validación de los aislamientos recientemente identificados están quedando atrás.

Métodos de detección	PCR	PCR	*Hibrid.ac.nuc., PCR	*Hibrid.ac.nuc., PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR
Vector	Mosca blanca	Mosca blanca	Mosca Blanca	Mosca Blanca	Mosca blanca	Mosca blanca	Desconocido	Mosca blanca	Mosca blanca	Mosca blanca	Mosca blanca	Mosca blanca
Distribución reportada	España, Italia	Estados Unidos de América, Israel	Estados Unidos de América, Puerto Rico	Lejano Oriente, Estados Unidos, China, Taiwan, Japón, Corea del Sur, Europa, África?, Perú	Brasil	España	China	España	España	Estados Unidos de América	Uganda	Brasil
Abre.	IYVV	ICLCV	SPLCGV	SPLCV	SPGVaV	SPLCCaV	SPLCV-CN	SPLCESV	SPLCLaV	SPLCSCV	SPLCUV	SPMaV
Especies/Virus	Ipomoea yellow vein virus	Ipomoea crinkle leaf curl virus	Sweet potato leaf curl Georgia virus	Sweet potato leaf curl virus	Sweet potato Golden vein associated virus	Sweet potato leaf curl Canary virus	Sweet potato leaf curl China virus	Sweet potato leaf curl Spain virus	Sweet potato leaf curl Lanzarote virus	Sweet potato leaf curl South Carolina virus	Sweet potato leaf curl Uganda virus	Sweet potato mosaic associated virus
Género, Familia	<i>Begomovirus</i> , Geminiviridae	<i>Begomovirus,</i> Geminiviridae	<i>Begomovirus</i> , Geminiviridae	<i>Begomovirus</i> , Geminiviridae	<i>Begomovirus</i> , Geminiviridae	<i>Begomovirus</i> , Geminiviridae	<i>Begomovirus</i> , Geminiviridae	<i>Begomovirus,</i> Geminiviridae	<i>Begomovirus,</i> Geminiviridae	<i>Begomovirus,</i> Geminiviridae	<i>Begomovirus,</i> Geminiviridae	<i>Begomovirus</i> , Geminiviridae

Cuadro 1: Lista de virus que han sido reportados infectando camote (Clarck et al., 2013).

 ∞

-

<i>Carlavirus</i> , Flexiviridae	Sweetpotato chlorotic fleck virus	SPCFV	África, Sudamérica, Asia, Cuba, Panamá, China, Taiwan, Japón, Corea del Sur, Nueva Zelanda	Desconocido	RT-PCR
<i>Carlavirus</i> , Flexiviridae	Sweetpotato C-6 Virus	C-6	Estados Unidos de América, Perú, Cuba, República Dominicana, Indonesia, Filipinas, Puerto Rico, Egipto, Uganda?, Kenia, Sudáfrica, Nueva Zelanda	Desconocido	Serología
<i>Solendovirus</i> , Caulimoviridae	Sweet potato vein clearing virus	SPVCV	Palestina, Portugal, China, Egipto, Puerto Rico, Uguanda, Kenia?, Nigeria	Desconocido	PCR
<i>Cavemovirus</i> , Caulimoviridae	Sweet potato collusive virus	SPCV	Palestina, Portugal, China, Egipto, Puerto Rico, Uganda, Kenia?, Nigeria	Desconocido	PCR
Crinivirus, Closteroviridae	Sweet potato chlorotic stunt virus	SPCSV	Mundial	Mosca Blanca	IC-RT-PCR, RT-PCR, RT- qPCR
<i>Cucumovirus</i> , Bromoviridae	Cucumber mosaic virus	CMV	Israel, Egipto, Kenia, Uganda?, Japón, Sudáfrica, Nueva Zelanda	Afido	Serología, RT-PCR
<i>Ipomovirus</i> , Potyviridae	Sweet potato mild mottle virus	SPMMV	África, Indonesia, China, Filipinas, Papua Nueva Guinea, Indonesia, Egipto, Nueva Zelanda	Mosca Blanca?	RT-PCR, IC-RT-PCR, RT- qPCR
Polerovirus?, Luteoviridae	Sweet potato leaf speckling virus	SPLSV	Perú, Cuba	Afido	RT-PCR
<i>Nepovirus,</i> Comoviridae	Sweetpotato ringspot virus	SPRSV	Papua Nueva Guinea, Kenia?	Desconocido	No disponible
Potyvirus, Potyviridae	Sweet potato feathery mottle virus	SPFMV	Mundial	Afido	Serología, IC-RT-PCR, RT- PCR, RT-qPCR
<i>Potyvirus</i> , Potyviridae	Sweet potato latent virus	SwPLV	África, Taiwan, China, Japón, Indonesia, Filipinas, Indonesia, Egipto	Afido	Serología, RT-PCR
<i>Potyvirus</i> , Potyviridae	Sweetpotato mild speckling virus	SPMSV	Argentina, Perú, Indonesia, Filipinas, China, Egipto, Uganda?, Kenia?, Sudáfrica, Nigeria, Nueva Zelanda	Afido	RT-PCR

nible	.T-qPCR	T-qPCR	nible	T-qPCR	~	~	nible
No dispc	RT-PCR, R	RT-PCR, R	No dispo	RT-PCR, R	PCF	PCF	No dispo
Afido	Afido	Afido	Desconocido	Afido	Desconocido	Desconocido	Desconocido
Argentina	China, Japón, Estados Unidos de América, Egipto, Nigeria, Barbados, Perú	Taiwan, Estados Unidos de América, China, Sudáfrica, Portugal, Australia, Barbados	Taiwan, Lejano Oriente	Corea del Sur, China, Perú, África, Israel, Portugal, Argentina, Honduras	China, Perú	China, Perú	
SPVMV	SPVG	SPV2	SPYDV	SPVC	SPPV	SPMV-1	
Sweetpotato vein mosaic virus	Sweet potato virus G	Sweetpotato virus 2	Sweetpotato yellow dwarf virus	Sweetpotato virus C	Sweet potato pakakuy virus	Sweet potato symptomless virus 1	Sweet potato c-3 virus
Potyvirus, Potyviridae	Potyvirus, Potyviridae	Potyvirus, Potyviridae	<i>Ipomovirus</i> , Potyviridae	Potyvirus, Potyviridae	Badnavirus, Caulimoviridae	<i>Mastrevirus</i> , Geminiviridae	<i>Phlebovirus?</i> , Bunyaviridae

real; IC-RT-PCR: Inmunocaptura -RT-PCR

3.3.1 Género Begomovirus

3.3.1.1 Distribución geográfica

Aislamientos relacionados a begomovirus infectando camote se han reportado en América, como por ejemplo en Perú (Fuentes y Salazar, 2003), en Brasil (Albuquerque *et al.*, 2012), en Estados Unidos (Lotrakul, *et al.*, 1998), en Asia (Onuki y Hanada, 1998; Luan *et al.*, 2006), en África (Miano, *et al.*, 2006), y en Europa (Briddon, *et al.*, 2006). Es probable que diferentes begomovirus se encuentren presentes en algunas regiones donde se cultiva el camote pero su prevalencia y distribución son desconocidas porque mayormente pasan inadvertidos por no presentar síntomas claros (asintomáticos), y esto dificulta en su detección lo que ha impedido reportes adicionales (Kokkinos y Clark, 2006).

3.3.1.2 Características del género

El género *Begomovirus* perteneciente a la familia *Geminiviridae* donde se encuentran virus de plantas que tienen ADN monocatenario circular como genoma encapsidado en partículas isométricas gemelas (Fauquet y Stanley 2003). El genoma de los begomovirus puede ser de dos componentes (bipartitos) ADN-A y ADN-B, o de un solo componente (monopartito) homólogo al componente A de los bipartitos con un tamaño de 2.6 kb a 2.9 kb (Figura 1). Dentro de la familia *Geminiviridae* se agrupan siete géneros (*Begomovirus, Curtovirus, Becurtovirus, Eragrovirus, Turncurtovirus, Mastrevirus y Topocuvirus*) basados en su rango de hospederos, insecto vector y la organización del genoma (Varsani, *et al.*, 2014; Fauquet, *et al.*, 2003).

En camote se ha detectado la infección de begomovirus filogenéticamente distintos a los begomovirus bipartitos y monopartitos y se conocen como el grupo de los sweepovirus (Fauquet y Stanley 2003; Wasswa *et al.*, 2011; Albuquerque *et al.*, 2012; Esterhuizen *et al.*, 2012). La taxonomía de los sweepovirus es compleja y, actualmente, se considera que existen un máximo de 17 especies diferentes en

función al análisis de identidad de la secuencia de nucleótidos de sus genomas completos (Albuquerque *et al.*, 2012). Sin embargo la presencia de recombinantes y las escazas diferencias biológicas entre las especies sugeridas actualmente hace que estas clasificaciones sean de poca utilidad práctica, refiriéndonos a estas simplemente como sweepovirus. Siete especies de begomovirus han sido oficialmente reconocidos por el Comité Internacional de Taxonomía de virus (ICTV) que se encuentran infectando camote, estos son *Sweet potato leaf curl virus* (SPLCV) (Lotrakul *et al.*, 1998; Lotrakul y Valverde, 1999), *Ipomoea yellow vein virus* (IYVV) (Banks *et al.*, 1999); *Sweet potato leaf curl Georgia virus* (SPLCGV) (Lotrakul *et al.*, 2003); *Sweet potato leaf curl Canary virus* (SPLCCaV), *Sweet potato leaf curl Lanzarote virus* (SPLCLaV) y *Sweet potato leaf curl Spain virus* (SPLCESV) (Lozano *et al.*, 2009) y *Sweet potato leaf curl China virus* (SPLCCNV) (articulo no publicado).

La información sobre la variabilidad entre aislamientos de begomovirus que infectan al cultivo de camote que han sido descritos es limitada. Las comparaciones y el análisis filogenético de la secuencia parcial del gen para la proteína asociada a la replicación (AC1) de la colección de aislamientos de camotes en los Estados Unidos, Korea y Taiwan sugieren la existencia de especies virales adicionales (Lotrakul *et al.*, 2002).

Muchos virus dentro de la familia *Geminiviridae* acumulan ADN defectuoso (ADNs-D) en plantas hospedantes, los cuales tienen aproximadamente la mitad o menos del genoma completo (Patil y Dasgupta, 2006). Algunos de ellos interfieren en la multiplicación de los virus paternales los cuales son conocidos como ADNs interferentes defectuosos (ADNs-ID) (Frischmuth y Stanley, 1991; Stanley *et al.*, 1990). La presencia de ADNs-ID puede aumentar la expresión de los síntomas (Frischmuth *et al.*, 1997; Frischmuth y Stanley, 1994). Los ADNs-ID han sido detectados en camotes que se encuentran infectados con begomovirus. Ellos preferentemente pueden ser detectados por PCR usando iniciadores universales,

complicando el clonamiento de genomas completos de sweepovirus (Lotrakul y Valverde, 1999; Lotrakul *et al.*, 2002).

Los virus acumulados en los tejidos del camote que son propagados vegetativamente pueden ser diseminados a través del intercambio de germoplasma por todo el mundo. Se sabe que las infecciones mixtas de diferentes especies y variantes del género *Begomovirus* ocurren frecuentemente en camote. Diferentes begomovirus pueden estar en el mismo núcleo de una célula (Morilla *et al.*, 2004), lo que puede originar la ocurrencia de recombinantes. Asimismo, los geminivirus tienen diferentes modos de replicación como la replicación de la cadena complementaria (CSR), la replicación del círculo rodante (RCR) y la replicación recombinante dependiente (Alberter *et al.*, 2005; Erdmann *et al.*, 2010; Jeske *et al.*, 2001; Jovel *et al.*, 2007; Preiss y Jeske, 2003), siendo este último el que puede explicar el alto número de begomovirus recombinantes descritos (Garcia *et al.*, 2007; Lefeuvre *et al.*, 2007; Monci *et al.*, 2002; Owor *et al.*, 2007a; Padidam *et al.*, 1999; Ribeiro *et al.*, 2007).

Figura 1: Organización genómica del género *Begomovirus*. Se denotan los marcos de lectura abierta (ORFs) en sentido viral (V) o en sentido complementario (C). Los begomivirus que son bipartitos contienen los componentes A y B, y los monopartitos contienen un solo genoma homólogo al componente A. La región intergénica (IR) contiene los promotores de los genes virales, y en el caso de los bipartitos ambos componentes poseen una región común (CR) de color gris. La posición de la horquilla que contiene la secuencia conservada TAATATTAC, se encuentra localizada en la IR. Los ORFs son: La AV1 (V1) que codifica la cubierta proteica (CP), la AC1 (C1) que codifica la proteína asociada a la replicación (Rep), la AV2 (V2) que codifica a la proteína de movimiento (MP), la AC3 (C3) que codifica a la proteína potenciadora de la replicación (REn), la AC2 (C2) que codifica la proteína activadora de la transcripción (TrAP) y la AC4 (C4) que codifica a la proteína AC4 (o C4). En el componente B se encuentran el BC1 que codifica a la proteína de movimiento (MP) y el BV1 que codifica a la proteína de transporte nuclear (NSP).

3.3.1.3 Transmisión

Los begomovirus son transmitidos por las moscas blancas (*Bemissia tabaci*) de manera persistente circulativa (Osaki y Inouye, 1991; Cohen *et al.*, 1997). Además, el camote se propaga vegetativamente (Valverde *et al.*, 2004), lo cual permite la diseminación de patógenos virales, especialmente especies de potyvirus.

3.3.1.4 Rango de hospederos

El rango de hospederos de los begomovirus que infectan al género *Ipomoea* es estrecho y más restringido a especies de la familia *Convolvulacea* pero la planta indicadora *Nicotiana benthamiana* también puede ser infectada.

5.3.1.5 Síntomas en plantas indicadoras y en camote

A pesar de la falta de síntomas obvios asociados con infecciones de sweepovirus en camote, se han reportado una reducción del rendimiento entre el 10 al 80% en las vaiedades "Tuskegee" y "Apache", respectivamente (Ling *et al.*, 2010). Otro ejemplo, es en la variedad "Beauregard" donde SPLCV produjó una infección asintomática con una disminución en el rendimiento del 25 al 30% (Clark y Hoy, 2006). En algunas variedades de camote se pueden presentar síntomas de enrollamiento en los márgenes de las hojas y/o clorosis sólo durante períodos cálidos del año y puede requerir la presencia de otros virus para el desarrollo de los síntomas (Clark *et al.*, 2002). Al estar presentes los síntomas, puede haber fuertes pérdidas en la producción de camote (Clark y Hoy, 2006).

5.3.2 Sweet potato chlorotic stunt virus (SPCSV)

5.3.2.1 Distribución geográfica

El SPCSV está ampliamente distribuido en el mundo. Se encuentra en África (Nigeria, Uganda, Kenia, Ghana), Asia (Israel, Taiwán, Indonesia, China, Filipinas) y América (USA, Argentina, Brasil, Perú) (Gibson *et al.*, 1998; Winter *et*

al., 1992; Pio Ribeiro *et al.*, 1994; Cohen *et al.*, 1992; Di Feo *et al.*, 2000; Gutierrez *et al.*, 2003).

5.3.2.2 Características del virus

EL SPCSV pertenece al género *Crinivirus*, dentro de la familia *Closteroviridae*. Es considerado como uno de los géneros de virus que tiene el genoma más grande que afecta el reino vegetal (Kreuze y Fuentes, 2008). Poseen una partícula filamentosa flexuosa de 850 a 950 nm de longitud y 12 nm de diámetro y tienen un genoma bipartito (aislamiento M2-47: ARN1 y ARN2 de 8,209 y 8,637 nucleótidos respectivamente), con una cubierta proteica de 25 a 34 kDa de peso molecular (Cuellar *et al.*, 2011; Winter *et al.*, 1992; Cohen *et al.*, 1992; Wisler *et al.*, 1998).

5.3.2.3 Transmisión

El SPCSV es trasmitido por mosca blanca de forma semipersistente (Cohen *et al.*, 1992; Sim *et al.*, 2000). Es un virus restringido al floema infectando las células acompañantes y no se puede trasmitir mecánicamente (Cohen *et al.*, 1992; Winter *et al.*, 1992).

5.3.2.4 Rango de hospederos

Se ha reportado que el SPCSV infecta especies de tres familias: *Convolvulaceae* (*Ipomoea setosa, I. acuminata, I. hederifolia, I. nil.,* entre otras), *Solanaceae* (*Nicotiana bentamiana y N. clevelandii*) y *Amaranthaceae* (*Amaranthus palmeri*) (Cohen *et al.*, 1992).

5.3.2.5 Síntomas en plantas indicadoras y en camote

El SPCSV por sí solo puede no inducir síntomas en algunas variedades de camote (asintomático), o puede causar una clorosis intervenal y coloración purpura en hojas viejas (Gibson *et al.*, 1998). En la planta indicadora *I. setosa* induce síntomas de clorosis y enanismo (Cohen *et al.*, 1992).

3.4. Indexado de virus de camote

El indexado de virus combina el conocimiento que se tiene sobre los virus con los métodos de detección existentes para asegurar el movimiento seguro del germoplasma. Debido a la concentración baja de los virus y a la ausencia de síntomas en infecciones simples por la mayoría de virus en el camote, el injerto a una planta indicadora es a menudo requerido para que la concentración de los virus se incremente y se detecten en forma confiable. Este procedimiento modelo ha sido establecido basado en información actualizada sobre los virus analizados en el germoplasma de camote. El procedimiento incluye registro de síntomas que se aprecian en las plantas de camote que se encuentran creciendo en el invernadero (macetas), así como también en las plantas de Ipomoea setosa injertadas con porciones de tejidos de la parte basal de los camotes. La detección e identificación de virus es confirmada mediante pruebas serológicas utilizando antisueros disponibles para los virus conocidos. Los resultados son usualmente confirmados a través de una segunda ronda en el proceso (Indexado de camote, CIP). Cabe mencionar que desde el 2009 se ha incluido la detección de virus de ADN (begomovirus, Sweet potato collusive virus y Sweet potato vein clearing virus), mediante la prueba de detección por PCR.

3.5 Enfermedades por complejos virales en camote

Los estudios con otros virus que infectan camote han demostrado que la mayor parte de ellos pueden causar enfermedades sinérgicas complejas y severas cuando están coinfectadas con SPCSV que conduce a un aumento de las pérdidas de rendimiento. Estos incluyen virus de ARN de los géneros *Potyvirus, Ipomovirus, Carlavirus y Cucumovirus* así como los virus de ADN de los géneros *Cavemovirus* y *Solendovirus* (Karyeija *et al.*, 2000; Mukasa *et al.*, 2006; Untiveros *et al.*, 2007; Cuellar *et al.*, 2011). La más estudiada de estas enfermedades sinérgicas es la que existe entre SPCSV (crinivirus) y el SPFMV (potyvirus), donde se ha demostrado que es mediada por la proteína RNasa3 codificada por SPCSV, que también puede mediar la enfermedad sinérgica con otros dos virus de ARN no relacionadas (Cuellar *et al.*, 2009). La proteína RNasa3 es una endoribonucleasa III que funciona como un supresor de silenciamiento de ARN (RSS) digiriendo secuencias cortas o largas de ARN de doble cadena (ARNdc) producidas por el hospedante en respuesta a la infección viral. La actividad catalítica del RNasa3 es requerida para su actividad RSS (Cuellar *et al.*, 2009), que implica la escisión de ARN en el proceso de RSS, así como inducción sinérgica de la enfermedad. Aunque el mecanismo exacto de la acción RNAsa3 aún no se ha dilucidado, está claro que la proteína RNAsa3 es capaz de mediar el aumento de la susceptibilidad del camote a una amplia gama de virus (Cuellar *et al.*, 2009).

3.6 Estudio de ARN de interferencia (siARN) producidos por la planta en respuesta a la infección viral

El resultado final de las infecciones virales en las plantas depende de las interacciones tanto compatibles y de defensa del hospedero con los virus (Maule *et al.*, 2002). Durante el proceso de replicación de los virus se generan moléculas intermediarias de ARNdc, que normalmente no se encuentran presentes en las células de las plantas (Dunoyer *et al.*, 2005). Así, estas moléculas son detectadas por el mecanismo de vigilancia de la planta y posteriormente degradadas a pequeños fragmentos de ARNdc que finalmente son desnaturalizados y dirigen la degradación específica de transcriptos homólogos. Este mecanismo es conocido como silenciamiento genético pos-transcripcional (post-transcriptional gene silencing, PTGS) (Eamens *et al.*, 2008). En plantas el PTGS tiene un rol importante en la regulación de genes, y en la detección y degradación específica del ARN viral por enzimas específicas, donde los productos de la degradación son oligos de 21 a 24 nucleótidos (ARNs de interferencia, siARN) que a su vez sirven a la planta como sondas específicas para continuar la detección y degradación del ARN viral.

En el presente estudio se ha examinado la presencia y variabilidad de los sweepovirus de un banco de germoplasma de camote, asimismo, se han seleccionado seis aislamientos de mayor diversidad y se realizaron experimentos de coinfección con el SPCSV para determinar si el sinergismo con este virus es un fenómeno general que inducen los sweepovirus como lo es con otros virus. Además, se determinaron los perfiles de los siARN en infecciones simples y mixtas utilizando el aislamiento de sweepovirus San Vicente (StV1) como referencia, y se compararon con los perfiles de la interacción bien estudiada entre el SPCSV y el SPFMV.

IV. MATERIALES Y METODOS

4.1. Lugar

El trabajo se realizó en el área de Virología del Centro Disciplinario Intensificación de Sistema de Cultivos y Cambio Climático del Centro Internacional de la Papa (CIP) en la Molina, Lima-Perú.

La relación de materiales de laboratorio, equipos y material biológico se describen en la sección de Anexos.

4.2. Métodos

Los métodos implicados para la realización del presente trabajo se enumeran y describen a continuación:

4.2.1 Indexado de camote y detección de begomovirus por PCR

Trescientos veintinueve plántulas de accesiones (genotipos) de camote correspondiente al grupo de indexado G-26 se hicieron crecer en condiciones controladas de Temperatura ($25\pm4^{\circ}$ C) en invernadero. Estas plántulas provinieron del banco de germoplasma del Centro Internacional de la Papa (CIP) y corresponden a diferentes lugares del mundo, las cuales se propagan y mantienen *in vitro* por cultivo de meristemos. En primer lugar se sembraron las plántulas de camote en periquetes (jiffy strips) por 30 días, y luego se pasaron a macetas por 30-45 días en invernaderos a prueba de insectos hasta que sus tallos tuvieran al menos 10-15 nudos. Durante el período de crecimiento, se observó hasta en dos oportunidades la presencia de síntomas en las plantas de camote. Se realizó injertos de dos nudos de la parte basal de cada planta de camote a plantas separadas de *I. setosa* injertadas fueron mantenidas por un mínimo de 30 días para

observar la expresión de síntomas tres veces a los 10, 20 y 30 días después de injertadas (Figura 2).

Figura 2: Flujograma de trabajo para el Indexado de virus de camote. (Fuente: CIP).

Durante el proceso de injerto se siguieron los siguientes pasos: Se descartaron la mayoría de las hojas viejas de la planta indicadora de 3-4 semanas de edad, la cual tenía 2-3 hojas verdaderas completamente extendidas. Luego se realizó un corte oblicuo de 0.5 - 1.0 cm de profundidad hacia abajo en el tallo de la planta patrón. En el injerto (hospedante donador) se descartó un nudo con una hoja completamente extendida de la parte basal de la planta, a continuación se recortó la púa del nudo a una cuña de 0.5-1.0 cm de longitud y este fue insertado (nudo con hoja) en el corte oblicuo del patrón y se fijó (envolvió) el injerto con parafilm. Luego se cubrió las plantas injertadas con bolsas plásticas humedecidas por un periodo de tres días. Se mantuvieron las plantas en el invernadero a aproximadamente 25°C con una buena iluminación por 3-4 semanas. Como paso final, se registraron los síntomas causados por la infección viral en la planta de I. setosa injertada. Una vez registrado los síntomas se procedió a hacer la detección por serología con la prueba serológica de NCM-ELISA para los virus: SPFMV, SPCSV, Sweet potato virus G (SPVG), Sweet potato chlorotic fleck virus (SPCFV), Sweet potato mild mottle virus (SPMMV), Sweet potato mild specking virus (SPMSV); y la prueba molecular reacción en cadena de la polimerasa (PCR) para los begomovirus, Sweet potato collusive virus (SPCV) y Sweet potato vein clearing virus (SPVCV).

4.4. Pruebas moleculares

4.4.1. Extracción de ácidos nucleicos totales

Los ácidos nucleicos totales para cada aislamiento se extrajeron utilizando dos métodos de extracción, el bromuro de hexadeciltrimetilamonio (CTAB) modificado (Gawel *et al*, 1991) y el método de hidróxido de sodio (NaOH) (Wang *et al*, 1993). La concentración de los ácidos nucleicos totales se calculó a partir de la lectura de la absorbancia en el espectrofotómetro Nanodrop (ND-1000, Thermo Fisher Scientific, Wilmington, Delaware, USA) a 260 nm, utilizando la fórmula:

Concentración de ARN viral $(ng/ul) = A_{260} x$ factor de dilución x 40, donde A= Absorbancia a 260 nm.

Los ácidos nucleicos totales (100 ul) fueron precipitados agregando 250 ul de etanol absoluto, 10 ul de acetato de sodio 3M y llevados a –20°C por toda la noche. Al día siguiente se centrifugaron a 14,000 revoluciones por minuto (rpm) por 15 minutos, eliminando el sobrenadante y agregándole etanol al 70%, luego se centrifugó a 10,000 rpm por 10 minutos, se descartó el alcohol dejando secar en una campana extractora y finalmente se resuspendió en 100 ul de agua libre de nucleasas (NFW).

La concentración del ADN complementario (cADN) para cada muestra se calculó a partir de la lectura de absorbancia a 260 nm utilizando la fórmula:

Concentración de ADN viral (ng/ul) = A_{260} x factor de dilución x 50, donde A= Absorbancia a 260 nm.

4.4.2. Amplificación del ADN por PCR

Las reacciones de PCR se realizaron con 25 ul de reacción, conteniendo: 2 microlitros (ul) de ácidos nucleicos totales, 5 ul de tampón 5x PCR (Promega), 4ul de MgCl₂ a 1.5 mM, 0.5 ul de una mezcla de nucleótidos dNTPs (dATP, dCTP, dGTP, dTTP) a 10 mM, 0.25ul de la pareja de iniciadores universales para begomovirus: SPG1-sentido viral: 5'-CCCCKGTGCGWRAATCCAT-3' y SPG2-complementario: 5'-AATCGAGGGACYTWYAAVCCTA-3' (Li, *et al.*, 2004), ambos a 20 uM, diseñados para amplificar una región parcial de 920 pares de bases (pb) correspondientes a los genes AC1 y AC2, 0.2 ul de la proteína *Taq* ADN polimerasa (Promega) y 17 ul de agua libre de nucleasa (NFW). La mezcla se colocó en el termociclador Piko (Finnzymes) con las siguientes condiciones: Un ciclo a 95°C por 3 minutos, 35 ciclos a 95°C por 30 segundos, 57°C por 30 segundos y 72°C por 1 minuto. Un ciclo a 72°C por 10 minutos. Las reacciones de PCR se guardaron a 4°C. Además, para obtener el genoma completo de algunos begomovirus se realizó la amplificación círculo rodante utilizando la Polimerasa Phi29 (Thermo Scientific) (Anexo 1).
4.4.3 Electroforesis

Los productos de PCR (10ul) se observaron por electroforesis en geles de agarosa a 1.0% peso por volumen (p/v) en tampón TAE 1X. Se utilizó 1ug/ul de GelRed (Biotium) para visualizar el ADN por fluorescencia cuando fue expuesto a luz ultravioleta (UV).

4.4.4. Clonamiento

El ADN amplificado por PCR se limpió mediante kits de purificación (Axygen, Roche) antes de ligarlo en el plásmido pGEM-T easy (Promega). En algunos casos, se precipitó el ADN agregando 10% de acetato de sodio 3M pH 5.2 y 2.5 vol. de alcohol 100% del volumen de muestra, y se incubó a -20° C por 1 a 2 horas. Posteriormente, estas muestras fueron centrifugadas a 14,000 rpm por 20 minutos. Luego se eliminó el sobrenadante, se lavó el ADN con alcohol 70% y centrifugó a 10,000 rpm x 10 minutos, se descartó el alcohol dejando secar en una campana extractora y finalmente se re- suspendió en 30 ul de NFW. Los plásmidos recombinantes se clonaron en bacterias E. coli DH5a. Para el proceso de clonamiento, como primer paso se descongelaron por unos minutos las bacterias quimiocompetentes que se encontraban guardadas a -70° C. Luego se agregó 10 ul del volumen de la ligación, y se dejó incubando en hielo por 10 minutos. A continuación se expuso a las bacterias a un shock térmico a 42°C por un periodo de 90 segundos e inmediatamente después se colocó los tubos en hielo. Luego se agregó 700 ul de medio líquido Luria Bertani (LB) a cada tubo y se dejó incubando en agitación a 37°C por dos horas. Finalmente, se sembró 100 ul en placa con medio LB conteniendo ampicilina, 5-bromo-4-cloro-3-indolil-β-Dgalactopiranósido (X-Gal) y isopropil- β -D-1-tiogalactopiranósido (IPTG) y se dejaron incubando a 37° C por 16 a 18 horas.

4.4.5. Selección de colonias

Después del periodo de incubación se observó colonias blancas y azules. Se seleccionaron las colonias blancas (que poseen el plásmido con el inserto) y se hicieron crecer en 5 mL de medio liquido LB con ampicilina, para posteriormente hacer la extracción de plásmidos usando kit comercial (Plasmid Mini kit I, EZNA [OMEGA]).

4.4.6. Secuenciamiento

El secuenciamiento de los productos de PCR clonados en plásmidos de bacterias *E. coli* DH5 α se realizó a partir de 100 ng/ul de plásmidos purificados en 20 ul de NFW, y fue enviado a la empresa Macrogen Inc (Seoul, Korea del Sur).

4.4.7. Análisis de secuencias

Las secuencias que se obtuvieron fueron visualizadas, analizadas y editadas con el programa Vector NTI (Invitrogen). Además, con el programa MEGA 4 (Kumar, 2012) se pudo realizar el alineamiento múltiple de secuencias y construcción de árboles filogenéticos. Las secuencias de las especies y aislamientos de *Begomovirus* usadas para el estudio de filogenia fueron obtenidas de la base de datos de la National Center for Biotechnology Information (NCBI) las cuales se pueden observar en el Cuadro 2.

5.4.8. Prueba de hibridación molecular utilizando sonda no radioactiva para la detección de begomovirus

Para la detección de los sweepovirus por hibridación, se purifico los ácidos nucleicos totales usando el método CTAB (Doyle y Doyle, 1987). Los tejidos de hojas congelado (250 mg) se maceraron inmediatamente por molienda en 2 ml de tampón CTAB [2% CTAB, 100 mM tris (hidroximetil) aminometano- cloruro de hidrogeno (Tris-HCl), pH 8.0, 20 mM de ácido etilendiaminotetraacético (EDTA), 1.4M cloruro de sodio (NaCl), 1 % sulfito de sodio y 2 % de Polivinilpirrolidona-40 (PVP-40)] en una bolsa de polipropileno. El homogenizado se centrifugó a 10,000 rpm por 10 minutos y el sobrenadante (750 μL) se transfirió a un tubo de

microcentrífuga de 1.5 ml y se mezcló con un volumen igual de cloroformoalcohol isoamilico en una proporción (24:1). La mezcla se centrifugó a 12,000 rpm por 10 minutos y la fase acuosa (500 μ L) fue transferida a un nuevo tubo de microcentrífuga de 1.5 ml antes de mezclar y se mezcló con 500 μ L de isopropanol. La mezcla se incubó a temperatura ambiente durante 10 minutos y se centrifugó a 12,000 rpm por 10 minutos a 4°C. El sedimento se lavó con etanol al 70% y se centrifugó a 12,000 rpm por 5 minutos. Finalmente, el sedimento se dejó secar al aire y se resuspendió en 100 ul de NFW. Para la hibridación se utilizaron 5 ug de ADN total en un volumen total de 200 μ L. Se añadieron por duplicado 125, 50 y 25 ng de ADN plásmidico que contenía la región correspondiente a la sonda en cada membrana para normalizar y cuantificar los resultados. La sonda marcada con Digoxigenina (DIG) que abarca la región del gen AC1 del aislamiento sweepovirus-StV1 se sintetizó mediante PCR usando iniciadores SPG1 y SPG2 (Li et al., 2004), Taq polimerasa (Promega), desoxinucleótidos marcados con DIG (Roche, West Sussex, Reino Unido). El ADN total de las plantas infectadas se transfirió a una membrana de nylon (Hybond-N; Amersham Biosciences AB, Amersham, Freiburg, Alemania) usando un Bio-Dot SF Cell (Bio-Rad, Richmond, California, EE.UU.), fijado por irradiación ultravioleta (UV) (50 mJ) en un horno de irradiación UV (Stratagene, La Jolla, California, EE.UU.). A continuación, se prehibridizó durante 90 minutos a 65°C en 0.02% de dodecilsulfato de sodio (SDS), 5x SSC (750 mM cloruro de sodio, 75 mM citrato de sodio), 50% de formamida, 2% (w/v) N-lauroilsarcosina. Luego, se hibridizó en la misma solución a 65°C durante 16 horas después de la adición de la sonda marcada con DIG. Después de la hibridación, las membranas se lavaron dos veces en 2x SSC y 1% SDS a temperatura ambiente durante 15 minutos, se incubaron durante 30 minutos con anticuerpos anti-DIG conjugados con fosfatasa alcalina, y se lavó dos veces con tampón maleico con 0.3% Polisorbato-20 (Tween-20). La reacción se desarrolló utilizando un sustrato quimioluminiscente de disodio 3- (4-metoxiespiro (1,2-dioxetano-3,2 '- (5'-cloro) triciclo [3.3.1] decan) -4-il) fenil fosfato (CSPD) (Roche, Penzberg, Alemania) y película Omat-S (Kodak, Rochester, Nueva York, EE.UU.). La intensidad de la señal de la mancha hibridada fue medida a partir de

las fotografías en el transiluminador Gel Doc (Bio-Rad) utilizando el programa Quantity One (Bio-Rad) bajo una intensidad de luz blanca. La intensidad de la señal se determinó utilizando una herramienta de volumen circular, asegurando que todos los círculos fueran del mismo tamaño y cubran exactamente cada punto, con la sustracción del fondo global y evitando píxeles sobreexpuestos. La concentración de ADN viral de cada volumen circular fue determinado usando una curva de regresión sobre la base de los volúmenes estándares de plásmidos dentro de cada membrana utilizando el Informe de Análisis de Volumen y la curva de Regresion del Volumen del programa Quantity One. Las concentraciones virales estimadas (en nanogramos) fueron empleados en el análisis estadístico utilizando el paquete Sistema de Análisis Estadístico (SAS). Posteriormente, las membranas fueron lavadas y re-hibridadas con una sonda específica para detectar parte del ADN ribosomal (ADNr) amplificada con los iniciadores F-ribosomal: 5'-5'-ACAGCAGAACGACCAGAGAACGC-3' **R-Ribosomal** y GCACGCTAGGTACGACCACCACT-3' para confirmar la igualdad de carga de ADN entre las muestras.

4.4.9. Detección del SPCSV por RT-PCR en tiempo real

De las mismas muestras descritas para las hibridaciones, se extrajeron el ARN total empleando el método de CTAB descrito anteriormente, pero modificado para precipitar el ARN mediante la adición de un volumen igual de 4M de cloruro de litio (LiCl) en lugar de isopropanol, y la incubación durante toda la noche a -20°C seguido por una centrifugación a 14,000 rpm por 20 minutos a 4°C. El sedimento se lavó con etanol al 70% como se describió anteriormente y se resuspendió en 100 uL de NFW. A continuación, se utilizó la prueba de RT-PCR en tiempo real (RT-qPCR) sistema TaqMan para detectar SPCSV.

La prueba de RT-qPCR en un solo paso se realizó utilizando la mezcla universal de TaqMan PCR (Applied Biosystems, Foster City, CA, EE.UU.) en un volumen final de reacción de 25 uL conteniendo: 2 unidades de la transcriptasa reversa MMLV RT, 300 nM de cada iniciador: SPCSV-Uni-E-F (5'- CGGAGTTTATTCCCACYTGTYT-3') y SPCSV-Uni-E-R (5'-GGGCAGCCYCACCAA-3'), 100 nM de sonda SPCSV-Uni-EP (5'- [FAM]– TCTGTCACGGCTACAGGCGACGTG-[TAMRA]-3'), correspondiente a la región Hsp70h en el ARN2 y 2 μ L de ARN total.

El Citocromo oxidasa (COX) se utilizó como un gen de referencia interna empleando los iniciador COX-F:5'-CGTCGCATTCCAGATTATCCA-3') y COX-R:5'-CAACTACGGATATATAAGAGCCAAAACTG-3'), y la sonda COX-P [5 '-(VIC)-TGCTTACGCTGGATGGAATGCCCT-(TAMRA)-3']. Se utilizaron las siguientes condiciones de ciclo térmico: 42°C por 30 minutos (síntesis de ADN complementario), 95°C por 10 minutos, seguido por 40 ciclos de desnaturalización a 95°C durante 15 segundos, e hibridación/extensión a 60°C durante 1 minuto. Los resultados se analizaron con el programa MxPro (QPCR) y las diferencias estadísticamente significativas entre las infecciones individuales y mixtas se determinaron para cada combinación en cada punto en el tiempo así como cada combinación de virus sobre todos los puntos de tiempo, utilizando el programa Herramienta de Expresión Relativa (REST) V2.0.12 (Qiagen GmbH, Hilden, Alemania).

4.5. Propagación, mantenimiento de virus e inoculación de los sweepovirus

Los aislamientos de begomovirus fueron propagados mensualmente mediante injertos laterales de plantas infectadas a plantas sanas de *I. setosa* y mantenidas en invernadero.

Plantas sanas de *I. setosa* fueron obtenidas mediante escarificación de semilla botánica, germinadas en bandejas expuestas por 24 horas a luz por una semana, después se pasaron a periquetes (Jyffys trips 2 1/4 x 6 cm, Jiffy products N.B Shipagan, Canadá) conteniendo suelo desinfectado [musgo, arena y tierra en proporción 2:1:1 (V/V) más 3.5% (P/P) de Pro-mix (BX les tourbiéres Premier Ltée, Rivieré du Loup, Canadá, G5R4C9]. Después de 3 o 4 días se realizó el transplante a macetas de 4 pulgadas con el mismo material de suelo. Cuando se observaron las primeras hojas verdaderas, se procedió a injertar.

El injerto lateral se realizó cortando una parte del tallo con un brote de la planta infectada y colocándola en un corte transversal que se hizo entre las hojas cotiledonales de la planta sana. Luego se selló bien la herida con parafilm (ver más detalle en el punto 4.2.1).

4.6. Evaluación de la interacción sinérgica entre los begomovirus con SPCSV en camote

Para la evaluación de la interacción sinérgica entre los aislamientos de begomovirus con SPCSV aislamiento m2-47, se utilizaron plantas de camote variedad Huachano. Se realizó un diseño experimental donde se formaron tratamientos de infecciones simples mediante injerto de los aislamientos de begomovirus y tratamientos de infecciones dobles (aislamientos de begomovirus con el SPCSV) (Figura 3). Cada tratamiento consistió en una maceta con tres plantas (repeticiones). La evaluación fue por un periodo de 10 semanas (7, 14, 21, 28, 35, 49, 56, 63 y 70 días), donde una vez por semana se tomaron muestras de hojas, se evaluaron síntomas y se hizo la extracción de ácidos nucleicos totales para la prueba de detección de begomovirus por hibridación de ácidos nucleicos (Dobblot), y extracción de ARN totales para la prueba de PCR en tiempo real (RT-qPCR) para la detección del SPCSV.

Figura 3: Diseño experimental para la evaluación del sinergismo viral. Los tratamientos de infección simple con los aislamientos de begomovirus fueron: (1) Peru-6; (2) Peru-10; (3) Cuba-5; (4) Mexico-31; (5) Jamaica-12; (6) San Vicente; los tratamientos de infección doble [aislamientos de begomovirus con el SPCSV aislamiento m2-47 (CSV)] fueron: (7) Peru-6+CSV; (8) Peru-10+CSV; (9) Cuba-5+CSV; (10) Mexico-31+CSV; (11) Jamaica-12+CSV; (12) San Vicente+CSV. Además, se consideraron como controles los tratamientos: Sano (-) e infección simple con CSV (C). En los tratamientos de infección simple (sección A) e infección doble (sección B), cada tratamiento tuvo tres repeticiones (tres plantas) y las evaluaciones fueron a los 7, 14, 21, 28, 35, 49, 56, 63 y 70 días. La primera inoculación se realizó a las dos semanas de desarrollo de las plantas mediante injerto con el CSV y después de dos semanas se injertaron los aislamientos de begomovirus.

Especies o aislamientos / Lugar de origen	Acrónimo	Numero de accesión
Ipomoea yellow vein virus	IYVV	AJ586885
Sweet potato leaf curl Bengal virus India West Bengal 2008	SPLCBV India West Bengal 2008	FN432356
Sweet potato leaf curl virus DNA Japan Kyoto	SPLCV_Japan_Kyoto_1998	AB433788
Sweet potato leaf curl virus Aislamiento Eastern China	SPLCV_Aislamiento_Eastern_China	FJ176701
Sweet potato leaf curl virus Aislamiento US MS WS14	SPLCV_Aislamiento_US_MS_WS14	HQ333141
Sweet potato leaf curl virus	SPLCV	NC004650
Sweet potato leaf curl virus	SPLCV _DNA_A	AF104036
Sweet potato leaf curl virus Aislamiento Chungju 263	SPLCV_Aislamiento_Chungju_263	HM754634
Sweet potato leaf curl virus Aislamiento Yeojoo 388	SPLCV_Aislamiento_Yeojoo_388	HM754635
Sweet potato leaf curl virus Aislamiento Nonsan 4452	SPLCV_Nonsan_4452	HM754636
Sweet potato leaf curl virus Aislamiento Haenam 532	SPLCV_Aislamiento_Haenam_532	HM754639
Sweet potato leaf curl virus Aislamiento Haenam 6182	SPLCV_Aislamiento_Haenam_6182	HM754640
Sweet potato leaf curl virus Aislamiento Haenam 5193	SPLCV_Aislamiento_Haenam_5193	HM754638
Sweet potato leaf curl virus Aislamiento SPLCVUS BR OPO 08	SPLCVUS BR_OPO_08	HQ393453
Sweet potato leaf curl Korean virus Aislamiento J508	SPLCV_Korean_Aislamiento_J508	FJ560719
Sweet potato leaf curl virus Aislamiento Haenam 1	SPLCV_Aislamiento_Haenam_1	HM754641
Sweet potato leaf curl virus Aislamiento Yeojoo 507	SPLCV_Aislamiento_Yeojoo_507	HM754637
Sweet potato leaf curl virus Aislamiento SPLCVUSBR AM4 09	SPLCVUSBR_AM4_09	HQ393475
Sweet potato leaf curl virus Aislamiento RS2BR Est1	SPLCV_Aislamiento_RS2BR_Est1	FJ969834
Sweet potato leaf curl virus Aislamiento SPLCVUS BR AM3 09	SPLCVUS BR_AM3_09	HQ393474
Sweet potato leaf curl virus Aislamiento RS2BR Mac1	SPLCV Aislamiento_RS2BR_Mac1	FJ969835
Sweet potato leaf curl virus Aislamiento RS2BR Poal	SPLCV Aislamiento_RS2BR_Poa1	FJ969836
Sweet potato leaf curl virus Aislamiento RS2BR Ros1	SPLCV Aislamiento_RS2BR_Ros1	FJ969837
Sweet potato leaf curl virus Aislamiento SPLCVUSBR AM2 09	SPLCVUS BR_AM2_09	HQ393472
Sweet potato leaf curl virus Aislamiento SPLCVUS BR AM1 09	SPLCVUS BR_AM1_09	HQ393471
Sweet potato leaf curl virus Aislamiento SPLCVUS BR CA1 08	SPLCVUS BR_CA1_08	HQ393443
Sweet potato leaf curl virus Aislamiento SPLCVUS BR CA2 08	SPLCVUS BR_CA2_08	HQ393446

Cuadro 2: Especies y aislamientos	s de begomovirus utilizados	para el estudio de filogenia.
-----------------------------------	-----------------------------	-------------------------------

Sweet potato leaf curl virus Aislamiento SPLCVUS BR PA 08	SPLCVUS BR_PA_08	HQ393450
Sweet potato leaf curl virus Aislamiento SPLCVUS BR PV 08	SPLCVUS BR_PV_08	HQ393451
Sweet potato leaf curl virus	SPLCV	EU309693
Sweet potato leaf curl Georgia virus 16	SPLCGV16	AF326775
Sweet potato leaf curl Georgia virus	SPLCGV	NC004640
Sweet potato golden vein associated virus Aislamiento PA BR Bell	SPGVaV Aislamiento_PA_BR_Bel1	FJ969829
Sweet potato golden vein associated virus Aislamiento US MS 1B3	SPGVaV US_MS_1B3	HQ333143
Sweet potato golden vein associated virus	SPGVaV	NC015324
Sweet potato leaf curl Canary Island virus Aislamiento ES CI BG21 02	SPLCCaV Aislamiento_ES_CI_BG21_02	EU856365
Sweet potato leaf curl Canary virus	SPLCCaV	NC013465
Sweet potato leaf curl Canary virus Aislamiento ES CI BG4 02	SPLCCaV Aislamiento_ES_CI_BG4_02	EF456742
Sweet potato golden vein associated virus Aislamiento PB1BR Sou1	SPGVaV Aislamiento_PB1BR_Sou1	FJ969830
Sweet potato golden vein associated virus Aislamiento SPGVaVPB1BR CA 08	SPGVaVPB1BR_CA_08	HQ393444
Sweet potato golden vein associated virus Aislamiento SPGVaV RO BR Uti 08	SPGVaV RO BR_Uti_08	HQ393447
Sweet potato golden vein associated virus Aislamiento SPGVaV RO BR PV1 08	SPGVaV ROBR_PV1_08	HQ393452
Sweet potato golden vein associated virus Aislamiento SPGVaV RO BR Cac 08	SPGVaV RO BR_Cac_08	HQ393459
Sweet potato golden vein associated virus Aislamiento SPGVaV ROBR OPO 08	SPGVaV RO BR_OPO_08	HQ393454
Sweet potato golden vein associated virus Aislamiento SPGVaV RO BR PV2 08	SPGVaV RO BR_PV2_08	HQ393457
Sweet potato leaf curl virus Aislamiento CEBR For1	SPLCV Aislamiento_CEBR_For1	FJ969832
Sweet potato leaf curl Lanzarote virus Aislamiento ES MAL BG30 06	SPLCLaV Aislamiento_ES_MAL_BG30_06	EU839579
Sweet potato leaf curl Lanzarote virus	SPLCLaV	NC013467
Sweet potato leaf curl Lanzarote virus Aislamiento ES CI BG27 02	SPLCLaV Aislamiento_ES_CI_BG27_02	EF456746
Sweet potato leaf curl virus Aislamiento RS1BR Tav1	SPLCV Aislamiento_RS1 BR_Tav1	FJ969833
Sweet potato leaf curl Lanzarote virus Aislamiento SPLCVSP BR AlvM 09	SPLCV SP BR_AlvM_09	HQ393473
Sweet potato leaf curl Lanzarote virus Aislamiento SPLCVSP BR PP 09	SPLCV SP BR_PP_09	HQ393476

Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP1 09	SPLCV PE BR_MP1_09	HQ393464
Sweet potato leaf curl virus Aislamiento RL7	SPLCV Aislamiento_RL7	EU267799
Sweet potato leaf curl virus Aislamiento RL31	SPLCV Aislamiento_RL31	EU253456
Sweet potato leaf curl virus Aislamiento Y338	SPLCV Aislamiento_Y338	FN806776
Sweet potato leaf curl virus Aislamiento PR80N2	SPLCV Aislamiento_PR80N2	DQ644562
Sweet potato leaf curl virus Aislamiento Merremia N4	SPLCV Aislamiento_Merremia_N4_	DQ644563
Sweet potato leaf curl virus Aislamiento US SC 6347	SPLCV Aislamiento_US_SC_6347	HQ333137
Sweet potato leaf curl virus Aislamiento US SC 37723	SPLCV Aislamiento_US_SC_37723	HQ333135
Sweet potato leaf curl virus Aislamiento US SC 646B11	SPLCV US_SC_646B11	HQ333138
Sweet potato leaf curl virus Aislamiento US SC 6342	SPLCV Aislamiento_US_SC_6342	HQ333136
Sweet potato leaf curl virus Aislamiento SPLCV PR BR Uru 08	SPLCV PR BR_Uru_08	HQ393442
Sweet potato leaf curl virus Aislamiento SPLCV PR BR CA 08	SPLCV PR BR_CA_08	HQ393445
Sweet potato leaf curl virus Aislamiento SPLCV PR BR Cac 08	SPLCV PR BR_Cac_08	HQ393460
Sweet potato leaf curl virus Aislamiento SPLCV PR BR Ria 08	SPLCV PR BR_Ria_08	HQ393449
Sweet potato leaf curl virus Aislamiento SPLCV PR BR OPO 08	SPLCV PR BR_OPO_08	HQ393455
Sweet potato leaf curl virus Aislamiento SPLCV PE BR Cau1 09	SPLCV PE BR_Cau1_09	HQ393462
Sweet potato leaf curl virus Aislamiento SPLCV PE BR Cau2 09	SPLCV PE BR_Cau2_09	HQ393463
Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP6 09	SPLCV PE BR_MP6_09	HQ393468
Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP7 09	SPLCV PE BR_MP7_09	HQ393469
Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP3 09	SPLCV PE BR_MP3_09	HQ393470
Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP4 09	SPLCV PE BR_MP4_09	HQ393466
Sweet potato leaf curl virus Aislamiento SPLCV PE BR PF 09	SPLCV PE BR_PF_09	HQ393461
Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP5 09	SPLCV PE BR_MP5_09	HQ393467
Sweet potato leaf curl virus Aislamiento SPLCV PE BR MP2 09	SPLCV PE BR_MP2_09	HQ393465
Sweet potato leaf curl virus Aislamiento SPLCV PE BR PV 08	SPLCVPE BR_PV_08	HQ393456
Sweet potato leaf curl virus Aislamiento Fp2	SPLCV Aislamiento_Fp2	FJ515897

Sweet potato leaf curl virus Aislamiento Fp3	SPLCV Aislamiento_Fp3	FJ515898	
Sweet potato leaf curl virus Aislamiento Fp1	SPLCV Aislamiento_Fp1	FJ515896	
Sweet notato leaf curl virus Spain Aislamiento FS CI BG12 02	SPLCSV	FU856364	
Sweet politio reaj cari viras Span rustalinonto ES CI BGI2 02	Aislamiento_ES_CI_BG12_02	10030304	
Sweet potato leaf curl virus Spain Aislamiento ES CI BG13 02	SPLCSV	EU856366	
	SPI CSV		
Sweet potato leaf curl virus Spain Aislamiento ES CI BG6 02	Aislamiento_ES_CI_BG6_02	EF456744	
Swaet notate leaf and view Aiclemiente US MS 1B12	SPLCV	HO333130	
Sweet polato leaj curt virus Atstantiento US MS 1B1a	Aislamiento_US_MS_1B1a	nQ555159	
Sweet potato leaf curl virus Aislamiento US MS 4B14	SPLCV	HQ333140	
	Aislamiento_US_MS_4B14		
Sweet potato leaf curl virus Aislamiento US MS WS38	SPLCV Aislamiento US MS WS38	HQ333142	
Sweet potato leaf curl virus Japan Miyazaki 1996	SPLCV Japan_Miyazaki_1996	AB433786	
Sweet potato leaf curl virus Japan Kumamoto 1998	SPLCV Japan_Kumamoto_1998	AB433787	
Sweet potato leaf curl Spain virus Aislamiento ES Mal IG2 06	SPLCESV	FJ151200	
	Aislamiento_ES_Mal_IG2_06		
Sweet potato leaf curl Spain virus Aislamiento ES CI BG1 02	SPLCSV	EF456741	
	Alsiannento_ES_CI_BO1_02	NC011052	
Sweet potato leaj curi Spain virus	SPLCESV	NC011052	
Sweet potato leaf curl Spain virus Aislamiento ES CI BG5 02	SPLCESV	EF456743	
Swaat notato laaf curl Spain virus Aislamiento SPI CESV BA BP 1/ti 08	SPI CESV BA BR Liti 08	HO303///8	
sweet polato leaj curt spain viras Alsiannento SI ECES V BA BK OU 08	SI LEESV BA BK_OU_08	11Q393446	
Sweet potato leaf curl Spain virus Aislamiento SPLCESV BA BR Cac 08	SPLCESV BA BR_Cac_08	HQ393458	
Ipomoea yellow vein virus Aislamiento ES Mal IG1 06	IYVV	EU839576	
	Aislamiento_ES_Mal_IG1_06		
Ipomoea yellow vein virus Aislamiento ES MAL IG5 06	Aislamiento ES MAL IG5 06	EU839578	
	IYVV		
<i>Ipomoea yellow vein virus</i> Aislamiento ES MAL IG3 06	Aislamiento_ES_MAL_IG3_06	EU839577	
Ipomoea yellow vein virus	IPYYV	AJ132548	
Sweet potato mosaic associated virus Aislamiento BR BSB1	SPMaV Aislamiento_BR_BSB1	FJ969831	
Sweet potato leaf curl Sao Paulo virus Aislamiento SPLCSPV BR AlvM	SPLCSPV BR AlvM 09	HQ393477	
09			
Sweet potato leaf curl South Carolina virus	SPLCSCV	NC015317	

Sweet potato leaf curl South Carolina virus Aislamiento US SC 648B9	SPLCSCV Aislamiento_US_SC_648B9	HQ333144
Sweet potato leaf curl Uganda virus Uganda Kampala 2008	SPLCUV Kampala_2008	NC014968
Sweet potato leaf curl virus China	SPLCV China	DQ512731

4.7. Purificación, análisis y secuenciamiento de ARN pequeños de interferencia (siARN)

Los ARNs totales fueron extraídos empleando el método de trizol (Anexo 2), pero modificado para precipitar el ARN total mediante la adición de un volumen igual de 4M de cloruro de litio (LiCl) en lugar de isopropanol, y la incubación durante toda la noche a -20°C seguido por una centrifugación a 14,000 rpm por 20 minutos a 4°C. El sedimento se lavó con etanol al 70% como se describió anteriormente y re-suspendió en 100 uL de agua libre de nucleasas (NFW). Para purificar los siARN, se corrió los ARN total en un gel de agarosa ultra pura (Invitrogen) al 3.5% por 2 horas a 160 voltios (Anexo 3). Se cortaron pedazos del gel donde se observaron las bandas más pequeñas (17 a 25 pb) y se colocaron en placas petris donde se cortaron en trozos más pequeños y se trasfirieron a tubos con columna "Freeze N squeeze columns" (Biorad). Los tubos con columna se colocaron a -20°C por 20 minutos. Luego se centrifugaron a máxima velocidad (14,000 rpm) por 5 minutos a temperatura ambiente. Luego se colectó el sobrenadante y se agregó NFW hasta un volumen de 500 ul. Después, se agregó 250 ul de cloroformo y se mezcló vigorosamente dejando incubar 3 minutos en hielo. A continuación, se centrifugó a 12,000 rpm por 10 minutos a 4°C. Posteriormente, se transfirió la fase liquida superior a un nuevo tubo y se agregó 1 ul de glucógeno (2ug/ul) y se precipitó con 1 ml de etanol (100%) y 40 ul de acetato de sodio (pH 4.8-5.2). Luego, se dejó incubando a -20°C toda la noche. Al día siguiente, se centrifugó a máxima velocidad por 20 minutos a 4°C. Luego, se removió el sobrenadante y el sedimento se lavó con 600 ul de etanol (75%) y se centrifugó a máxima velocidad por 10 minutos a 4°C. A continuación, se removió el sobrenadante y se dejó secando el sedimento a temperatura ambiente por 20 minutos. Finalmente, los siARN purificados fueron re-suspendidos en 15 ul NFW.

Las muestras extraídas fueron de plantas de camote variedad Huachano: una de camote sano, una con el sweepovirus StV1 (infección simple), una con SPCSV (infección simple), una con la mezcla StV1 + SPCSV (infección doble) y una planta transgénica (RNAsa3) infectada con el sweepovirus StV1 (infección simple). Además, se extrajo los ARN totales de plantas de camote variedad

huachano con SPFMV (infección simple) y de una planta con la mezcla de SPFMV aislamiento Piu + SPCSV aislamiento m2-47 (infección doble).

Los siARN purificados fueron enviados a la empresa FASTERIS (Suiza) para el secuenciamiento a gran escala utilizando el protocolo de la empresa. El sistema utilizado por la empresa Fasteris fue el secuenciamiento masivo en paralelo realizado por el Analizador Genómico Illumina (Solexa). En primer lugar, las moléculas de ARN son ligados a adaptadores específicos utilizando una ligasa (Figura 4), seguidamente se produce la transcripción inversa para obtener los cADNs que serán colocados en una celda de flujo de 8 canales en donde por amplificación se generan *in situ* millones de copias del fragmento original (grupo) y cada una representaría a una sola molécula de siARN.

Figura 4: Obtención del secuenciamiento a gran escala. Para la ligación se utilizan adaptadores para los extremos 3'y 5' y a partir de estos fragmentos se prepararon las librerías de ADN complementario.

Para determinar la primera base se agregan cuatro nucleótidos marcados con una sustancia fluorescente así como iniciadores y ADN polimerasa. Después de la excitación laser la fluorescencia emitida por cada grupo es capturada y la primera base es identificada, este ciclo se repite para determinar las secuencias de bases en

un fragmento, una base a la vez. Esta serie de pasos continúa por un número determinado de ciclos y permite leer longitudes hasta de 35 nucleótidos. Finalmente los datos son alineados y almacenados en un computador y enviados en formato 'FASTQ' (Mardis, 2008). Por cada muestra se obtuvieron datos de tamaños de 1-32 nt con el índice de calidad en formato FASTQ.

V. RESULTADOS

5.1. Detección y síntomas de begomovirus

De las 329 accesiones de camote evaluadas, 46 estuvieron infectadas con begomovirus (Cuadro 3, Anexo 1). De ellas, se secuenciaron los fragmentos amplificados por PCR (900 pb) de 39 accesiones provenientes de América Central y Sur. Dichas secuencias abarcaron un fragmento de los genes AC1, AC2 y C4 que codifican a las proteínas asociada a la replicación (Rep), la proteína activadora de la transcripción (TrAP) y la proteína C4, respectivamente [1490 -2399 Nt] (Cuadro 3). Adicionalmente, se evaluó mediante PCR una colección de 65 accesiones de camote colectadas en el este de África, siete de ellas resultaron positivas para begomovirus y los productos de PCR también fueron secuenciadas (Cuadro 3, Anexo 4). Porciones de tallo (nudo con una hoja) de accesiones de América infectados con begomovirus fueron injertadas a la planta indicadora Ipomoea setosa para evaluar la sintomatología inducida. No se observó una gran variación en la sintomatología inducida por los begomovirus, pero en términos generales, se puedo agrupar en tres categorías: (a) plantas con hojas mostrando deformación típica de enrollamiento hacia arriba, (b) plantas con hojas cloróticas y (c) plantas mostrando ambos síntomas (Cuadro 3). Algunas accesiones estuvieron infectadas por otros virus de camote, por ejemplo: las accesiones 401493 y 401301 presentaron los virus SPFMV y SPVG; las accessiones 401141 y 401189 presentaron el virus SPVCV; las accessiones 402820 y 402986 presentaban el virus SPFMV; y la accesión 404028 con el virus SPCV. Sin embargo, las plantas de camote infectados fueron asintomáticas. Ninguna de las muestras evaluadas estuvieron infectadas con el SPCSV. En la Figura 5 se observa clorosis y enrollamiento de hoja hacia arriba con los aislamientos Peru-6 (Per6), Peru-10 (Per10), Jamaica-12 (Jam12, Mexico-31 (Mex31) y San Vicente (StV1). El aislamiento Cuba-5 (Cub5) solo indujo clorosis generalizada.

					Numero de		
Nombre de	Nombre de Abrev.		Síntomas en <i>I.setosa</i> 1		accesion de la		
aisiamiento			con 2	-	(ConBank)		
Argentina-33b	Arg33	C.RU		Argentina	KC253260		
Argentina-34b	Arg34	C.RU.D		Argentina	KC253261		
Argentina-35h	Arg35		SPEMV	Argentina	KC253262		
Argentina-36a	Arg36	C RU D	511111	Argentina	KC253263		
Argentina-37h	Arg37	RU		Argentina	KC253264		
Argentina-38h	Arg38	R C Cn RLL D Vc IVC	SPEMV	Argentina	KC253265		
Colombia-22h		BLLVc Nn Ln	5111010	Colombia	KC253252		
Colombia-9a	Col9	C RU		Colombia	KC253242		
Cuba-41b	Cub/1			Cuba	KC288163		
Cuba-410	Cub5*	D, IVC		Cuba	KC253236		
Popuíblica	Cubs			Cuba	RCZJJZJU		
Dominicana-13h	Dom13			Benública Dominicana	KC253244		
Renública	Domis	0,100,100		Republica Dominicana	10233244		
Dominicana-2a	Dom2	C.RU		República Dominicana	KC253239		
Ecuador-8b	Ecu8	C,Cp,RU,Vc	SPFMV, SPVG	Ecuador	KC253241		
Guatemala-16a	Gtm16	C,RU		Guatemala	KC253247		
Guatemala-17a	Gtm17	C,RU	SPVCV	Guatemala	KC253248		
Guatemala-19b	Gtm19	C,RU,D,IVC		Guatemala	KC253250		
Guatemala-20a	Gtm20	C,RU		Guatemala	KC253251		
Jamaica-12b	Jam12*	C,RU		Jamaica	KC253235		
Jamaica-23b	Jam23	C,RU	SPVCV	Jamaica	KC253253		
Jamaica-24b	Jam24	С		Jamaica	KC253254		
Mexico-31b	Mex31*	C,RU,D		México	KC253237		
Mexico-32b	Mex32	C,RU,D		México	KC253259		
Mexico-39a	Mex39	C,RU,D,Np	SPCV	México	KC288161		
Nicaragua-25a	Nic25	C,RU,D		Nicaragua	KC253255		
Panama-18b	Pam18	C,RU,D,IVC		Panamá	KC253249		
Panama-14b	Pan14	C,RU,D		Panamá	KC253245		
Panam-15b	Pan15	RD,RU,D,Ld		Panamá	KC253246		
Peru-10a	Per10*	C,RU		Perú	KC253233		
Peru-6b	Per6*	C,RU		Perú	KC253234		
Peru-7a	Per7	C,RU		Perú	KC253240		
Puerto Rico-21	Pri21	C,RU,D,IVC		Puerto Rico	KC288165		
Paraguay-11b	Pry11	С		Paraguay	KC253243		
Paraguay-26a	Pry26	Cp,RU,D,Vc	SPFMV, SPVG	Paraguay	KC253256		
Paraguay-27b	Pry27	C,RU		Paraguay	KC253257		
Paraguay-29b	Pry29	RU		Paraguay	KC253258		
Paraguay-30a	Pry30	C,RU		Paraguay	KC288166		
Paraguay-40b	Pry40	C,RU		Paraguay	KC288162		
San Vicente-1	StV1*	RD,RU,D,Ld		San Vicente y las Granadinas	KC253238		
San Vicente-42	StV42	C,IVC		San Vicente y las Granadinas	KC288164		
Tanzania-13-2b	Tza13	nt		Tanzania	KC288167		
Tanzania-16-5a	Tza16	nt	SPMMV	Tanzania	KC288169		
Uganda-15-4a	Uga15	nt		Uganda	KC288168		
Uganda-19-6b	Uga19	nt		Uganda	KC288170		
Uganda-29-7a	Uga29	nt	SPFMV	Uganda	KC288171		
Uganda-34-8a	Uga34	nt		Uganda	KC288172		
Uganda-37-9b	Uga37	nt		Uganda	KC288173		

Cuadro 3. Aislamientos de sweepovirus usados en este estudio

*Aislamientos de begomovirus que fueron utilizados en los estudios de sinergismo, cuyos genomas completos fueron secuenciados. 1 IVC = Clorosis intervenal; \mathbf{RD} = enrollamiento hacia abajo; \mathbf{C} = Clorosis; \mathbf{RU} = Enrollamiento hacia arriba;; Ld = Deformación de hojas; Vc = Aclaramiento de venas; Vn = Necrosis de venas; Np = Puntos necróticos; Ln = Hojas necróticas; \mathbf{R} = Rugosidad; Vb = Bandeado de nervaduras; Net = Reticulados. 2 Los virus abreviados son: SPFMV = Sweet potato feathery mottle virus; SPVG = Sweet potato virus G; SPCFV = Sweet potato chlorotic fleck virus; SPCV = Sweet potato vein clearing virus.

Figura 5: Síntomas inducidos por los aislamientos seleccionados de begomovirus en plantas injertadas de *Ipomoea setosa*. (A) Peru-6, (B) Peru-10, (C) Jamaica-12, (D) Mexico-31 y (E) San Vicente indujeron clorosis y enrollamiento de hojas hacia arriba con algunas diferencias en intensidad; (F) Cuba-5 incluyo solo clorosis.

5.2. Caracterización y variabilidad de secuencia de sweepovirus

Se obtuvieron las secuencias de nucleótidos del fragmento de ADN amplificado por PCR (gen AC1) utilizando los iniciadores universales para sweepovirus SPG1 y SPG2. Los 46 aislamientos detectados en este estudio fueron comparados con las secuencias de nucleótidos disponibles en el GenBank usando el programa Comparación de Secuencias Alineadas en Pares (PASC) y mediante análisis filogenético. El análisis filogenético del gen AC1 que codifica a la proteína Rep mostró que los aislamientos secuenciados en este estudio fueron semejante a la variabilidad observada en otros sweepovirus, excepto para el clúster correspondiente a *Ipomoea yellow vein virus* y *Sweet potato leaf curl canary virus* (Figura 6).

Basado en el análisis de las secuencias parciales descritos anteriormente, se seleccionaron los sweepovirus (seis) más divergentes, y los que no estuvieran con infecciones mixtas según los resultados del injerto en *Ipomoea setosa*. Se secuenció el genoma completo de los sweepovirus seleccionados y estos fueron StV1 (San Vicente), Mex31 (México), Cub5 (Cuba), Jam12 (Jamaica), Per6 y Per10 (Perú). Asimismo, estos aislamientos se utilizaron en estudios con infección doble con SPCSV aislamiento M2-47.

Figura 6: Árbol filogenético de los aislamientos de begomovirus sobre la base de un segmento del gen que codifica a la proteína asociada a la replicación (AC1). El dendrograma fue construido a partir del método estadístico Neighbor-Joining utilizando el programa Mega 4 con un bootstrap después de 1000 replicaciones.

5.3. Diseño de iniciadores para la obtención de la secuencia de los genomas completos de sweepovirus seleccionados

Se diseñaron dos iniciadores degenerados en sentido inverso a partir de la secuencia de nucleótidos alineados del fragmento amplificado (900 pb) con los iniciadores universales (SPG1/SPG2) correspondiente a la región que codifica la Rep.

Figura 7: Diseño de iniciadores para la secuenciación del genoma completo de los aislamientos seleccionados de sweepovirus. Se alineó la secuencia de nucleótidos del fragmento amplificado con los iniciadores universales (SPG1/SPG2) utilizando el programa DNAstar.

Se identificó regiones del alineamiento que contenían secuencias más conservadas, para diseñar los iniciadores en sentido inverso: El iniciador en sentido viral F-Bego-5' CTGRCCTCCTCTAGCAGATCKCC-3' se diseñó a partir de la posición 789 hasta 813 (23 nucleótidos), con un nucleótido degenerado "**R**" (A o G) y "**K**" (A o T); y el cebador en sentido complementario R-Bego-5'-YCTCTGCAATCCAGGMGCAGGYTC-3' se diseñó a partir de la posición 242 hasta 265 (24 nucleótidos), con dos nucleótidos degenerados "**Y**" (T o C) en la posición 243 y 265, además de un nucleótido degenerado "**M**" (C o A) en la posición 250 (Figura 7). Son degenerados porque hay posiciones dentro de la secuencia de iniciadores que tienen más de una opción de unión de un nucleótido (**R**: A o G; **K**: A o T).

5.4. Obtención de los genomas completos de los aislamientos seleccionados

Con los iniciadores Bego-F y Bego-R se realizó un PCR para amplificar la secuencia faltante (Figura 8) y se obtuvo el fragmento esperado de 2250 pb (estimado), para los aislamientos Peru-6 (Per6), Mexico-31(Mex31), Cuba-5 (Cub5) y San Vicente (StV1).

Figura 8: Detección de sweepovirus por la reacción en cadena de la polimerasa (PCR) utilizando los iniciadores diseñados. Aislamientos de sweepovirus: (1) Cub5, (2) Jam12, (3) Per6, (4) Mex31 y (5) StV1. Marcador (L) corresponde a 1kb Plus DNA Ladder.

La amplificación de los genomas completos de los otros dos aislamientos de sweepovirus Peru-10 (Per10) y Jamaica-12 (Jam12) se obtuvieron realizando la amplificación circulo rodante (RCA) utilizando la polimerasa viral Phi29 (Thermo Scientific). Estos productos fueron multi-concatameros circulares producto de la amplificación círculo rodante y posteriormente digeridos con las enzimas SmaI y StuI, respectivamente, para linealizar el ADN circular amplificado (Figura 9). Una vez linearizadas las reacciones se clonaron en el plásmido p-GEM T-Easy.

Los productos de la PCR y los plásmidos conteniendo el genoma completo de los sweepovirus amplificados por la enzima Phi29 fueron enviados a secuenciar, con lo que se completó el genoma de los aislamientos Peru-6, Mexico-31, Cuba-5 Peru-10, Jamaica-12 y San Vicente. La organización genómica de los aislamientos obtenidos se muestran en las Figuras 10.

Figura 9: Linearización de los productos amplificados con la polimersasa Phi29 para la obtención del genoma completo de sweepovirus. Para los aislamientos de sweepovirus Per-10 y Jam-12 se utilizaron las enzimas SmaI y StuI, respectivamente. Se observa el ADN circular linearizado de aproximadamente 2.8 kb. Marcador (M) corresponde a 1kb Plus DNA Ladder.

Figura 10: Organización genómica de aislamientos de sweepovirus. (A) San Vicente, (B) Peru-6, (C) Peru-10, Mexico-31 (D), Jamaica-12 (E) y Cuba-5 (F). Se denotan los marcos de lectura abierta (ORFs) en sentido viral (sentido horario) o en sentido complementario (sentido anti horario) que codifican a las proteínas ubicadas gráficamente: La cubierta proteica (CP), la proteína asociada a la replicación (Rep), la proteína de movimiento (MP), la proteína potenciadora de la replicación (REn), la proteína activadora de la transcripción (TrAP) y la proteína C4.

Cuadro 4: Análisis de los porcentajes de identidad y divergencia de nucleótidos de los genomas completos y cubierta proteica entre los aislamientos de sweepovirus seleccionados.

Adicionalmente, se realizaron los árboles filogenéticos y con las secuencias de nucleótidos y de aminoácidos de los genes que codifican las proteínas virales: proteína potenciadora de la replicación (C3) (Anexo 5 y 6), la proteína C4 (C4) (Anexo 7 y 8), proteína de movimiento (V2) (Anexo 9 y 10); proteína asociada a la replicación (C1) (Anexo 11 y 12); proteína activadora de la transcripción (C2) (Anexo 13 y 14) y cubierta proteica (V1) (Anexo 15 y 16). Asimismo, el análisis de los porcentajes de identidad y divergencia de la secuencia de nucleótidos de los genes y aminoácidos de las proteínas V1 (CP), C1 (Rep) se muestran en los Anexos 17 y 18, respectivamente.

5.5. Estudio filogenético de aislamientos de sweepovirus

La comparación de nucleótidos de los genomas completos (Cuadro 4) confirmó que los seis aislamientos de sweepovirus eran bastante diferentes unos de otros con < 89% de identidad entre la secuencia de nucleótidos a excepción de Jam12 y Cub5 (91.7%) y StV1 y Per10 (93.1%). La alineación y el análisis filogenético utilizando 108 secuencias de nucleótidos correspondientes a genomas completos de sweepovirus disponibles en el banco de datos de la National Center for Biotechnology Information (NCBI) confirmaron que los seis aislamientos se encontraron bien distribuidos entre la variabilidad conocida de los sweepovirus (Figura 11). Todas las secuencias fueron depositados en la base de datos del GenBank (véase la Cuadro 2 para los números de accesión). En el árbol filogenético se observó que los aislamientos de sweepovirus Cub5 y Jam12 se agruparon con el Sweep potato leaf curl Georgia virus, teniendo un 95% y 91% de identidad respectivamente; Mex31 con Sweet potato leaf curl South Carolina virus (SPLCSCV) con un 93%; y los aislamientos Per6, Per10 y StV1 con el Sweet potato leaf curl virus con un 93%, 98% y 93% respectivamente (Anexo 19).

dendrograma Neighbor Joining y por el método estadístico kimura-2 parámetro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala Figura 11: Arbol filogenético construido con la secuencia de nucleótidos de los genomas completos de aislamientos de begomovirus. Se utilizó las secuencias de nucleótidos usando un representa las unidades de los números de sustituciones de nucleótidos por sitio.

5.6 Interacción sinérgica del "*Sweet potato leaf curl virus*" (SPLCV) con SPCSV en camote

La coinfección del aislamiento StV1 con el SPCSV produjo síntomas transitorios de enrollamiento de hoja hacia arriba entre la tercera a cuarta semana después de la inoculación (Figura 12). Posteriormente, estos síntomas fueron observados cuando las plantas infectadas fueron podadas a la sexta semana de haber realizado la inoculación.

Ninguno de los otros cinco aislamientos causó síntomas visibles durante el periodo de evaluación. Tampoco se observó aumento en la severidad de los síntomas por SPCSV (ejemplo: color púrpura, amarillamiento de las hojas más viejas o retraso en el crecimiento) en combinación con cualquiera de los sweepovirus.

Figura 12: Evaluación de síntomas en la prueba de sinergismo (a los 21 y 70 días). (A) Per6; (B) Per10 (C) Cuba5, (D) Mex31, (E) Jam12; (F) San Vicente; (G) Planta sana; (H) SPCSV I.S: Infección simple (sweepovirus); I.D: Infección doble (sweepovirus+SPCSV). El análisis de la intensidad de la señal de hibridación de ácidos nucleicos (dot-blot) para la detección de los sweepovirus mostró una mayor acumulación de los virus en las plantas coinfectadas con SPCSV (Figura 13a), aunque la magnitud y momento de manifestación de esta diferencia variaron considerablemente entre los diferentes aislamientos de sweepovirus (Figura 16). Además, se realizó el dot-blot para detectar el ARN ribosomal de camote a las mismas membranas (Figura 13b) observándose las mismas intensidades de manchas con sonda de ADN ribosomal, lo que demuestra la igualdad de carga.

La cuantificación relativa de los aislamientos de sweepovirus se realizó mediante el programa Quantity One [(BioRad) (Anexo 24)], con el cual se pudo obtener una estimación relativa de la concentración viral a partir de la intensidad de la reacción de la prueba de hibridación de ácidos nucleicos en la membrana de nitrocelulosa. Esta estimación relaciona la cantidad de intensidad expresada en pixeles con la concentración viral. Además, se obtuvieron las curvas de regresión de los volúmenes para todas las semanas (Anexos: 20a, 20b). Para poder realizar esta estimación se utilizó unos controles positivos donde se conocía la concentración que se estaba cargando. Los controles positivos fueron diluciones de un plásmido que tenía una copia del fragmento que se utilizó como sonda para la hibridación. Los resultados se muestran en la Figura 16.

semana

7.a

semana

8.a

semana

9.^a

semana

10.^a

(dot-blot). Los aislamientos de sweepovirus son: Per-6; Peru-6, Per-10; Peru-10, Cub-5: Cuba-5, Mex-31: México 31, Jam-12: Jamaica-12, StV-1: San Vicente-Figura 13a: Detección de ADN y ARN de sweepovirus en plantas de camote con infección simple y doble (con SPCSV) por hibridación de ácidos nucleicos 1. Para cada aislamiento se evaluó tres plantas por un periodo de diez semanas.

Figura 13b: Detección de ARN ribosomal (ARNr) en plantas de camote con infección simple y doble (con SPCSV) por hibridación de ácidos nucleicos (dotblot). Los aislamientos de sweepovirus son: Per-6; Peru-6, Peru-10; Cub-5; Cuba-5; Mex-31; México 31, Jam-12; Jamaica-12, StV-1; San Vicente-1. Para cada aislamiento se evaluó tres plantas por un periodo de diez semanas.

El aislamiento Per6 co-infectado con SPCSV (infección doble) mostró sólo un ligero aumento en los títulos durante las primeras 6 semanas, en comparación con las plantas infectadas individualmente (infección simple), después las plantas fueron podadas y en los rebrotes se observaron primero un aumento del título en ambos casos después de una semana, pero a continuación, los títulos de las plantas con infección simple redujeron mucho más que las plantas con infección doble, donde la señal se mantuvo fuerte hasta la última semana del experimento (decima semana).

Los aislamientos de Cub5 y Jam12 mostraron un desarrollo similar en los títulos, excepto que los títulos fueron más bajos durante la infección primaria, donde en el caso de Cub5 a menudo no se detectó señal en la infección durante las primeras 6 semanas. Por otra parte la diferencia de la concentración de sweepovirus en las plantas después de las podas fueron mucho más pronunciada, donde el virus puede ser detectado fuertemente en plantas con infección doble, pero no con todos los aislamientos o sólo muy débilmente en las plantas con infección simple con el aislamiento Jam12 y sólo en las semanas 9 y 10 para el aislamiento Cub5. Los aislamientos Per10 y Mex31 mostraron un desarrollo diferente, donde los títulos inicialmente aumentaron mucho más rápido en las plantas con infecciones dobles que en las plantas con infección simple, y después de podarlas, los títulos alcanzaron un pico y después se redujo ligeramente para el caso de Per10, o permaneció alta hasta el final del experimento. Sin embargo, en todos los casos excepto con el aislamiento Cub5 la intensidad de señal en las plantas con infección doble fue significativamente mayor (p<0.05) que en las plantas con infección simple en todos los momentos evaluados. El aislamiento StV1 mostró las señales más fuertes de todos los aislamientos probados y con excepción de la primera semana mostraron las mayores diferencias en el título entre las plantas con infección simple y doble en todo el experimento. También fue el único aislamiento que indujo síntomas típicos de la infección por sweepovirus, enrollamiento hacia arriba de las hoja, aunque esto sólo se observó de forma transitoria durante la tercera y cuarta semana después de la inoculación y de nuevo a 4 semanas después de podar las plantas. Esto sólo ocurrió en las plantas con infección doble y

coincidió con el momento de máxima acumulación del virus en las plantas (Figura 11,13 y 14).

Figura 14: Niveles de infección de los aislamientos de sweepovirus a la primera y tercera semana para los tratamientos con infección simple (S) y doble con SPCSV (D).

5.6.1 Análisis estadístico

Se realizó un análisis estadístico para un número de 360 observaciones por un periodo de 10 semanas. Las observaciones se distribuyeron en seis aislamientos de sweepovirus: Cuba 5 (Cub5), Jamica-12 (Jam12), Mexico-31 (Mex31), Peru-10 (Per10), Peru-6 (Per6) y San vicente-1 (StV1) y estos a su vez en tratamientos en

infección simple (I.S: aislamiento de *Begomovirus*) y doble (I.D: aislamiento de *Begomovirus* + SPCSV).

Los métodos y modelos estadísticos empleados fueron:

5.6.1.1. Programa R:

Las pruebas estadísticas empleadas en el programa R se realizaron para probar si es que existe interacción entre el tiempo, aislamiento y tratamiento (infección simple y doble). Se realizaron dos pruebas: análisis de univariable y multivariancia (Cuadro 5a).

Cuadro 5a: Análisis estadístico de la prueba de univariancia.

PRUEBA 1: Análisis de univariable

Medidas repetidas análisis de varianza Análisis univariado de hipótesis dentro de los efectos sometidos

Fuente	GL	Tipo III SS	Cuadrado medio	F calcul	lad Pr>F
tiempo	9	695.7300582	77.3033398	30.07	<.0001
tiempo*aislamiento	45	557.4133324	12.3869629	4.82	<.0001
tiempo*tratamiento	9	78.7660260	8.7517807	3.40	0.0006
tiempo*aislamiento*Tratamiento	45	357.5665434	7.9459232	3.09	<.0001
Error(tiempo)	216	555.3669824	2.5711434		

Tanto en la prueba de análisis univariable y multivariable se puedo observar un valor de probabilidad menor a 0.0001 es decir la probabilidad que existe evidencia de interacción entre el tiempo, aislamiento y tratamiento (Cuadro 5b).

Cuadro 5b: Análisis estadístico de la prueba de multivariancia utilizando R.

PRUEBA 2: Análisis de multivariancia

Medidas repetidas análisis de varianza Criterios de prueba MANOVA y Aproximaciones F para La hipótesis de que no hay efecto tiempo*aislamiento*tratamiento H = Type III Matriz SSCP para tiempo*aislamiento*tratamiento E = Error de la matriz SSCP S=5 M=1.5 N=7

Estadistica	Valor	F calculado	Num GL	Den GL	Pr > F
Wilks' Lambda	0.01267353	2.75	45	74.675	<.0001
Pillai's Trace	2.38627844	2.03	45	100	0.0018
Hotelling-Lawley Trace	11.03556367	3.63	45	36.918	<.0001
Roy's Greatest Root	7.04658512	15.66	9	20	<.0001

El modelo polinomial 3 (time_3) es el que explica de mejor manera el comportamiento de las observaciones según la interacción entre los aislamientos de sweepovirus y los tratamientos (Cuadro 6).

Cuadro 6: Análisis de varianza de las variables de contraste

PRUEBA 3:	(con	traste variabl	Le 3)												
		Medidas :	repeti	das	anál	isis	s de	vari	lanza						
		Analisis de	varia	ncia	de	cont	raste	es v	ariak	les					
ti	me_N	representa el	grado	o de	cont	tras	te po	lin	omio	de c	orden	n por	tiem	ιpo	
Fuente		GL	Tipo	III	SS	С	uadra	ado	medic) E	F cal	culado	Pr	<u> </u>	F
Promedio			1	2.	.5517	70610	5	2.5	55170	616		0.89	0.3	538	
Aislamiento			5	77.	.0132	2621	7	15.4	10265	243		5.40	0.0	018	
Trt			1	17.	.8605	50855	5	17.8	36050	855		6.26	0.0	196	
Aislamiento*:	Trt		5	98.	.3029	9384	1	19.6	6059	877		6.89	0.0	004	
Error			24	68	.502	8869	2	2.	85428	695					

5.6.1.2. Programa SAS:

El análisis de variancia reveló que en la primera semana no hay diferencias significativas (p=0.9105) entre los tratamientos infección simple (I.S) y doble (I.D) (Cuadro 7a). Este resultado es corroborado cuando se comparan los promedios de los tratamientos de I.S (0.6558) y I.D (0.7007). En contraste en la tercera semana se observó que hay diferencia significativa (p<0.0001) entre los tratamientos de I.S y I.D (Cuadro 7b). Los niveles de infección se representan en la Figura 16. Este resultado es corroborado cuando se comparan los promedios de los tratamientos: I.S (1.9850) y I.D (4.5440). Los resultados de todas las semanas de evaluación se presentan en el Anexos 21 y 22.

	Info	rmación de	clase	s nive	les			
Clases		Niveles	Valo	res				
Aislamie	ento	6	Cub5	Jam12	Mex31	Per10	Per6	StV1
Tratamie	ento	2	D S					
Numero c Numero c	le obse le obse	ervaciones ervaciones	leída: observ	s vadas		36 36		
Cuadro 7a: Análisis estadístico del diseño completamente aleatorio de las variables en estudio (tiempo, aislamiento y tratamiento) en la primera semana.

Tiempo=Semana 1 (w1)

Fuente			GL	Suma d	e cuadrado	s Cuadra	do medio	F	calculado	$\Pr > F$
Aislamie	nto		5	36.	40360743	7.280	72149		5.17	0.0023
Trt			1	Ο.	01816129	0.018	16129		0.01	0.9105
Aislamie	nto*Trt		5	5.	02800100	1.005	60020		0.71	0.6185
Error			24	33.	76775882	1.406	98995			
Total co	rregido)	35	75.	21752854					
R-cuadra	doCoeff	Var	Root	MSE	Tcon Mea	n				
0.551065	1	74.8924	1.	186166	0.67	8226				
g	Mear	n N	Aisl	amient	0					
A	2.8020) 6	StV1							
В	0.9629	6	Jam1	2						
В	0.1920) 6	Mex3	1						
В	0.1101	. 6	Cub5	,						
В	0.0024	6	Per1	.0						
В	0.0000	6	Per6	5						
g	Mear	n N	Trt							
A	0.7007	18	D							
A	0.6558	18	S							

Cuadro 7b: Análisis estadístico del diseño completamente aleatorio de las variables en estudio (tiempo, aislamiento y tratamiento) en la tercera semana.

Tiempo=Semana	3	(w3)	

Fuente		GL	S.cuadrados	C. medio	F calculado	Pr > F
Aislamiento		5	190.8381047	38.1676209	35.52	<.0001
Trt		1	58.9354013	58.9354013	54.84	<.0001
Aislamiento*Tr	t	5	68.5980832	13.7196166	12.77	<.0001
Error		24	25.7908511	1.0746188		
Total corregid	0	35	344.1624403			
R-cuadrado	Coef variación		error estándar	del error	promedio	

R-Cuadr 0 92506	2 COEL	. vari 1 7552	ación 25	error	1 036638	el error	3 264463
0.52500	2 J	1.1002			1.030030		5.204405
g	promedio	Ν	Aislamien	to			
A	6.1659	6	StV1				
A	5.6732	6	Per6				
В	3.8957	6	Mex31				
В	3.1512	6	Per10				
С	0.6592	6	Jam12				
С	0.0415	6	Cub5				
g	promedio	N	Trt				
A	4.5440	18	D				
В	1.9850	18	S				

Los resultados de la prueba de dot-blot indicó un aumento de los títulos de sweepovirus en infecciones dobles (anexos: 21, 22, 24a, 24b, 25). La detección de SPCSV mediante RT-PCR en tiempo real en las mismas plantas, indicó que los títulos promedios de ARN de SPCSV fueron significativamente (p < 0.01) menores en comparación con aquellos plantas con infección simple de SPCSV (Figura 15, Cuadro 8, Anexos: 20a, 20b, 23).

Cuadro 8: Expresión relativa del titulo de SPCSV en infección mixta con sies aislamientos de sweepovirus en comparación con infección simple sobre todos los puntos en el tiempo basados en el análisis Relative Expression Software Tool (REST) de los resultados de RT-qPCR.

Aislamientos de	Expresión	Error estándar	Intervalo	p-valor
sweepovirus	relativa		de confianza 95%	
Per6	0.062	0.000 - 8.938	0.000 - 2,601.762	0.006*
Per10	0.035	0.000 - 3.687	0.000 - 619.892	0.001*
Cub5	0.047	0.000 - 6.681	0.000 - 960.424	0.002*
Mex31	0.062	0.000 - 7.370	0.000 - 2,629.287	0.003*
Jam12	0.073	0.001 - 4.757	0.000 - 1,073.196	0.003*
StV1	0.062	0.000 - 8.137	0.000 - 1,300.221	0.003*

* El SPCSV está significativamente regulado en la infección mixta en comparación con la infección simple (P <0,05)

Estos resultados fueron confirmados mediante pruebas de TAS-ELISA con el aislamiento sweepovirus-StV1 (SPLCV), observándose una disminución en el antígeno SPCSV (Figura 15). Ambos resultados se pueden observar en la Figura 16. Para probar si los aumentos observados en los títulos de sweepovirus podría estar mediada solo por RNasa3 (Anexos: 25 y 26), como se ha demostrado para virus de ARN en una planta transgénica RNasa3 (Cuellar et al., 2009) se inocularon plantas Huachano transgénicas expresando el gen RNAasa 3 con el aislamiento sweepovirus-StV1. Las plantas infectadas desarrollaron síntomas temporal típicos de enrollamiento en las hojas y un aumento similar en los títulos del sweepovirus StV1 como se observa en plantas no transgénicas co-inoculado con SPCSV y StV1, (Figura 15).

Figura 15: Evaluación del sinergismo del SPLCV (aislamiento sweepovirus-StV1) con el SPCSV en plantas de camote "Huachano". A) Planta sana (1), la infección simple del SPCSV y SPLCV no induce síntomas en la planta de camote (2 y 3, respectivamente) y hojas con síntomas de enrollamiento hacia arriba se puede observar en la co-infección con ambos virus (4). B) Detección de SPLCV por Dot-blot. Acumulación de ADN de SPLCV en infección simple y doble (con el SPCSV). C) Detección de SPCSV por TAS-ELISA en plantas con infección simple y doble (con SPLCV). H: Planta sana, SPCSV: *Sweet potato chlorotic stunt virus;* SPLCV: *Sweet potato leaf curl virus.*

Figura 16: Titulos de los virus en la prueba de sinergismo en plantas de camote Huachano. La concentración de los sweepovirus y SPCSV fue determinada mediante hibridación de acidos nucleicos (dot-blot) y RT-qPCR, respectivamente. Para la estimación de la concentración absoluta de los sweepovirus se trabajó con el programa Quantity One; y para la estimación de la concentración relativa del SPCSV con el programa REST. Las líneas verticales indican el error estándar; A: Primera infección y B: Segunda infección.

5.7. Secuenciamiento a gran escala (Deep sequencing) de siARN basado en el silenciamiento de ARN

Se purificaron de los siARN de plantas infectadas con infección simple (sweepovirus-StV1), con SPCSV, y con infección doble (SPCSV y sweepovirus-StV1) y se mandaron a secuenciar obteniéndose un total de 18 364, 310 millones de secuencias (lecturas) de diferentes tamaños fueron obtenidos a partir del secuenciamiento realizado por la empresa Fasteris (Suiza) (Figura 17, Anexo 27). El mayor número de lecturas correspondieron a siARN de un rango de 18-26 nucleótidos, principalmente de 21 y 22 nucleótidos.

Figura 17: Izquierda: Lecturas obtenidas del secuenciamiento a gran escala (Deep Sequencing) de los ARN pequeños de interferencia (siARN) (Fasteris, Suiza) según su tamaño (rango), distribución (número) y abundancia (%) respecto al total. Derecha: Representación del tamaño de lecturas (lecturas) (18-26 nucleótidos) respecto a su abundancia del secuenciamiento profundo (Deep sequencing). Se observó que los lecturas de 21 (50%) y 22 nucleótidos fueron los más abundantes.

Con las secuencias obtenidas a partir del secuenciamiento a gran escala se pudo ensamblar el genoma completo del sweepovirus StV1 a partir de las muestras de camote con infección simple. Se utilizó el programa Velvet para construir los contigs (fragmentos más largos a partir del ARN pequeños que se ensamblan según sus secuencias complementarias), y el programa Seqman para ensamblar los contigs. (Anexo 28). Se encontró que la cantidad de los siARNs de 22 nts contra el sweepovirus-Svt1 fue mayor en la muestra con infección doble comparada con la muestra con infección simple (Figura 18 y 20). Además, la mayor cantidad de lecturas pertenecientes a la secuencia del genoma del sweepovirus StV1 corresponden a la región que codifica a la proteína de la cubierta y a la proteína de movimiento son las que más acumulan lecturas de diferentes tamaños. (Figura 20), donde la mayor cantidad correspondían al tamaño de 22 nucleótidos. La comparación de las secuencias de siARN determinados a partir de plantas sanas (Figura 19b), y plantas infectadas con infección simple (sweepovirus-StV1), con SPCSV, y con infección doble (SPCSV y sweepovirus-StV1) mostraron cambios notables en cantidades de siARNs correspondientes a cada virus, así como las regiones a las que se asignan, en particular en el caso de SPCSV (Figuras 19a y 20). El número de lecturas de siARN correspondiente a SPCSV aumentaron en más del triple, desde 7500/millones de lecturas a 23708/millones de lecturas, con la mayor parte del aumento correspondiente al ARN1. Los siARN específicos para el sweepovirus StV1 también aumentó en la planta con infección doble en comparación con la planta con infección simple, pero sólo ligeramente (1.1 veces, desde 82,032 a 90,275/millones de lecturas) (Figura 21).

Figura 19b: Distribución de las clases de tamaño de ARN pequeños de interferencia (siARNs) (21, 22, 23 y 24 nucleótidos) en una planta no infectada.

Para determinar si el efecto del cambio en el mapeo SPCSV a partir de los siARNs fue específico para el sinergismo entre SPCSV y StV1 o fue una respuesta general que se encuentra en las interacciones sinérgicas con otros virus, se secuenciaron los siARNs de plantas infectadas con SPCSV y SPFMV (Figura 19a). No se observó una reducción en la cobertura de siARNs a la región 5 ' de estas plantas (Figura 20), ni hubo un cambio en la cantidad total de siARNs correspondientes a SPCSV (Figura 19). Se realizó el mismo análisis para las secuencias obtenidas para el SPCSV, observándose diferencias en la cantidad de lecturas en la muestra con infección simple (SPCSV) y doble (StV1+SPCSV). En la muestra con infección simple de SPCSV (Figura 20a). Se encontró que la cantidad de lecturas pertenecientes a la secuencia del genoma del SPCSV-RNA1 y SPCSV-RNA2 eran variables respecto a la región que codifica a la proteína de la cubierta del virus (Figura 20b).

eje horizontal indica la posición de nucleótido en el genoma. Líneas rojas, verdes, negras y azules indican 21-, 22-, 23- y 24-nucleótidos de ARN, respectivamente. La (gráfico central) y con el Sweet potato feathery mottle virus (SPFMV) (gráfico inferior). El eje vertical muestra el número de siARN por millones totales de lecturas, y el orientación de los siARN hacia arriba en sentido viral y hacia abajo en sentido complementario. Una representación esquemática del genoma del virus se proporciona en la GB 7500 infección simple (gráfico superior), en infección doble (gráfico central) con Sweet potato chlorotic stunt virus (SPCSV) y en plantas transgénicas RNasa3 (gráfico inferior). (b) Cobertura del genoma SPCSV por diferentes clases de tamaño si ARN en infección simple (gráfico superior), en infección doble con el sweepovirus StV1 Figura 20: Cobertura de los genomas virales por diferentes clases de tamaño de ARN pequeños de interferencia (siARNs). (a) Cobertura del genoma sweepovirus StV1 parte superior con cuadros de forma de flecha que contienen los nombres que representan las ubicaciones de los respectivos genes codificados

VI. DISCUSIONES

Hasta principios de este siglo, la mayoría de las estudios de los virus de camote no mencionaron a los begomovirus (Valverde *et al.*, 2007). Sin embargo el SPLCV y begomovirus relacionados se han registrado en todo el mundo, incluyendo América del Norte (Lotrakul *et al.*, 1998, 2002, 2003), Israel (Cohen *et al.*, 1997), España (Lozano *et al.*, 2009), Italia (Briddon et al, 2006), China (Luan *et al.*, 2006), Japón (Onuki y Hanada, 1998), Perú (Fuentes y Salazar, 2003), Brasil (Albuquerque *et al*, 2014), Uganda (Mukasa *et al*, 2003) y Kenya (Miano *et al.*, 2006). Este trabajo confirma la amplia distribución de SPLCV y revela las interacciones sinérgicas claras de begomovirus de camote con SPCSV, el cual está ampliamente distribuido y es mediador de varias interacciones sinérgicas (Karyeija *et al.*, 2000, Mukasa *et al.*, 2006, Untiveros *et al.*, 2007, Cuellar *et al.*, 2011).

Los síntomas de los begomovirus observados en *I. setosa*, cuando fue transmitido por injerto, mostraron concordancia con los síntomas observados (clorosis y enrollamiento de hojas hacia arriba) en la misma planta indicadora en otros trabajos (Briddon *et al*, 2006; Li *et al*, 2004; Wasswa *et al*, 2011). Así mismo estos virus no mostraron casi ninguna sintomatología en camote (*I. batatas*) excepto el aislamiento sweepovirus StV1 que mostró un ligero enrollamiento de hoja hacia arriba en algunos momentos del desarrollo de la planta pero luego desaparecía.

Un total de 46 fragmentos parciales de nucleótidos del gen AC1 de begomovirus se obtuvieron a partir de muestras de camote conservadas en el banco de germoplasma del CIP pertenecientes a diferentes países de América. El análisis filogenético del gen AC1 que codifica a la proteína Rep mostró que los aislamientos secuenciados en este estudio fue semejante a la variabilidad observada con otros sweepoviruses, como se ilustra en el trabajo de Albuquerque *et al*, 2014; excepto para el clúster correspondiente a *Ipomoea yellow vein virus* y *Sweet potato leaf curl canary virus*.

Muchas especies de geminivrus, incluyendo los begomovirus están siendo actualemente detectados usando técnicas basados en ADN [PCR, PCR en tiempo real, amplificación circulo rodante (RCA) y secuenciamiento a gran escala (deep sequencing)], con lo cual ha demostrado que sweepovirus se encuentran comúnmente en bancos de germoplasma de camote (Clark et al, 2012, Paprotka et al, 2010). En el presente trabajo, por intermedio de la técnica de PCR utilizando iniciadores degenerados para la detección de begomovirus [SPG1/SPG2 (Li et al, 2004)] se evaluaron un total de 329 accesiones de camote (que representan aproximandamente un 6% del total de accesiones de camote que se conservan en el banco de germoplasma del CIP), de las cuales 46 accesiones estuvieron infectadas con sweepovirus, donde se encontraron las especies SPLCV (con predominación), SPLCGV y SPLCSCV. Es probable que otras especies de begomovirus existan en el resto de accesiones no evaluadas del germoplasma como la reportada en el germoplasma de Brasil (Paprotka et al, 2010). Los iniciadores SPG1/SPG2 utilizados en el presente estudio fueron reportados en el 2004 y pueden no detectar toda la variabilidad (debido a recombinaciones) de begomovirus que infectan a camote, como han sido reportados años después (Clark et al 2012; Zang et al, 2011; Paprotka et al, 2010; Lozano et al, 2009). Por esta razón, se utilizaron dos estrategias para poder detectar e identificar los aislamientos seleccionados. La primera fue el diseñar iniciadores en sentido inverso a partir del alineamiento de nucleótidos (900 pb) de los aislamientos obtenidos utilizando los iniciadores degenerados (SPG1/SPG2). La segunda estrategia fue emplear la metodología RCA utilizando la Phi29. Con la primera estrategia se pudo obtener el genoma completo de cuatro aislamientos de sweepovirus (StV1, Cub5, Per6 y Mex31) donde se obtuvo un fragmentos de 2250 pb (aproximadamente), el cual se ensamblo con el fragmento obtenido inicialmente. Con la segunda estrategia, se pudo obtener los genomas completos de los aislamientos de sweepovirus (Jam12 y Per10). La amplificación por círculo rodante (RCA) utilizando la Phi29 facilito en gran medida la clonación de estos dos aislamientos de sweepovirus porque la extracción de ADN de camote es difícil de purificar debido al alto contenido de polisacárido (Varadarajan et al, 1999). Debido a que los métodos basados en RCA

pueden iniciarse con una mínima cantidad de ADN molde, la dilución de la muestra es suficiente para evitar los efectos nocivos de las sustancias contaminantes (Paprotka *et al*, 2010; Varadarajan *et al*, 1999).

El intercambio genético por recombinación hace difícil la demarcación de especies de begomovirus. Esta dificultad no sólo afecta a la biología del virus, la taxonomía y la epidemiología de la enfermedad, sino también su detección. Sobre las bases de la directrices de la nomenclatura y demarcación de los aislamientos de geminivirus (ICTV) propuesto por Fauquet *et al*, 2008, los aislamientos de sweepovirus Per10, Per6 y StV1 son variantes de la especie *Sweet potato leaf curl virus* (SPLCV); Jam12 y Cub12 del *Sweet potato leaf curl Georgia virus* (SPLCGV) y el aislamiento Mex31 es variante del Sweet potato leaf curl South Carolina virus (SPLCSCV).

Hay pocos reportes sobre las interacciones sinérgicas entre virus de ARN y ADN. Previamente se ha demostrado que un supresor del silenciamiento codificado por la proteína RNAsa3 del SPCSV es responsable de favorecer la acumulación de virus que co-infectan en interacciones sinérgicas mediadas por SPCSV (Cuellar et al., 2009). Sin embargo la mayoría de las interacciones sinérgicas mediadas por el SPCSV están implicados otros virus de ARN en co-infecciones virales. Recientemente se ha demostrado que SPCSV puede interactuar con los miembros de la familia *Caulimoviridae*: el virus colusivo del camote (Sweet potato collusive virus (SPCV); género Cavemovirus, familia Caulimoviridae) y el virus del aclaramiento de venas del camote (Sweet potato vein clearing virus (SPVCV); género Solendovirus, familia Caulimoviridae) que produjeron mayor síntomas cuando se encontraban co-infectando con el SPCSV (Cuellar et al., 2011) (Anexo 29), similares a los causados por sweepovirus StV1 co-infección con SPCSV que presentaron un fuerte enrollamiento de hojas hacia arriba (Figura 15), dando lugar a un aumento de los títulos virales. El hecho de que cinco de los seis aislamientos de sweepovirus ensayados mostraron un aumento claro y significativo en los títulos en la co-infección con el SPCSV nos estaría indicando que puede ser un fenómeno

común entre los sweepovirus. Wasswa *et al.* en el 2011 reportaron un sinergismo poco claro del SPCSV con un aislamiento de sweepovirus de Uganda; sin embargo, nuestras observaciones con el sweepovirus aislamiento San Vicente (StV1) parecen indicar que este no es el caso para todos los sweepovirus.

Al igual que en otras interacciones sinérgicas con el SPCSV (Mukasa *et al.*, 2006; Cuellar *et al.*, 2008; Cuellar *et al.*, 2011) también demostramos que el aumento del título del virus está asociado con una disminución del título del SPCSV comparado a una infección simple (Figura 15). Aún no está claro por qué los títulos del SPCSV se reducen en las interacciones sinérgicas, pero puede ser simplemente el resultado de la competencia por los recursos limitados de los dos virus que se encuentran coinfectando en las células infectadas, donde la asociación está favoreciendo a uno sobre el otro.

Respecto a los resultados del análisis estadístico, existe evidencia estadística que el efecto del tratamiento con infección doble (Sweepovirus + SPCSV) es mayor al tratamiento con infección simple (Sweepovirus), siendo el aislamiento StV1 el que presentó una mayor infección que los demás aislamientos en ambos tratamientos. Además, hay un efecto de la interacción entre los aislamientos de sweepovirus y el tratamiento (infección simple o doble) donde no todos los aislamientos de sweepovirus se comportan de una misma manera cuando están con SPCSV (infección doble). Por último, hay un efecto de la infección en el tiempo, se observa que en la primera semana después de la inoculación no hay diferencias significativas entre los tratamientos pero a partir de la tercera semana, se observa diferencias significativas.

En este trabajo, se demuestra que el SPCSV también interacciona con sweepovirus; asimismo, se demuestra que la magnitud de este sinergismo varía considerablemente entre diferentes aislamientos de sweepovirus y que en la mayoría de los casos no se relaciona con síntomas claros. Esta observación puede explicar por qué estas interacciones no se han detectado antes.

Cuando se analizaron los ARN pequeños (siARN) producidos por la planta en respuesta a la infección simple (SPCSV) y a la infección doble (SPCSV+StV1) se

pudo observar una marcada diferencia en la cantidad y distribución de las lecturas de los siARNs. Como se sabe, estos tamaños están implicados en el silenciamiento genético y la degradación de ARN viral (Ding and Voinnet, 2007; Pantaleo *et al.*, 2007).

A pesar del ligero aumento de siARNs específicos de StV1 en la planta con infección doble, las lecturas cubrieron a posiciones similares en el genoma, y no se pudieron observar diferencias obvias con la correspondiente a infección simple (Figura 21). Estos resultados contrastan marcadamente con el mapeo de lectura del genoma de SPCSV, en donde se observó un cambio dramático en las posiciones para las cuales los siARNs mapeados en el genoma (Figura 20) en particular los siARNs correspondientes al extremo 5' del genoma donde se redujo a casi cero en la planta con infección doble, mientras que la planta con infección simple se mostró casi similar al resto del genoma.

Se observó un aumento significativo en el número de siARNs correspondientes al genoma SPCSV (Figura 19), una reducción en los siARNs, de 21 nucleótidos de (37% a 15.8% de todos los siARNs correspondientes a SPCSV) y un incremento en los siARNs de 22 y 23 nucleótidos (39.6 y 12.8 a 47.1 y 26.5% de todos los siARNs correspondientes a el SPCSV, respectivamente), así como una desaparición de los siARNs correspondientes al extremo 5' del genoma de SPCSV (Figura 20) en las plantas coinfectadas con el aislamiento StV1 en comparación a la infección simple del SPCSV. Este efecto era aparentemente específico a la interacción de SPCSV con el aislamiento StV1, ya que no se observaron cambios similares en la interacción entre SPCSV y SPFMV (Figuras 21 y 22). Los cambios en la distribución y la cantidad de siARNs específicos para el SPCSV como resultado de la coinfección con el aislamiento StV1 sugiere una modificación y una mayor concentración del SPCSV por el sistema de silenciamiento de ARN en plantas. Una explicación plausible es que este sea el resultado de la interferencia del sweepovirus StV1 con la maquinaria de silenciamiento de ARN del hospedero. Aunque todavía no se han reportado supresores de silenciamiento de ARN (RSS) de sweepovirus, diversos estudios han reportado tres proteínas como RSS codificados por Begomovirus monopartitos y bipartitos que incluyen las proteínas MP, TrAP, C4 y sus homólogas (Chellappan *et al.*, 2005; Amin *et al.*, 2011; (Vanitharani *et al.*, 2004; Buchmann *et al.*, 2009). Estos RSS han sido encontrados como supresores del silenciamiento genético a nivel transcripcional y post-transcripcional, pero no todas las proteínas homólogas de los distintos begomovirus tienen actividad RSS o necesariamente funcionan de manera semejante (Raja *et al.*, 2010; Amin *et al.*, 2011). Así, aunque se puede esperar que los sweepovirus codifiquen proteínas RSS no es posible deducir que es lo que van hacer o cómo van a funcionar dependiendo del conocimiento de otros begomovirus. Sin embargo, la supresión por RSS de los sweepovirus es probable que apunten a vías más eficientes de inhibición de la replicación de virus de ADN, y esto puede no beneficiar necesariamente a los virus de ARN cuando estos se replican.

Se ha hecho evidente en los últimos años que las diferentes ramas del sistema de silenciamiento de ARN en las plantas compiten entre sí por el acceso a la maquinaria celular. Así, por ejemplo la ARN dependiente de ARN polimerasa 2 (RDR2) que está implicado en la generación de siARNs de 24 nucleótidos junto con los controles de silenciamiento transcripcional de DCL3 a través de la metilación del ADN, compite parcialmente con el silenciamiento génico transcripcional de la RDR6 (Jauvion *et al.*, 2012).

Las interacciones entre proteínas RSS y componentes de la maquinaria de silenciamiento de ARN que son beneficiosos para la replicación del virus de ADN podrían por lo tanto ser potencialmente perjudiciales para la replicación del ARN del virus, y viceversa, incluso si sus replicaciones se llevan a cabo en diferentes compartimentos celulares.

Dos virus de ARN por otro lado son menos propensos a comprometer cada uno la supresión de silenciamiento porque sus estrategias de replicación son similares, lo que puede explicar por qué cambios similares a SPCSV y sweepovirus StV1 no se ven en la interacción entre SPCSV y SPFMV. Además, aunque el tropismo del tejido de los sweepovirus aún no se ha determinado, muchos begomovirus son limitadas al floema (igual caso para el SPCSV), y si este es igual para los sweepovirus, puede presentarse efectos de los dos virus sobre la replicación de

cada uno de ellos, en contraste con la interacción sinérgica del SPFMV con el SPCSV donde el tropismo de tejido es diferente (Karyeija *et al.*, 2000).

A pesar de que no se conoce que proteína viral del aislamiento StV1 está involucrado en la supresión del silenciamiento, se puede especular sobre la base de los cambios en las cantidades de los siARNs y los componentes de la maquinaria de silenciamiento de ARN que se ven afectados. Por ejemplo, el fenotipo de reducida orientación de la región 5' y una mayor concentración hacia el 3' del SPCSV es una reminiscencia a la encontrada con el virus del mosaico de las cucurbitáceas (CMV) infectando Arabidopsis con el gen RDR1 defectuoso (Wang et al., 2010). Hay que tener cuidado para extrapolar los resultados en este sistema modelo de Arabidopsis porque existen marcadas diferencias con el camote no sólo por las diferencias en las interacciones huésped-virus, sino también en el número de genes relacionados con el silenciamiento de ARN que codifican las diferentes especies. Con este estudio se puede conjeturar que el mismo mecanismo de la acción de la proteína RNAsa3 del SPCSV en interacciones de virus de ARN:ARN existe con virus de ARN:ADN. Aunque no se analizó el posible efecto sobre el rendimiento de las diferentes combinaciones de virus en este estudio, el fuerte aumento de los títulos de los aislamientos de los sweepovirus que se encontró en algunas interacciones con el SPCSV sugiere que se pueden esperar impactos en el rendimiento y esto debe ser una prioridad para futuros estudios. De hecho, otros estudios han demostrado efectos significativos sobre el rendimiento por infecciones con sweepovirus en camote, a pesar de ser en gran parte asintomática (Ling et al., 2010).

VII. CONCLUSIONES

- Se caracterizaron los genomas completos de seis aislamientos de sweepovirus en accesiones de camote del CIP. Los aislamientos Peru-6, Peru-10 y San Vicente (StV1) son variantes de la especie SPLCV, los aislamientos Jamaica-12 y Cuba-5 son variantes de la especie SPLCGV y el aislamiento Mexico-31 es una variante de la especie SPLCSCV.
- 2. Se pudo obtener el genoma completo del sweepovirus StV1 a partir del secuenciamiento a gran escala (deep sequencing) de ARN de interferencia producido por la planta en respuesta a la infección viral.
- 3. Se encontró que existe un sinergismo entre el sweepovirus StV1 y el SPCSV con una expresión fuerte de síntomas. Además, se observó una magnitud considerablemente variable entre los títulos de los diferentes aislamientos de sweepovirus y que en la mayoría de los casos no se asocia con síntomas claros.

4. La información obtenida en este estudio puede contribuir al diagnóstico e identificación de sweepovirus. El incremento en sus títulos presente en algunas interacciones sinérgicas sugiere que puede favorecer la diseminación por sus vectores y tener un impacto en el rendimiento.

VIII. RECOMENDACIÓN

Algunos agricultores pueden estar seleccionando esquejes asintomáticos como material de propagación de un genotipo que presenta resistencia a virus sin saberlo (Gibson *et al.*, 1997). Los sweepovirus tienen el potencial de poner en peligro estos esfuerzos, ya que son capaces de causar efectos significativos en el rendimiento sin inducir síntomas aparentes. Es necesario por lo tanto, incorporar procedimientos específicos para la detección de sweepovirus en indexados de virus en camote para determinar la prevalencia y los efectos de este grupo de virus en las regiones donde los sweepovirus han sido recientemente reportados.

IX. REFERENCIAS BIBLIOGRÁFICAS

- Alberter, B., Rezaian, A.M., Jeske, H. (2005). Replicative intermediates of ToLCV and its satellite DNAs. Virology 331: 441-448.
- Albuquerque, L., Inoue-Nagata, A., Pinheiro, B., Resende, R., Moriones, E., Navas-Castillo, J. (2014). Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virology Journal 2:241.
- Amin, I., Hussain, K., Akbergenov, K., Yadav, J., Qazi, J., Mansoor, S., Hohn, T., Fauquet, C., Briddon, A. (2011). "Suppressors of RNA Silencing Encoded by the Components of the Cotton Leaf Curl Begomovirus-BetaSatellite Complex." Molecular Plant-Microbe Interactions 24(8): 973-983.
- Austin, D. (1988). The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. Pp: 27-60. En: P. Gregory (Ed.), Exploration, maintenance and utilization of sweet potato genetic resources. International Potato Center (CIP), Lima – Perú.
- Banks, G., Bedford, I., Beitia, F., Rodríguez, E., Markham, P. (1999). A novel geminivirus of *Ipomoea indica* (Convolvulaceae) from southern Spain. Plant Disease 83(5): 486.

- Briddon, R., Markham, P. (1994). Universal primers for the PCR amplification of dicot-infecting geminiviruses. Molecular Biotechnology 1: 202-205.
- Briddon, R., Bull, S., Bedford, I. (2006). Occurrence of *Sweet potato leaf* curl virus in Sicily. Plant Pathology 55: 286.
- Buchmann, C., Asad, S., Wolf, J., Mohannath, G., Bisaro, D. (2009). "Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation". Journal of Virology 83(10): 5005-5013.
- Carey, E., Gibson, R., Fuentes, S., Machmud, M., Mwanga, R., Turyamureeba, G., Zhang, L., Ma, D., Abo El-Abbas, F., El-Bedewy, R., Salazar, L. (1999). The causes and control of virus diseases in developing countries: is sweet potato virus disease the main problem? In: CIP (ed) international potato center report for 1997–98, pp 241–248.
- Clark, A., Valverde, R., Fuentes, S., Salazar, L., Moyer, J. (2002). Research for improved management of sweet potato pests and diseases: Cultivar decline. Acta Horticulturae 583: 103-112.
- 11. Clark, C., Hoy, M. (2006). Effects of common viruses on yield and quality of Beauregard sweet potato in Louisiana. Plant Disease. 90: 83-88.
- Clark, C., Abad, J., Cuellar, W., Fuentes, S., Kreuze, J., Gibson, R., Mukasa, S., Tugume, A., Tairo, F., Valkonen, J. (2012). Sweetpotato Viruses: 15 Years of Progres son Understanding and Managing Complex Diseases. Plant Disease 96 (2): 168-185.
- Clark, C., Ferrin, D., Smith, T., Holmes, G. (2013). Compendium of Sweetpotato Diseases, Pests, and Disorders. The American Phytopathological Society Second Edition APS PRESS.
- Cohen, J., Franck, A., Vetten, H., Lesemann, D., Loebenstein, G. (1992). Purification and properties of closterovirus-like pasticles associated with a whitefly-transmitted disease of sweet potato. Annals of Applied Biology. 121: 257-268.

- 15. Cohen, J., Milgram, M., Antignus, Y., Pearlsman, M., Lachman, O., Loebenstein, G. (1997). *Ipomoea crinkle leaf curl virus* caused by a whitefly-transmitted geminilike virus. Annals of Applied Biology 131: 273-282.
- Cuellar, W., Kreuzeb, J., Rajama, M., Cruzado, K., Untiveros, M., Valkonen, J. (2009). "Elimination of antiviral defense by viral RNase III". Proceedings of the National Academy of Sciences (PNAS) 106(25): 10354-10358.
- 17. Cuellar, W., De Souza, J., Barrantes, I., Fuentes, S. (2011). "Distinct cavemoviruses interact synergistically with *sweet potato chlorotic stunt virus* (genus Crinivirus) in cultivated sweet potato". Journal of General Virology 92(5): 1233-1243.
- Cuellar, W., Cruzado, R., Fuentes, S., Untiveros, M.; Soto, M., Kreuze, J. (2011). Sequence characterization of a Peruvian Aislamiento of *Sweet potato chlorotic stunt virus*: Further variability and a model for p22. Virus Research 157 (1): 111-115.
- Chellappan, P., Vanitharani, R., Fauquet, C. (2005). "MicroRNA-binding viral protein interferes with *Arabidopsis* development". Proceedings of the National Academy of Sciences (PNAS) 102(29): 10381-10386.
- Di Feo, L., Nome, S., Biderbost, E., Fuentes, S., Salazar, L. (2000). Etiology of sweet potato chlorotic dwarf disease in Argentina. Plant Disease. 84: 35-39.
- Ding, S.W., Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell 130: 413-426.
- 22. Doyle, J. y Doyle, L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin Journal 19:11-15.
- 23. Dunoyer, P., Voinnet, O. (2005). The complex interplay between plant viruses and host RNA-silencing pathways. Plant Biology 8: 415-423.
- 24. Eamens, A., Wang, M., Smith, N., Waterhouse, P. (2008). RNA silencing in plants: yesterday, today and tomorrow. Plant Physiology. 146: 456-468.

- Erdmann, J., Shepherd, D., Martin, D., Varsani, A., Rybicki, E., Jeske, H. (2010). Replicative intermediates of *Maize streak virus* found during leaf development. Journal of General Virology 91:1077-1081.
- Esterhuizen, L., van Heerden, S., Rey, M., van Heerden, H. (2012). Genetic identification of two sweet-potato-infecting begomoviruses in South Africa. Arch. Virol. 157: 2241–2245.
- 27. FAOSTAT. (2014). FAO Statistical Database.URL http://faostat.fao.org/.
- Fauquet, C. M. & J. Stanley. 2003. Geminivirus classification and nomenclature: progress and problems. Annals of Applied Biology 142: 165–189.
- 29. Fuentes, S., Chujoy, E. (2009). Sweetpotato in South America. Pp: 415-440. En: G. Loebenstein and G. Thottappilly (Eds.). The Sweetpotato, Springer Science + Business Media B.V.
- 30. Frischmuth, T., Stanley, J. (1991). African cassava mosaic virus DI-DNA interferes with the replication of both genomic components. Virology 183: 808-811.
- 31. Frischmuth, T., Stanley, J. (1994). Beet curly top virus symptom amelioration in Nicotiana benthamiana transformed with a naturally occurring viral subgenomic DNA. Virology 200: 826-830.
- 32. Frischmuth, T., Engel, M., Jeske, H. (1997). Beet curly top virus DI DNAmediated resistance is linked to its size. Molecular Breeding 3, 213–217.
- Fuentes, S., Salazar, L. (2003). First report of *sweet potato leaf curl virus* in Peru. Disease note in Plant Disease 87: 98.
- 34. Garcia, S., Tomas, D., Sanchez, S., Navas, J., Moriones, E. (2007). Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curls disease-associated Begomoviruses. Virology 365: 210-219.
- 35. Gawel, N., Jarret, R. (1991). A Modified CTAB DNA Extraction Procedure for Musa and Ipomea. Plant Molecular Biology Reporter 9(3): 262-266.
- Gibson, R., Mpembe, I., Alizai, T., Carey, E., Mwanza, O., Seal, S., Vetten, H. (1998). Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathology. 47: 95-102.

- 37. Gibson, R., Mwanga, R., Kasule, S., Mpembe, I., Carey, E. (1997). Apparent absence of viruses in most symptomless field-grown sweet potato in Uganda. Annals of Applied Biology 130: 481-490.
- Gutierrez, D., Fuentes, S., Salazar, L. (2003). Sweetpotato Virus Disease (SPVD): Distribution, Incidence, and Effect on Sweetpotato Yield in Perú. Plant Disease 87: 297-302.
- Hamilton, R., Edwardson, J., Francki, I., Hsu, H., Hull, R., Koening, R., Milne, R. (1981). Guidelines for the Identification and Characterization of Plant Viruses. Journal of General Virology 54: 223-241.
- 40. Hoyer, U., Maiss, E., Jelkmann, W., Lesemann, D., Vetten, H. (1996). Identification of the coat protein gene of a sweet potato sunken vein closterovirus Aislamiento from Kenya and evidence for a serological relationship among geographically diverse closterovirus Aislamientos from sweet potato. Phytopathology 86: 744-750.
- Huamán, Z. (1992). Botánica Sistemática y Morfología de la planta de Batata o Camote. Boletín de Información Técnica (25), CIP, Lima, Perú.
- 42. Huang, J., Sun, S. M. (2000). Genetic diversity and relationships of sweet potato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theoretical and Applied Genetics 100: 1050-1060.
- 43. Jeske, H., Lütgemeier, M., Preisb, W. (2001). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic geminivirus. The EMBO Journal 20: 6158-6167.
- 44. Jauvion, V., Rivard, M., Bouteiller, N., Elmayan, T., Vaucheret, H. (2012)."RDR2 Partially Antagonizes the Production of RDR6-Dependent siRNA in Sense Transgene-Mediated PTGS." PLoS ONE 7(1): e29785.
- 45. Jovel, J., Preib, W., Jeske, H. (2007). Characterization of DNAintermediates of an arising geminivirus. Virus Research. 130: 63–70.
- 46. Karyeija, R., Kreuze, J., Gibson, R., Valkonen, J. (2000). Synergistic interaction of a potyvirus and a phloem-limited crinivirus in sweetpotato plants. Virology 269: 26–36.

- 47. Kokkinos, C., Clark, C. (2006b). Interactions among *Sweet potato chlorotic stunt virus* and different potyviruses and potyvirus strains infecting sweet potato in the United States. Plant Disease 90: 1347-1352.
- 48. Kreuze, J. (2002). Molecular studies on the Sweet potato virus disease and its two causal agents. Doctoral thesis Swedish University of Agricultural Sciences. Uppsala.
- 49. Kreuze, J., Fuentes S. (2008). Sweetpotato viruses. Pp: 659-669. En: Encyclopedia of Virology, third edition, Elsevier Ltd.
- 50. Kumar S, Stecher G, Peterson D, and Tamura K. (2012).MEGA-CC: Computing Core of Molecular Evolutionary Genetics Analysis Program for Automated and Iterative Data Analysis. Bioinformatics 28:2685-2686.
- 51. Lefeuvre, P., Martin, D., Hoareau, M., Naze, F., Delatte, H., Thierry, M., Varsani, A., Becker, N., Reynaud, B., Lett, J. (2007). Begomovirus 'melting pot' in the south–west Indian Ocean islands: molecular diversity and evolution through recombination. Journal of General Virology. 88, 3458–3468.
- 52. Li, R., Salih, S., Hurtt, S. (2004). Detection of geminiviruses in sweetpotato by polymerase chain reaction. Plant Disease 88:1347-1351.
- 53. Ling, K., Jackson, M., Harrison, H., Simmons, A., Pesic, Z. (2010). "Field evaluation of yield effects on the U.S.A. heirloom sweetpotato cultivars infected by Sweet potato leaf curl virus." Crop Protection 29(7): 757-765.
- 54. Loebenstein, G., Thottappilly, G., Fuentes, S. y Cohen, J. (2009). Virus and Phytoplasma Diseases. Pp: 105-134. En: Sweetpotato, Springer Science + Business Media B.V.
- 55. Lotrakul, P., Valverde, R., (1999). Cloning of a DNA-A-like genomic component of sweetpotato leaf curl virus: nucleotide sequence and phylogenetic relationships. Mol. Plant Pathol., Online http://www.bspp.org.uk/mppol/1999/0422lotrakul/.
- 56. Lotrakul, P., Valverde, R., Clark, C., Hurt, S., Hoy, M., (2002). Sweet potato leaf curl virus and related geminiviruses in sweet potato. Acta Horticulturae 583: 135-141.

- 57. Lotrakul, P., Valverde, R., Clark, C., Sim, J., De La Torre, R. (1998). Detection of ageminivirus infecting sweet potato in the United States. Plant Disease. 82, 1253-1257.
- 58. Lotrakul, P., Valverde, R., Clark, C., Fauquet, C. (2003). Properties of a Begomovirus isolated from sweet potato [(*Ipomoea batatas* (L.) Lam.] infected with *Sweet potato leaf curl virus*. Revista Mexicana de Fitopatologia 21:128-136.
- 59. Lozano, G. Trenado, H., Valverde, R., Navas-Castillo J. (2009). Novel begomovirus species of recombinant nature in sweet potato (*Ipomoea batatas*) and *Ipomoea indica*: taxonomic and phylogenetic implications, Journal of General Virology 90 (10): 2550-2562.
- 60. Luan, Y., Zhang, J., An, L. (2006). First report of *Sweet potato leaf curl virus* in China. Plant Disease 90 111.
- 61. Mardis, E. (2008) Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9: 387–402.
- Mardis, E. (2011). A decade's perspective on DNA sequencing technology. Nature 470:198-203.
- 63. Maule, A., Leh, V., Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Curr. Opin. Plant Biology. 5: 279–284.
- 64. McPherson, M., Quirke, P., Taylor, G. (1993). PCR, A practical Approach.Oxford Press. England.
- Miano, D., LaBonte, D., Clark, C., Valverde, R., Hoy, M., Hurtt, S., Li, R. (2006). First report of a Begomovirus infecting sweetpotato in Kenya. Plant Disease 90: 832.
- 66. Monci, F., Sanchez-Campos, S., Navas-Castillo, J., Moriones, E., (2002). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.
- 67. Morilla, G., Krenz, B., Jeske, H., Bejarano, E.R., Wege, C., (2004). Tête à tête of *Tomato yellow leaf curl virus* (TYLCV) and *Tomato yellow leaf curl*

Sardinia virus (TYLCSV) in single nuclei. Jouranl of Virology. 78: 10715-10723.

- 68. Moyer, J. y Larsen R. (1991). Management of Insect Vectors of Viruses infecting Sweet Potato. Pp: 341-358. En: Sweet Potato Pest Management: A Global Perspective.
- 69. Mukasa, S., Rubaihayo, P., Valkonen, J. (2003). Incidence of viruses and virus-like diseases of sweetpotato in Uganda. Plant Disease 87: 329-335.
- 70. Mukasa, S., Rubaihayo, P., Valkonen, J. (2006). "Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants". Plant Pathology 55(3): 458-467.
- 71. Naidu, R. y Hughes, J. (2003). Methods for the detection of plant virus diseases. Pp 233–260. En: Plant Virology in Sub-Saharan Africa (J.d'A. Hughes, B.O. Odu, eds.). Proceedings of a conference organized by IITA, 4–8 June 2001, Ibadan, Nigeria.
- 72. Pantaleo, V., Szittya, G., Burgyan, J. (2007). Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. The Journal of Virology. 81: 3797-3806.
- 73. Onuki, M. y Hanada, K. (1998). PCR amplification and partial nucleotide sequences of three dicot-infecting geminiviruses occurring in Japan. Annals of the Phytopathological Society of Japan 64: 116-120.
- 74. Osaki, T., Inouye, T. (1991). Transmission characteristics and cytopathology of a whitefly-transmitted virus isolated from the sweet potato leaf curl disease. Bulletin of the University of Osaka Prefecture. Ser. B, Agriculture and biology 43, 11–19.
- 75. Owor, B., Shepherd, D., Edema, D., Monjane, R., Rybicki, A., Thomson, Varsani, J. (2007). Genetic analysis of maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant. Journal of General Virology 88, 3154–3165.
- Padidam, M., Sawyer, S., Fauquet, C. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 285, 218–225.

- 77. Patil, B.L., Dasgupta, I. (2006). Defective interfering DNAs of plant viruses. Critical Reviews in Plant Sciences 24: 1-18.
- Pio-Ribeiro, G., Winter, S., Hamilton, R., De Assis Filho, F., Da Paz, C. (1994). First report of sweetpotato viruses disease-Associated Closterovirus in Brazil. Plant Disease. 78: 1122.
- Preiss, W. y Jeske, H. (2003). Multitasking in replication is common among geminiviruses. Journal of Virology 77: 2972-2980.
- 80. Raja, P., Wolf, J., Bisaro, D. (2010). "RNA silencing directed against geminiviruses: Post-transcriptional and epigenetic components." Biochimica et Biophysica Acta 1799 (3-4): 337-351.
- Ribeiro, S., Martin, D., Lacorte, C., Simoes, I., Orlandini, D., Inoue-Nagata, A. (2007). Molecular and biological characterization of tomato chlorotic mottle virus suggests that recombination underlies the evolution and diversity of Brazilian tomato begomoviruses. Phytopathology 97, 702–711.
- Salazar, L. F. (1996). Potato Viruses and Their Control. Centro Internacional de la Papa (CIP) pp: 83-132.
- 83. Sim, J., Valverde, R., Clark, C. (2000). Whitefly transmission of sweet potato disease agents in Nigeria. Phytophatology. 66: 642-645.
- 84. Stanley, J., Frischmuth, T., Ellwood, S. (1990). Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proceedings of the National Academy of Sciences (PNAS) 87: 6291-6295.
- Untiveros, M., Fuentes, S., Salazar, L. (2007). "Synergistic Interaction of Sweet potato chlorotic stunt virus (Crinivirus) with Carla-, Cucumo-, Ipomo-, and Potyviruses Infecting Sweet Potato". Plant Disease 91(6): 669-676.
- Valverde, R., Clark, C., Valkonen, J. (2007). Virus and virus disease complexes of sweetpotato. Plant Viruses 1, 116–126. Global Science Books.
- 87. Valverde, R., Sim, J., Lotrakul, P. (2004). Whitefly transmission of sweet potato viruses. Virus Research 100: 123-128.

- 88. Vanitharani, R., Chellappan, P., Pita, J., Fauquet, C. (2004). "Differential Roles of AC2 and AC4 of Cassava Geminiviruses in Mediating Synergism and Suppression of Posttranscriptional Gene Silencing." Journal of Virology 78(17): 9487-9498.
- Varsani, A., Castillo, J., Moriones, E., Hernandez, C., Idris, A., Brown, J., Zerbini, M., Martin, D. (2014). Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arcives of Virology 159: 2193-2203.
- 90. Wang, H; Qi, M; Cutler, A. (1993). A simple method of preparing plant samples for PCR. Oxford University Press. Nucleid Acids Research 21(17): 4153-4154.
- 91. Wasswa, P., Otto, B., Mukasa, S., Monger, W., Gibson, R. (2011). "First identification of a sweet potato begomovirus (sweepovirus) in Uganda: Characterization, detection and distribution." Plant Pathology 60(6): 1030-1039.
- 92. Wang, X., Wu, Q., Ito, T., Cillo, F., Li, W., Chen, X., Yu, J., Ding, S. (2010). "RNAi-mediated viral immunity requires amplification of virus-derived siARNs in *Arabidopsis thaliana*". Proceedings of the National Academy of Sciences (PNAS) 107(1): 484-489.
- 93. Winter, S., Purac, A., Leggett, F., Frison, E., Rossel, H., Hamilton, R. (1992). Particial characterization and molecular cloning of a closterovirus from sweet potato infected with the sweet potato virus disease complex from Nigeria. Phytopathology 82:869-875.
- 94. Wisler, G., Duffues, J., Liu, H., Li, R. (1998). Ecology and Epidemiology of Whitefly-Transmitted Closteroviruses. Plant Disease 82:270-280.
- 95. Zhang, D., Cervantes, J., Huamán, Z., Carey, E., Ghislain, M. (2000). Assessing genetic diversity of sweet potato (*Ipomoea batatas* (L.) Lam.)

cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution 47: 659–665.

- 96. Zhang D., Cervantes, J., Huamán, Z., Carey, E. y Ghislain, M (2004). AFLP assessment of diversity in sweetpotato from Latin America and the Pacific region: Its implications on the dispersal of the crop. Genetic Resources and Crop Evolution 51: 115-120.
- 97. Zhang, S., and Ling, K. (2011). Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Archives of Virology 156:955-968.

X. ANEXOS

Anexo 1: Protocolo para la amplificación circulo rodante utilizando la Polimerasa Phi29

- 1. A 1 ul de la extracción (10ng DNA) agregarle 5uL de tampón de muestra y 1 uL de una sol de 50uM de primers (4.16pmol/ul aprox. c/u).
- 2. Denaturar a 95C x 3min y enfriar en hielo.
- 3. Añadir 5ul de tampón de reacción premezclada con el mix de enzima (0.2ul).
- 4. Incubar a 30C x 18h y parar la reacción 65C x 10min.
- 5. Para la purificación se precipita el DNA con 2 ¹/₂ de etanol y 1/10 vol de acetato de sodio a pH 4.8. Incubar a 70 C x 2 horas.
- 6. Centrifugar a 14 000 rpm x 20min
- 7. Lavar el sedimento con etanol al 70%. Dos veces.
- 8. Resuspender el sedimento en 20 uL de NFW.
- 9. Para la digestión se usa 5 ul de la reacción y se digiere con las enzimas escogidas durante toda la noche.
- 10. Correr en gel a 80 volt x 1h

Anexo 2: Protocolo de extracción de ARN totales con Trizol

- Moler 250 gramos de tejido fresco con 1.5 ml de Trizol en bolsa de muestreo (plástico). Vortex por 5 min a temperatura ambiente (T.A).
- 2. Transferir homogenizados a tubos de 2 ml y centrifugar a 12000 rpm por 5 min.
- 3. Transferir la fase liquida a un nuevo tubo de 2 ml y agregar 500 ul de cloroformo (por cada ml de trizol). Mezclar vigorosamente (no utilizar vortex) e incubar por 3 min a T.A.
- 4. Centrifugar a 12000 rpm por 10 min a 4°C y transferir la fase acuosa a un nuevo tubo de 2ml que contenga 750 ul de isopropanol. Incubar por 10 min a T.A.
- 5. Mezclar y centrifugar a 12000 rpm por 20 min a 4°C.
- 6. Lavar el sedimento con 1 ml de etanol al 70%, y centrifugar 12000 rpm por 10 min.
- 7. Dejar secar el sedimento por 20 min y guardar a -70° C.

Anexo 3: Protocolo de extracción de pequeños ARN de interferencia (siRNA)

- 1. Resuspender en 350 ul de agua libre de nucleasas (NFW) el sedimento obtenido con la extracción de ARN totales.
- Precipitar el ARN total agregando 350 ml de LiCl 4M (1:1). Mezclar e incubar a 4°C toda la noche.
- 3. Centrifugar a 12000 rpm por 20 min a 4°C.
- Resuspender el sedimento (se encuentran los ARN ribosomal y mensajeros) en 100 ul de NFW para análisis de PCR (guardarlo a -20°C).
- Precipitar la fase acuosa (contienen los ARN pequeños) con 500 ul de isopropanol e incubar 10 min a T.A. Centrifugar a 14000 rpm por 20 min.
- 6. Remover el sobrenadante y lavar con 500 ul de etanol al 80%.
- 7. Centrifugar a máxima velocidad por 10 min a 4°C.
- 8. Resuspender el sedimento con 100 ul de NFW.
- 9. Determinar la concentración de ARN (Nanodrop).
- Correr todo el precipitado por electroforesis al 2% de agarosa con TAE (DEPC).
 Agregarle 2 ul lde loading tampón ARN por cada 2 ul de muestra.

País donante							Colombia			Dominican Republoic	Dominican Republoic	Ecuador	Guatemala	Guatemala	Guatemala	Taiwan				Mexixo	Mexico	Mexico			Panama		Taiwan	-	Taiwan	Paraguay	Paraduay	(Paraguay	Trinidad and Tobago	Trinidad and	Tobago							
Nombre del instituto donante							Luis Lopez ICA - Colombia			CENDA Santiago - Dominican Republic	Miguel Sosa CSDA-Dominican Republic		ICTA and USAC - Guatemala	ICTA and USAC - Guatemala	ICTA and USAC - Guatemala	A.V.R.D.C Taiwan		BODLES 27	BODLES 60	I.N.I.F.A.PMexico	I.N.I.F.A.PMexico	LIN.I.F.A.PIMEXICO					A.V.R.D.C Taiwan		A.V.R.D.C Taiwan	Inst.Agron.NacParaguay					CARDI - St. Vincent and the Grenadines	CARDI - St. Vincent and the	Grenadines							-
Código del instituto donante							CIP-COL-ICA			CIP-DOM-CENDA	CIP-DOM-SOSA	CIP-COOP-N/A	CIP-GTM	CIP-GTM	CIP-GTM	CIP-AVRDC	CIP-COOP-N/A	CIP-COOP-N/A	CIP-COOP-N/A	CIP-MEX-INIFAP	CIP-MEX-INIFAP			CIP-COOP-N/A	CIP-COOP-N/A	CIP-COOP-N/A	CIP-AVRDC		CIP-AVRDC		CIP-COOP-N/A	CIP-COOP-N/A	CIP-COOP-N/A		CIP-CARDI									-
País de origen	Argentina	Argentina	Argentina	Argentina	Argentina	Argentina	Colombia	Colombia	Cuba	Dominican Republic	Dominican Republic	Ecuador	Guatemala	Guatemala	Guatemala	Guatemala	Jamaica	Jamaica	Jamaica	Mexico	Mexico	Nicaradua	INICAI agua Danama	Panama	Panama	Peru	Peru	Peru	Puerto Rico	Paraguay	Paradilav	Paraduav	Paraguay	Paraguay	St. Vincent and the Grenadines	St. Vicent and the	Grenadines	Tanzania	Tanzania	Uganda	Uganda	Ugarida Firendo	Ugariua Linende	loganda Jontos coloccionod
fecha de adquisición							1988			1986	1987	1985	1989	1989	1989	1991				1989	1989	1 909			1989		1991	-	1991	1992	1990			1992	1993	1003	CREI	2007	2007	2007	2002	2007	2007	acting da t
Fecha de toma de muestra		1990	1990	1991	1991	1991		1986				1985					1988	1988	1988			1001	1080	1989	1989	1989					1990	1991	1991											Inomia
Altitud del I lugar de I recolección		40	186	121	450	131	13	1420				1170	1950	-	10		226	823	11			-	040	109	25	1608			,		255	180	140	-										n de de de
Longitud del lugar de recolección		-59.05	-55.0666	-55.6833	-54.33	-60.4666	-74.7166	-75.6579				-79.83	-90.9		-90.35		-77.0666	-77.3785	-77.1333			- 06.42	-78 1472	-80.003	-80.7	-78.3453					-54.9	-55.61	-55.51		-									- in acres
La latitud del lugar de recolección		-28.5	-26.9333	-28.0666	-26.75	-24.8	9.1166	4.4912				-3.83	14.81		15.76		18.1354	18.0833	17.9166			12.25	0.00 8.65	9213	8.1175	-5.4143					25.2666	-24.45	-24.08											v númeroc
Ubicación del lugar de l recolección		Bellavista-lomas	Positos Colonia Capion	Azara	Colonia Mainombu	Teniente Brown	San Ignacio	4 Km Se Armenia-		Quinigua	San Cristobal	1.5 Km W Prado	Xuatacaj	-	Parc. 85		5 Km S Charlemont	0.5 Km E Glaster Victoria	Bodles Exp. Station			- Maianae	0.3 km Se Santa Fe	0.7 Km S Reinca	0.1 Km N Los Canelos	2 Km S San Francisco-la	-				Colonia Laura Km35 N	Colonia Indigena Fortuna	Colonia Indigena Mboy-		-			Ukerewe district	liala district	Kumi district	Mbare district	Tommo district	Macaka district	masaka uisuut mihra da ranofino
Nombre de accesión	Rojo Blanco	Amarilla	Yety Manio	Unknown	Yety-morotii	Cubana	Batata	unknown		Milita	W - 50 (Georgia-USA)		Camote Morado	Sansare	Camote Remola	PI 259164	Yellow Coby	Mother Edward	Finney			-	Blanca	unknown	Camote	Amarillo	San Geronimo UNPRG 70		Hes 33	Japonesa 1	Batata Bobora	Yetv Azucena	Yety Puta	Moroti	LOVERS NAME	Civ Mooke	SIX WEEKS	Ukerewe	Carrot Dar	KMI 61	MLE 162 NaKani MED 524 Kawasahansi	Tomm 224 Nawasariarisi Tomm 2	Bushing	foch o do colocto no
Número de recolección / Código del mejorador / Código de Bioseguridad	DLP 3338	DLP 4012	DLP 4107	DLP 4790	DLP 4839	DLP 4894	LOP 87-1799	DLP 1873	INIVIT1004	CENDA 4	SOSA V-15	DLP 426	GTM 704	GTM SANS	GTM 441	100078	DLP 3261	DLP 3213	DLP 3222	A 18	A 91	J 34	DI D 3884	DI P 3902	DLP 3872	DLP 3921	101430		101196	PRY 12 DI D 44.70	DI P 4181	DLP 5245	DLP 5253	PRY 27	SVG 24	5/1C 27	17 0 10							- Loc mlantae
Numero de Iccesión	02760	402786	102820	402914	402953	102986	400527	00480	102645	00779	00878	01493	101106	101141	101073	401143	101201	401189	t01193	101468	01476	01002	01268	01279	101260	120993	121076	02081.28	101287	02739	101303	01325	101332	104709	100025	01276	6/01/04	143760	143763	43/62	13774	12770	01/2021	hinan da
Nombre de 1 asialmiento a	Arg33 4	Arg34 4	Arg35 4	Arg36 4	Arg37 4	Arg38 4	Col22	Col9	Cub42	Dom13 4	Dom2 4	Ecu8 4	Gtm16 4	Gtm17 4	Gtm19 4	Gtm20 4	Jam12 4	Jam23 4	Jam24	Mex31	Mex32 4	NICOF A	2 020M	Pan15	Pan18 4	Per10 4	Per6 4	Per7 1	Pri21	Pry11	Prv27 4	Prv29 4	Pry30 4	Pry40 4	StV1 4	C+1/11	01 \ 41	Tza13 4	Tza16					

Surge Anexo 4: Uestudio.

Anexo 5: Árbol filogenético de la secuencia de nucleótidos del gen C3 que codifica a la proteína potenciadora de la replicación (REn) de begomovirus. El árbol filogenético fue obtenido con las secuencias de nucleótidos empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 6: Árbol filogenético de la secuencia de aminoácidos del gen C3 que codifica a la proteína potenciadora de la replicación (REn) de begomovirus.El árbol filogenético fue obtenido empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 7: Árbol filogenético de la secuencia de nucleótidos del gen C4 que codifica a la proteína C4 de begomovirus. El árbol filogenético fue obtenido empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 8: Árbol filogenético de la secuencia de aminoácidos del gen C4 que codifica a la proteína C4 de begomovirus. El árbol filogenético fue obtenido empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 9: Árbol filogenético de la secuencia de nucleótidos del gen V2 que codifica a la proteína de movimiento (MP) de begomovirus. El árbol filogenético fue obtenido empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 10: Árbol filogenético de la secuencia de aminoácidos del gen V2 que codifica a la proteína de movimiento (MP) de begomovirus. El árbol filogenético fue obtenido empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 11: Árbol filogenético de la secuencia de nucleótidos del gen C1 que codifica la proteína asociada a la replicación (Rep) de begomovirus. El árbol filogenético se obtuvo usando las secuencias de nucleótidos empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 12: Árbol filogenético de la secuencia de aminoácidos del gen C1 que codifica la proteína asociada a la replicación (Rep) de begomovirus. El árbol filogenético se obtuvo usando las secuencias de aminoácidos empleando el método Neighbor Joining. El método estadístico empleado para el análisis de aminoácidos fue el método de correlación de Poisson. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 13: Árbol filogenético de la secuencia de nucleótidos del gen C2 que codifica la proteína activadora de la transcripción (TrAP) de begomovirus. El árbol filogenético fue obtenido con las secuencias de nucleótidos empleando el método Neighbor Joining. El método estadístico empleado para el análisis de nucleótidos fue kimura-2-parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 14: Árbol filogenético de la secuencia de aminoácidos del gen C2 que codifica la proteína activadora de la transcripción (TrAP) de begomovirus. El árbol filogenético fue obtenido con las secuencias de aminoácidos empleando el método Neighbor Joining. El método estadístico empleado para el análisis de aminoácidos fue el método de correlación de Poisson. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexo 15: Árbol filogenético de la secuencia de nucleótidos del gen V1 que codifica la cubierta proteica (CP) de begomovirus. El método estadístico empleado para el análisis de nucleótidos fue kimura-2 parametro. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Anexos 16: Árbol filogenético de la secuencia de aminoácidos del gen V1 que codifica la cubierta proteica (CP) de begomovirus. El método estadístico empleado para el análisis de aminoácidos fue el método de correlación de Poisson. Los números en las ramas son los valores bootstrap después de 1000 replicaciones. La barra de escala representa las unidades de los números de sustituciones de nucleótidos por sitio.

Porcentaje de identidad

Porcentaje de identidad

																									Perc	cent Ide	entity														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34				_		-
	1		79.6	80.2	93.1	92.9	81.5	81.7	78.9	90.5	91.8	94.0	93.8	91.2	93.8	93.3	92.3	92.9	92.5	92.7	81.5	90.3	90.5	90.5	92.3	92.7	79.6	79.4	79.1	79.4	92.5	92.5	92.5	79.4	49.9	1	Perc	-6b		D	
	2	24.1		93.3	80.0	80.0	90.8	90.8	89.5	77.8	78.7	80.9	81.1	78.5	81.1	78.9	79.6	79.8	80.0	80.0	94.2	77.8	78.1	78.1	80.9	81.1	97.0	88.0	87.7	87.5	79.6	79.6	79.6	88.0	47.5	2	Mexi	co-31		Б	
	3	23.6	7.0		80.2	80.2	86.9	87.1	85.4	78.9	80.6	81.1	81.3	78.7	81.3	78.7	78.5	80.2	79.4	80.6	92.7	77.6	77.8	77.8	80.6	80.0	93.3	83.9	83.7	83.9	81.5	81.5	81.5	83.9	48.4	3	Cub	a-5			-
	4	6.9	23.0	22.5		98.9	83.2	83.4	79.1	94.0	95.3	98.1	97.8	95.3	97.8	94.2	93.5	96.3	95.1	97.0	82.6	89.7	89.9	89.9	95.9	95.1	80.9	79.8	80.0	80.2	94.0	94.0	94.0	79.8	47.7	4	SPL	CV-RL3	1-China	EU253	456
	5	7.2	23.1	22.5	1.1		83.2	83.4	78.9	93.8	95.1	97.8	97.6	95.1	97.6	93.5	93.3	96.6	94.8	96.8	82.6	89.0	89.2	89.2	95.3	94.4	80.9	80.0	80.2	80.4	93.8	93.8	93.8	80.0	47.5	5	SPL	CV-RL7-	China_E	U2677	99
	6	19.9	9.1	13.6	18.3	18.3		99.8	88.6	82.4	82.4	83.9	83.7	81.1	83.7	81.7	82.6	83.0	83.4	83.0	91.8	79.8	80.0	80.0	83.0	83.7	91.8	87.5	87.1	87.1	83.2	83.2	83.2	87.5	46.9	6	SPL	CV-Mi-J:	apan_AB	433786	1
	7	19.6	9.1	13.4	18.0	18.0	0.2		88.6	82.6	82.6	84.1	83.9	81.3	83.9	81.9	82.8	83.2	83.7	83.2	92.0	80.0	80.2	80.2	83.2	83.9	92.0	87.5	87.1	87.1	83.4	83.4	83.4	87.5	47.1	7	SPL	CV-Ku-J	apan_A8	343378	7
	8	24.4	11.3	16.2	24.8	25.1	12.2	12.3		78.7	79.6	80.2	80.2	77.6	80.2	80.4	80.4	79.4	79.6	79.4	88.4	77.4	77.6	77.6	79.8	79.6	89.9	91.0	89.9	89.7	80.9	80.9	80.9	91.0	47.1	8	SPM	aV-BSB-	-Brazil_F	J96983	1
	9	9.9	26.2	24.5	6.6	6.8	19.5	19.2	25.4		97.8	95.1	94.8	92.3	94.8	91.6	94.0	94.4	95.1	94.8	81.1	88.0	88.2	88.2	92.7	93.8	78.7	79.4	78.3	78.5	95.3	95.3	95.3	79.4	47.7	9	SPG	VaV-PA-	Bel-Braz	I_FJ96	9829
	10	8.4	24.9	22.0	5.1	5.3	19.5	19.2	24.1	2.3		96.8	96.6	94.0	96.6	93.3	93.5	96.1	94.6	96.6	82.2	88.0	88.2	88.2	94.4	93.3	79.6	79.8	79.1	79.4	97.4	97.4	97.4	79.8	48.2	10	SPG	VaV-PB	1-Sou-Br	azi_FJ	969830
	11	5.9	21.8	21.3	2.0	2.3	17.4	17.1	23.2	5.3	3.4		99.8	97.2	99.8	95.3	95.3	98.1	97.0	98.5	83.4	89.9	90.1	90.1	97.0	96.3	81.7	80.2	79.8	80.0	95.9	95.9	95.9	80.2	47.7	11	SPL	CV-RS2	-Est-Bra	dl_FJ96	9834
	12	6.2	21.5	21.0	23	2.5	17.7	17.4	23.2	5.6	3.7	0.2		97.4	100.0	95.1	95.1	97.8	96.8	98.3	83.7	90.1	90.3	90.3	96.8	96.1	81.9	80.2	79.8	80.0	95.7	95.7	95.7	80.2	47.5	12	SPL	CV-RS2	-Poa-Bra	ul_FJ9	69836
	13	6.2	21.5	21.0	23	2.5	17.7	17.4	23.2	5.6	3.7	0.2	0.0		97.4	92.5	92.5	95.3	94.2	95.7	81.1	87.5	87.7	87.7	94.2	93.5	79.4	77.6	77.2	77.4	93.1	93.1	93.1	77.6	44.9	13	SPL	CV-RS2	Mac-Bra	ul_FJ9	69835
	14	6.2	21.5	21.0	2.3	2.5	17.7	17.4	23.2	5.6	3.7	0.2	0.0	0.0		95.1	95.1	97.8	96.8	98.3	83.7	90.1	90.3	90.3	96.8	96.1	81.9	80.2	79.8	80.0	95.7	95.7	95.7	80.2	47.5	14	SPL	CV-RS2	-Ros-Bra	zil_FJ9	69837
	15	6.6	24.7	24.8	6.3	7.1	20.4	20.1	22.9	9.3	7.3	5.1	5.3	5.3	5.3		95.5	94.4	93.5	94.6	82.4	91.6	91.8	91.8	93.3	93.5	79.8	79.8	79.1	79.4	93.3	93.3	93.3	79.8	48.4	15	SPL	CV-RS1	-Tav-Bra	zil_FJ9	9833
2	16	7.9	23.7	25.1	7.1	7.3	19.2	18.9	22.9	6.6	7.1	5.1	5.3	5.3	5.3	4.9		94.4	95.3	94.4	82.4	91.6	91.8	91.8	93.3	94.8	80.4	80.2	79.6	79.8	93.3	93.3	93.3	80.2	48.6	16	SPL	CV-CE-F	or-Brazi	I-FJ969	832
ĝ	17	7.1	23.4	22.5	3.9	3.7	18.6	18.3	24.4	6.1	4.1	2.0	2.3	23	2.3	6.1	6.1		97.2	97.2	82.8	89.5	89.7	89.7	96.3	94.8	80.9	78.9	78.5	78.7	95.1	95.1	95.1	78.9	48.2	17	SPL	CV-J-Ky	oto-AB43	3788	
3	18	7.6	23.0	23.8	5.3	5.6	18.0	17.3	24.1	5.3	5.8	3.2	3.4	3.4	3.4	7.1	5.1	3.0		95.9	82.4	90.8	91.0	91.0	94.8	95.9	80.9	79.1	78.7	78.9	94.2	94.2	94.2	79.1	49.0	18	SPL	CV-Kore	a-FJ560	719	
~	19	7.4	23.0	21.9	3.2	3.4	18.6	18.3	24.5	5.6	3.7	1.6	1.8	1.8	1.8	5.8	6.1	3.0	4.4		83.4	88.8	89.0	89.0	96.6	95.1	80.9	79.4	79.1	79.4	95.3	95.3	95.3	79.4	47.5	19	SPL	CV-US_	AF10403	6	
	20	20.7	5.8	7.3	19.9	19.9	8.3	8.0	13.1	22.0	20.5	18.7	18.5	18.5	18.5	20.3	20.2	19.6	20.2	18.7		80.4	80.6	80.6	83.0	82.6	94.2	86.7	86.5	86.5	82.6	82.6	82.6	86.7	47.7	20	SPL	CV-IT_A	J586885		
	21	10.1	26.3	26.4	11.6	12.4	23.1	22.8	27.4	13.7	13.7	11.4	11.1	11.1	11.1	9.3	9.3	11.9	10.3	12.7	22.9		99.8	99.8	88.4	90.5	79.1	76.6	77.6	77.8	88.8	88.8	88.8	76.6	48.6	21	SPL	CV-Es-B	G6_EF4	56744	
	22	9.9	26.0	26.1	11.4	12.1	22.8	22.5	27.0	13.5	13.5	11.1	10.8	10.8	10.8	9.0	9.0	11.6	10.1	12.4	22.6	0.2		100.0	88.6	90.8	79.4	76.8	77.8	78.1	89.0	89.0	89.0	76.8	48.8	22	SPL	CV-ES-E	G13_EU	185636	5
	23	9.9	26.0	26.1	11.4	12.1	22.8	22.5	27.0	13.5	13.5	11.1	10.8	10.8	10.8	9.0	9.0	11.6	10.1	12.4	22.6	0.2	0.0		88.6	90.8	79.4	76.8	77.8	78.1	89.0	89.0	89.0	76.8	48.8	23	SPL	CV-ES-E	G12_EU	185636	4
	24	7.9	21.8	21.9	4.4	5.1	18.6	18.3	23.8	8.0	6.1	3.2	3.4	3.4	3.4	7.3	7.3	3.9	5.6	3.7	19.3	13.2	12.9	12.9		96.8	81.3	79.4	79.1	79.4	94.6	94.6	94.6	79.4	48.0	24	SPL	CLaV-B(G30_EU	839579	
	25	7.4	21.5	22.9	5.3	6.1	17.7	17.4	24.1	6.8	7.3	3.9	4.2	4.2	4.2	7.1	5.6	5.6	4.4	5.3	19.9	10.6	10.3	10.3	3.4		81.5	79.6	79.1	79.4	93.1	93.1	93.1	79.6	47.7	25	SPL	CLaV-B(G27_EF4	56746	
	26	23.5	2.7	6.5	22.3	22.3	8.3	8.1	11.3	25.4	24.2	21.1	20.8	20.8	20.8	23.9	22.9	22.3	22.3	22.3	6.3	24.9	24.5	24.5	21.7	21.4		87.1	87.3	87.1	80.9	80.9	80.9	87.1	47.5	26	SPL	CGV_AF	326775		
	27	23.7	13.2	18.2	23.8	23.5	13.5	13.5	10.0	24.4	23.8	23.2	23.2	23.2	23.2	23.9	23.2	25.1	24.7	24.5	15.3	28.7	28.3	28.3	24.5	24.1	14.8		97.8	97.6	80.9	80.9	80.9	100.0	46.9	27	SPL	CESV-B	G2_FJ18	51200	
	28	24.0	13.4	18.5	23.5	23.2	14.0	14.0	11.3	26.0	24.7	23.8	23.8	23.8	23.8	24.8	24.1	25.7	25.4	24.7	15.5	27.0	26.7	26.7	24.7	24.8	14.5	2.3		99.8	80.9	80.9	80.9	97.8	47.7	28	SPL	CESV-B	G5_EF4	56743	
	29	23.7	13.7	18.2	23.2	22.9	14.0	14.1	11.5	25.7	24.4	23.5	23.5	23.5	23.5	24.5	23.8	25.4	25.1	24.4	15.5	26.7	26.3	26.3	24.4	24.5	14.8	2.5	0.2		81.1	81.1	81.1	97.6	47.7	29	SPL	CESV_E	F45674	1	
	30	7.6	23.7	20.8	6.6	6.8	18.3	18.0	22.3	5.1	2.7	4.4	4.6	4.6	4.6	7.3	7.3	5.3	6.3	5.1	19.9	12.7	12.4	12.4	5.8	7.6	22.3	22.3	22.3	22.0		100.0	100.0	80.9	48.6	30	SPL	CCaV-B	G7_EF4	56745	
	31	7.6	23.7	20.8	6.6	6.8	18.3	18.0	22.3	5.1	2.7	4.4	4.6	4.6	4.6	7.3	7.3	5.3	6.3	5.1	19.9	12.7	12.4	12.4	5.8	7.6	22.3	22.3	22.3	22.0	0.0		100.0	80.9	48.6	31	SPL	CCaV-B	G25-FJ5	29203	
	32	7.6	23.7	20.8	6.6	6.8	18.3	18.0	22.3	5.1	2.7	4.4	4.6	4.6	4.6	7.3	7.3	5.3	6.3	5.1	19.9	12.7	12.4	12.4	5.8	7.6	22.3	22.3	22.3	22.0	0.0	0.0		80.9	48.6	32	SPL	CCaV-B	G21-EU	356365	
	33	23.7	13.2	18.2	23.8	23.5	13.5	13.5	10.0	24.4	23.8	23.2	23.2	23.2	23.2	23.9	23.2	25.1	24.7	24.5	15.3	28.7	28.3	28.3	24.5	24.1	14.8	0.0	2.3	2.5	22.3	22.3	22.3		46.9	33	IYW	-EU839	576		
	34	72.4	80.3	77.7	77.4	78.2	80.1	79.4	80.3	76.9	75.7	77.8	78.5	78.5	78.5	75.0	74.4	76.5	73.3	78.5	77.9	74.0	73.3	73.3	76.9	77.5	78.6	81.2	78.1	78.1	74.2	74.2	74.2	81.2		34	TYLC	CV-NC_(004005		

Anexo 17: Cuadro de porcentaje de identidad y divergencia de las secuencias de nucleótidos (a) y aminoácidos (b) de la proteína activadora de la transcripción (C2) de begomovirus. Los porcentajes de identidad se encuentran en la parte superior de cada cuadro; y los porcentajes de divergencia en la parte inferior de cada cuadro.

Porcentaje de identidad

Porcentaje de identidad

Anexo 13: Cuadro de porcentaje de identidad y divergencia de las secuencias de indefendidos (a) y aminoácidos (b) de la proteína de la cubierta proteica transcripción (V1) de begomovirus. Los porcentajes de identidad se encuentran en la parte superior de cada cuadro; y los porcentajes de divergencia en la parte inferior de cada cuadro.

Anexo 20a: Amplificación y condiciones para la detección del SPCSV por PCR en tiempo real (RT-qPCR).

Para una	4(1)	07(40(1)
piaca	1x(ui)	37X(UI)	49X(UI)
master			
MIX	12.5	462.5	612.5
NFW	7.5	277.5	367.5
F 10uM	0.75	27.75	36.75
R 10uM	0.75	27.75	36.75
Probe 5uM	0.5	18.5	24.5
M-MLV 1/100	1	37	49
Total (ul)	23	851	1127
Muestra	2		
Volumen total (ul)	25		

Anexo 20b: Cantidades de reactivos para el PCR en tiempo real (RT-qPCR).

Anexo 21: Análisis estadísticos para la evaluación del sinergismo para la detección de sweepovirus utilizando los programas estadísticos R y SAS.

Medidas repetidas análisis de varianza

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time Effect H = Type III SSCP Matrix for time E = Error SSCP Matrix S=1 M=3.5 N=7

Statistic	Value	F calculado	Num GL	Den	GL Pr > F
Wilks' Lambda	0.06983310	23.68	9	16	<.0001
Pillai's Trace	0.93016690	23.68	9	16	<.0001
Hotelling-Lawley Trace	13.31985701	23.68	9	16	<.0001
Roy's Greatest Root	13.31985701	23.68	9	16	<.0001

MANOVA Test Criteria and F Approximations for the Hypothesis of no time*Aislamiento Effect H = Type III SSCP Matrix for time*Aislamiento E = Error SSCP Matrix S=5 M=1.5 N=7

Statistic	Value	F calculado	Num	GL Den	GL Pr	> F
Wilks' Lambda	0.00270973	4.56	45	74.675	<.0001	
Pillai's Trace	2.92117345	3.12	45	100	<.0001	
Hotelling-Lawley Trace	19.26439106	6.34	45	36.918	<.0001	
Roy's Greatest Root	12.57502230	27.94	9	20	<.0001	

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

MANOVA Test Criteria and Exact F Statistics
for the Hypothesis of no time*Trt Effect
H = Type III SSCP Matrix for time*Trt
E = Error SSCP Matrix
S=1 M=3.5 N=7

Statistic	Value	F calculado	Num GL	Den	GL Pr > F
Wilks' Lambda	0.29081023	4.34	9	16	0.0053
Pillai's Trace	0.70918977	4.34	9	16	0.0053
Hotelling-Lawley Trace	2.43866861	4.34	9	16	0.0053
Roy's Greatest Root	2.43866861	4.34	9	16	0.0053

Medidas repetidas análisis de varianza

MANOVA Test Criteria and F Approximations for the Hypothesis of no time*Aislamiento*Trt Effect H = Type III SSCP Matrix for time*Aislamiento*Trt E = Error SSCP Matrix S=5 M=1.5 N=7

Statistic	Value	F calculado	Num G	L Den	GL Pr > F	2
Wilks' Lambda	0.01267353	2.75	45	74.675	<.0001	
Pillai's Trace	2.38627844	2.03	45	100	0.0018	
Hotelling-Lawley Trace	11.03556367	3.63	45	36.918	<.0001	
Roy's Greatest Root	7.04658512	15.66	9	20	<.0001	

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

Medidas repetidas análisis de varianza Tests of Hypotheses for Between Subjects Effects

Fuente	GL	Type III SS	Cuadrado medio	F calculado Pr > F	2
Aislamiento		5 1015.159137	203.031827	39.48 <.0001	
Trt	1	415.109956	415.109956	80.73 <.0001	
Aislamiento*Trt		5 23.394794	4.678959	0.91 0.4911	
Error	24	123.409257	5.14205		
Medidas repetidas análisis	de de	varianza			

Univariate Tests of Hypotheses for Within Subject Effects

Fuente	GL	Type III SS Cuadrado medio F calculado Pr > F
time	9	695.7300582 77.3033398 30.07 <.0001
time*Aislamiento		45 557.4133324 12.3869629 4.82 <.0001
time*Trt	9	78.7660260 8.7517807 3.40 0.0006
time*Aislamiento*Trt		45 357.5665434 7.9459232 3.09 <.0001
Error(time)	216	555.3669824 2.5711434
	7 di	
Fuente	Adj - C	
time	1001	
timo*Aislamionto	2001	
time*Trt 0	1206	0 0055
time*Aislamiento*Trt	0 0	0.0000
Error(time)	0.0	
22202 (02110)		
Greenhouse-Geisser Epsilo	n	0.3464
Huynh-Feldt Epsilon		0.5866
Medidas repetidas análisi	s de '	varianza
Analysis of Variance of Co	ontra	st Variables
time_N represents the nth	degr	ee polynomial contrast for time
Contract Maniables time 1		
Contrast Variable: time_i	CT	Turne III SS Quadrade medie E calculade Dr. N. F.
Maan	GL 1	$\frac{1}{1} \frac{1}{1} \frac{1}$
Aiglamiento	T	494.0302400 494.0302400 03.00 $\sim.0001$
Trt	1	31 QQ6251Q 31 QQ6251Q / QQ 0 05/7
Aiglamionto*Trt	Ţ	5 168 3327/8/ 33 6665/97 / 29 0.0062
Error	24	188 2023863 7 8417661
	21	100.2020000 7.0117001
Contrast Variable: time_2		
Fuente	GL	Type III SS Cuadrado medio F calculado Pr > F
Mean	1	145.4012989 145.4012989 47.47 <.0001
Aislamiento		5 163.9049655 32.7809931 10.70 <.0001
Trt	1	0.2079436 0.2079436 0.07 0.7967
Aislamiento*Trt		5 35.8277051 7.1655410 2.34 0.0727
Error	24	/3.5166118 3.0631922
Contrast Variable: time 3		
Fuente	GL	Type III SS Cuadrado medio F calculado Pr > F
Mean	1	2.55170616 2.55170616 0.89 0.3538
Aislamiento		5 77.01326217 15.40265243 5.40 0.0018
Trt	1	17.86050855 17.86050855 6.26 0.0196
Aislamiento*Trt		5 98.30299384 19.66059877 6.89 0.0004
Error	24	68.50288692 2.85428695
Contract Variable, time 4		
Evente	CT	Turne III CC Cuedrade medie E calculada Dr N.E.
Moan	СL 1	2 37/87833 2 37/87833 0 83 0 2721
Aislamiento	Ť	5 32 35269580 6 47053016 2 25 0 0015
	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Liclamiento*Trt	Ť	5 10 97806522 2 19561304 0 76 0 59/1
Error	24	68 89431970 2 87059665
DTT 01	27	2.0/03/003

Contrast Variable: time_5

Fuente	GL	Type III SS	Cuadrado medio	F calculado Pr > F
Mean	1	40.10835717	40.10835717	22.18 <.0001
Aislamiento		5 25.8636719	5 5.17273439	2.86 0.0365
Trt	1	1.10698100	1.10698100	0.61 0.4416
Aislamiento*Trt		5 3.58287800	0.71657560	0.40 0.8464

Error		24	43.391029	77	1.80795957	
Contrast Va	riable: time	6				
Fuente	TTADIC. CINC_	- GT	Type III :	SS	Cuadrado medio	F calculado $Pr > F$
Mean		1	0 321647	27	0 32164727	0 24 0 6298
Aislamiento		-	5 12 24	646459	2 44929292	1 82 0 1478
Trt.		1	0.006870	55	0.00687055	0.01 0.9437
Aislamiento	*Trt		5 14.46	970779	2.89394156	2.15 0.0945
Error		2.4	32.378718	32	1.34911326	
Contrast Va	riable: time	7				
Fuente	-	GL	Type III :	SS	Cuadrado medio	F calculado Pr > F
Mean		1	2.655852	13	2.65585213	2.53 0.1250
Aislamiento			5 36.67	317226	7.33463445	6.98 0.0004
Trt		1	0.482215	70	0.48221570	0.46 0.5047
Aislamiento	*Trt		5 3.18	720022	0.63744004	0.61 0.6956
Error		24	25.224774	63	1.05103228	
Contrast Va	riable: time_	8				
Fuente		GL	Type III :	SS	Cuadrado medio	F calculado Pr > F
Mean		1	1.085218	27	1.08521827	1.14 0.2970
Aislamiento			5 18.52	375184	3.70475037	3.88 0.0102
Trt		1	0.278940	28	0.27894028	0.29 0.5938
Aislamiento	*Trt		5 10.66	123837	2.13224767	2.23 0.0839
Error		24	22.916315	35	0.95484647	
Contrast Va	riable: time_	9				
Fuente		GL	Type III :	SS	Cuadrado medio	F calculado Pr > F
Mean		1	6.572859	26	6.57285926	4.88 0.0370
Aislamiento			5 47.07	165131	9.41433026	6.99 0.0004
Trt		1	5.454323	17	5.45432317	4.05 0.0556
Aislamiento	*Trt		5 12.22	400651	2.44480130	1.81 0.1481
Error		24	32.339939	66	1.34749749	
+ maata (10	D) from 1-1					
t Tests (LS	D) IOT WI		0.05			
Alpila Emmon Doorno	og of Exceder		0.05			
Error Degre	es of Freedom	L	1 40600			
Critical Va	ado medio		1.40099			
Loost Ciani	lue oi t ficent Differ		2.00590			
Least Signi	licant Diller	ence	1.4134			
Means with	the same lett	or aro	not signifi	cantly	different	
a a a a a a a a a a a a a a a a a a a	Mean N	Aisl	amiento	cancry	arrenent.	
<u>y</u> A 2.	8020 6	StV1				
в 0.	9629 6	Jaml	2			
в 0.	1920 6	Mex3	1			
в 0.	1101 6	Cub5	-			
в 0.	0024 6	Perl	0			
в 0.	0000 6	Per6				
t Tests (LS	D) for w2					
Alpha	_,		0.05			
Error Deare	es of Freedom	ı	24			
Error Cuadr	ado medio		3.41349			
Critical Va	lue of t		2.06390			
Least Signi	ficant Differ	rence	2.2015			
2						
g	Mean	N.	Aislamiento			
A	5.804	6	Per6			
A	5.693	6	StV1			
BA	3.644	6	Mex31			
В	2.258	6	Per10			
С	0.018	6	Jam12			
С	0.000	6	Cub5			
t Tests (LS	D) for w3					
Alpha			0.05			
Error Degre	es of Freedom	ı	24			

Error Cuadrado medio	1.074619
Critical Value of t	2.06390
Least Significant Difference	1.2353

Means with the same letter are not significantly different.

g	Mean	N	Aislamiento
A	6.1659	6	StV1
A	5.6732	6	Per6
В	3.8957	6	Mex31
В	3.1512	6	Per10
С	0.6592	6	Jam12
С	0.0415	6	Cub5
t Tests	(LSD) for w	4	
Alpha			0.05
Error D	egrees of Fr	eedom	24
Error C	uadrado medi	0	2.510498
Critica	l Value of t		2.06390
Least S	Significant D	iffere	ence 1.888

Means with the same letter are not significantly different.

Mean	N	Aislamiento
6.3279	6	Per6
6.1319	6	StV1
5.8087	6	Mex31
3.5580	6	Per10
0.5924	6	Jam12
0.0000	6	Cub5
	Mean 6.3279 6.1319 5.8087 3.5580 0.5924 0.0000	Mean N 6.3279 6 6.1319 6 5.8087 6 3.5580 6 0.5924 6 0.0000 6

t Tests (LSD) for w5	
Alpha	0.05
Error Degrees of Freedom	24
Error Cuadrado medio	4.581437
Critical Value of t	2.06390
Least Significant Difference	2.5505

g	Mean	N	Aislamiento
A	5.896	6	StV1
A	5.893	6	Mex31
A	5.885	6	Per6
A	4.451	6	Per10
В	0.905	6	Jam12
В	0.177	6	Cub5
t Tests	(LSD) for	wб	

Alpha	0.05
Error Degrees of Freedom	24
Error Cuadrado medio	2.775522
Critical Value of t	2.06390
Least Significant Difference	1.9852

g	Mean	N	Aislamiento
A	7.0599	6	Jam12
A	6.8035	6	Per10
A	6.3757	6	Mex31
A	5.9154	6	StV1
A	5.8064	6	Per6

B 0.0002 6 Cub5

t Tests (LSD) for w7

Alpha0.05Error Degrees of Freedom24Error Cuadrado medio2.731576Critical Value of t2.06390Least Significant Difference1.9694

Means with the same letter are not significantly different.

g	Mean	N	Aislamiento
A	7.1437	6	Per6
A	7.1328	6	Per10
A	6.7684	6	Mex31
A	5.9493	6	StV1
В	3.2829	6	Jam12
В	2.2552	6	Cub5

t Tests (LSD) for w8

Alpha	0.05
Error Degrees of Freedom	24
Error Cuadrado medio	2.933847
Critical Value of t	2.06390
Least Significant Difference	2.041

Means with the same letter are not significantly different.

	Mea	an		Ν	Aislamiento
	7.11	19		6	Per10
	6.493	16		6	Mex31
	5.992	21		6	Per6
	5.92	60		6	StV1
	3.433	35		6	Jam12
	1.31	72		6	Cub5
Tests	(LSD)	for	w9		
	Tests	Mea 7.111 6.49 5.992 5.92 3.433 1.31 Tests (LSD)	<u>Mean</u> 7.1119 6.4916 5.9921 5.9260 3.4335 1.3172 Tests (LSD) for	Mean 7.1119 6.4916 5.9921 5.9260 3.4335 1.3172 Tests (LSD) for w9	Mean N 7.1119 6 6.4916 6 5.9921 6 5.9260 6 3.4335 6 1.3172 6

Alpha	0.05
Error Degrees of Freedom	24
Error Cuadrado medio	3.273664
Critical Value of t	2.06390
Least Significant Difference	2.156

g	Mean	N	Aislamiento
A	6.924	6	Per10
A	6.706	6	Mex31
A	5.773	6	StV1
В	3.603	6	Jam12
В	2.983	6	Cub5
В	2.423	6	Per6

t Tests (LSD) for w10

Alpha	0.05
Error Degrees of Freedom	24
Error Cuadrado medio	3.5807
Critical Value of t	2.06390
Least Significant Difference	2.2548

	g	Mean	Ν	Aislamiento
	A	7.134	6	Mex31
	A	6.484	6	StV1
В	A	5.620	6	Per10

	0.000	0	0 ai	.11 🗆 🛆
В	3.543	6	Pe	r6
В	3.484	6	Cul	b5
t Tooto	(ICD) for	v.v1		
LIESUS	(LSD) IOI	WI		0.05
Alpha				0.05
Error De	grees of F	reedom		24
Error Cu	adrado med	io		1.40699
Critical	Value of	+		2 06390
Loast Si	anificant	Difford	nco	0.816
Least SI	giirreanc	DILLETE	nce	0.010
g	Mean	N	Trt	
A	0.7007	18	D	
A	0.6558	18	S	
t Tosts	(LSD) for	Tur 2		
Alpha	(100) 101	112		0 05
Alpila				0.05
Error De	grees of F	reeaom		24
Error Cu	adrado med	io		3.41349
Critical	Value of	t		2.06390
Least Si	gnificant	Differe	ence	1.2711
20000 01	giilleodiio	2111010		1.0/11
a	Moan	NT		
g	Mean	IN	IIL	
A	4.1713	18	D	
В	1.6343	18	S	
t Tests	(LSD) for	w3		
Alpha	,			0 05
Error Do	amoog of E	maadam		0.05
FILOT De	grees or r	reedom		24
Error Cu	adrado med	10		1.074619
Critical	Value of	t		2.06390
Least Si	gnificant	Differe	ence	0.7132
q	Mean	N	Trt	
<u>g</u>	Mean 4.5440	<u>N</u>	Trt D	
g A B	Mean 4.5440 1.9850	N 18 18	Trt D S	
g A B	Mean 4.5440 1.9850	N 18 18	Trt D S	
g A B	Mean 4.5440 1.9850	N 18 18	Trt D S	
g A B t Tests	<u>Mean</u> 4.5440 1.9850 (LSD) for	<u>N</u> 18 18 w4	Trt D S	0.05
g A B t Tests Alpha	Mean 4.5440 1.9850 (LSD) for	N 18 18 w4	Trt D S	0.05
g A B t Tests Alpha Error De	Mean 4.5440 1.9850 (LSD) for ogrees of F	N 18 18 w4 reedom	Trt D S	0.05 24
g A B t Tests Alpha Error De Error Cu	Mean 4.5440 1.9850 (LSD) for grees of F adrado med	N 18 18 w4 reedom io	Trt D S	0.05 24 2.510498
g A B Alpha Error De Error Cu Critical	Mean 4.5440 1.9850 (LSD) for ogrees of F adrado med Value of	N 18 18 w4 reedom io t	Trt D S	0.05 24 2.510498 2.06390
g A B t Tests Alpha Error De Error Cu Critical Least Si	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant	N 18 18 w4 reedom to t	Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si	Mean 4.5440 1.9850 (LSD) for egrees of F adrado med Value of gnificant	N 18 18 w4 reedom io t Differe	Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant	N 18 18 w4 reedom io t Differe	Trt D S ence	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g	Mean 4.5440 1.9850 (LSD) for ogrees of F ladrado med Value of gnificant Mean	N 18 18 w4 reedom io t Differe N	Trt D S ence Trt	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A	Mean 4.5440 1.9850 (LSD) for egrees of F ladrado med Value of gnificant <u>Mean</u> 4.6812	N 18 18 w4 reedom t Differe N 18	Trt D S ence Trt D	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917	N 18 18 w4 reedom io t Differe N 18 18	Trt D S ence Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917	N 18 18 w4 reedom io t Differe N 18 18	Trt D S ence Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests	Mean 4.5440 1.9850 (LSD) for ogrees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for	N 18 18 w4 reedom t Differe N 18 18 w5	Trt D S ence Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for	N 18 18 w4 reedom t Differe N 18 18 w5	Trt D s ence Trt D s	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917 (LSD) for	N 18 18 w4 reedom t Differe N 18 18 18 w5	Trt D S ence Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for	N 18 18 w4 reedom io t Differe N 18 18 w5 reedom	Trt D S s mce Trt D S	0.05 24 2.510498 2.06390 1.0901
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F	N 18 18 w4 reedom io t Differe N 18 18 w5 reedom	Trt D S ence Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med	N 18 18 w4 reedom t Differe N 18 18 w5 reedom io	Trt D S s nce Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917 (LSD) for grees of F adrado med Value of	N 18 18 w4 reedom t Differe N 18 18 w5 reedom io t	Trt D S s nce Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390
g A B t Tests Alpha Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant	N 18 18 w4 reedom io t Differe N 18 18 w5 reedom io t Differe	Trt D S nnce Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant	N 18 18 w4 reedom 10 10 18 18 w5 reedom 10 t Differe Differe	Trt D S ence Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g g	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant Mean	N 18 18 w4 reedom t Differe N reedom t Differe N	Trt D S s nce Trt D S s nce	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A b t Tests Alpha Error De Error Cu Critical Least Si g A	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant Mean 4.891	N 18 18 w4 reedom t Differe N 18 w5 reedom io t Differe N 18 N	Trt D S s nce Trt D S s ence Trt D	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A t Tests Alpha Error De Error Cu Critical Least Si g A B B B Critical Error Cu Critical Least Si B Critical B Critical Critical Critical Critical Least Si B Critical Critical Critical Critical Least Si B Critical C	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.8991 2.8364	N 18 18 w4 reedom io t Differe N 18 18 w5 reedom io t Differe N 18 18 18 18 18 18 18 18 18 18	Trt D S S D nce Trt D S S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g A B B t Tests Alpha Error De Error Cu Critical Least Si B t Tests Alpha B Error De Cu Critical Least Si B C Cu Critical Least Si B C Cu Critical Least Si B C Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu C	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.8991 2.8364	N 18 18 w4 reedom t Differe N 18 18 w5 reedom t Differe N 18 18	Trt D S ence Trt D S S ence Trt S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.8991 2.8364 (LSD) for	N 18 18 w4 reedom t Differe N 18 18 w5 reedom t Differe N 18 18 w5 w5 w5 w6 w6 w6 w7 w6 w7 w6 w7 w6 w7 w7 w6 w7 w7 w7 w7 w7 w7 w7 w7 w7 w7	Trt D S s mce Trt D S s s	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant Mean 4.8991 2.8364 (LSD) for	N 18 18 w4 reedom t Differe N 18 w5 reedom t Differe N 18 w5 w5 w5 w5 w6	Trt D S sence Trt D S s ence Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si Alpha Error De Error De	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.8991 2.8364 (LSD) for	N 18 18 w4 reedom io t Differe N 18 18 w5 reedom io t Differe N 18 18 w5 w5 w6	Trt D S S S S S S S S S S S S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De t Tests Alpha Error De t Tests Alpha Error De	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.8991 2.8364 (LSD) for grees of F	N 18 18 w4 reedom t Differe N 18 18 w5 reedom t Differe N 18 18 w5 w5 w5 w5 w6 reedom t Differedom t N N N N N N N N N N N N N	Trt D S s nce Trt D S s nce Trt D S	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725 0.05 24
g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu Critical Least Si g A B t Tests Alpha Error De Error Cu	Mean 4.5440 1.9850 (LSD) for grees of F adrado med Value of gnificant Mean 4.6812 2.7917 (LSD) for grees of F adrado med Value of gnificant <u>Mean</u> 4.8991 2.8364 (LSD) for grees of F adrado med	N 18 18 w4 reedom 10 18 18 w5 reedom 10 t Differe N 18 18 w5 reedom io t N 18 18 w5 reedom io t N 18 w5 reedom io t N N N N N N N N N N N N N	Trt D S s nce Trt D S s	0.05 24 2.510498 2.06390 1.0901 0.05 24 4.581437 2.06390 1.4725 0.05 24 2.775522

Trt Mean Ν g A 18 D 5.8341 А 4.8196 18 S t Tests (LSD) for w7 0.05 24 Alpha Error Degrees of Freedom 24 Error Cuadrado medio 2.731576 Critical Value of t 2.06390 Least Significant Difference 1.137
 Mean
 N
 Trt

 6.5845
 18
 D

 4.2596
 18
 S
 g А В t Tests (LSD) for w8 0.05 Alpha Error Degrees of Freedom 24 Error Cuadrado medio 2.933847 Critical Value of t 2.06390 Least Significant Difference 1.1784 Mean Ν Trt g A 18 D 18 S 6.3136 В 3.7772 t Tests (LSD) for w9 0.05 Alpha Error Degrees of Freedom 24 Error Cuadrado medio 3.273664 Critical Value of t 2.06390 Least Significant Difference 1.2448 N Trt Mean g 6.3098 18 D А 18 D 18 S В 3.1610 t Tests (LSD) for w10 Alpha 0.05 Alpha0.05Error Degrees of Freedom24Error Cuadrado medio3.5807Critical Value of t2.06390Least Significant Difference1.3018 Mean N Trt n

Least Significant Difference 1.1461

g	inc an	τv	
A	6.7008	18	D
В	3.3420	18	S

Anexo 22: Graficas obtenidas del análisis estadístico para la cuantificación de begomovirus en infección simple y doble.

log(Concentration+1)

9

4

 \sim

0

Cub5 Jam12 Mex31

Per10

Isolate

Per6

StV1

D S

Semana	PERU-6	PERU-10	CUBA-5	MEXICO-31	JAMAICA-12	SAN VICENTE
1	0.336	0.218	0.009	0.106	0.04	0.843
2	0.053	0.004	0.005	0.001	0.01	0.007
3	0.175	0.048	0.054	0.314	0.294	0.085

4	0.099	0.031	0.106	0.261	0.056	0.253
5	0.12	0.122	0.157	0.12	0.123	0.074
6	0.098	0.05	0.148	0.102	0.126	0.02
7	0.005	0.01	0.08	0.049	0.046	0.044
8	0.008	0.01	0.009	0.006	0.029	0.005
9	0.073	0.039	0.081	0.161	0.144	0.134
10	0.092	0.08	0.138	0.141	0.212	0.141

Anexo 23: Títulos de la expresión relativa de SPCSV en plantas coinfectadas con begomovirus con relación a la infección simple de SPCSV. El programa empleado para determinar la expresión relativa del SPCSV fue REST V2.0.12 (QIAGEN GmbH). Los tratamientos de infección doble (*Begomovirus* + SPCSV) fueron: Peru-6, Perú-10; Cuba-5; Mexico-31; Jamaica-12; San Vicente.

Anexo 24a: Curvas de regresión obtenidas con el Quantity-One de la prueba de hibridación de ácidos nucleícos (Dot Blot) para la detección de begomovirus en infección simple y doble. (a) semana 1 y 2; (b) semana 3 y 4; (c) semana 5 y 6; semana 7 y 8.

Anexo 24b: Curvas de regresión obtenidas con el Quantity-One de la prueba de hibridación de ácidos nucleícos (Dot Blot) para la detección de begomovirus en infección simple y doble en la novena y décima semana.

Sweepovirus										
Per6	1	2	3	4	5	6	7	8	9	10
Sweepovirus	1.14E-06	521.1607	329.9485	464.881	336.3449	622.2713	1642.89	313.203	0.026801	0.054878
Sweepovirus + SPCSV	1.28E-06	928.7114	434.1917	727.6167	644.8328	1061.382	1707.658	1394.427	347.9614	1097.55
SD sweepovirus	9.18E-09	455.8738	202.1566	74.96216	267.7276	616.4753	151.5873	434.1329	0.02939	0.052781
SD sweepovirus + SPCSV	1.36E-06	276.9337	9.977836	112.7392	323.3315	62.82328	25.86224	348.2974	335.8162	110.2689
MAX Sweepovirus	1.15E-06	856.1981	529.967	536.7399	622.3902	1232.814	1744.319	813.7686	0.058322	0.105303
Min Sweepovirus	1.13E-06	2.026607	125.7196	387.1598	91.77589	0.029516	1468.633	39.53408	0.000151	1.96E-05
MAX Sweepovirus + SPCSV	2.7E-06	1076.551	444.9215	854.3045	1015.184	1120.257	1728.258	1632.972	679.524	1224.283
MIN Sweepovirus + SPCSV	1.13E-06	609.2313	425.1921	638.3348	418.7503	995.2422	1678.634	994.7384	7.998357	1023.545

Anexo 25: Estimación relativa de la concentración de sweepovirus utilizando el programa Quantity One.

Positivo Sweepovirus	1.04E-08	335.0374	200.0184	71.859	286.0453	610.5422	101.4294	500.5657	0.031521	0.050425
Negativo Sweepovirus	7E-09	519.1341	204.2289	77.72111	244.569	622.2418	174.2573	273.6689	0.02665	0.054858
Positivo Sweepovirus + SPCSV	1.42E-06	147.8394	10.7298	126.6878	370.3509	58.87525	20.6001	238.5453	331.5626	126.7336
Negativo Sweepovirus + SPCSV	1.48E-07	319.48	8.999561	89.28189	226.0825	66.13971	29.0239	399.6887	339.963	74.0052

Sweepovirus										
Per10	1	2	3	4	5	6	7	8	9	10
Sweepovirus	3.76E-07	1.13E-06	7.97E-06	2.496479	158.5559	780.3443	1646.421	1464.388	805.0729	303.2839
Sweepovirus + SPCSV	0.004824	502.9361	578.7425	600.9902	775.3782	704.1457	1544.267	1426.499	1212.254	1527.482
SD sweepovirus	6.52E-07	4.62E-10	1.16E-07	4.290761	274.6268	160.1686	126.4526	187.2224	121.4582	495.4899
SD sweepovirus + SPCSV	0.008352	446.5097	155.7585	111.0694	157.0844	74.73718	217.0672	140.3268	286.8333	337.4286
MAX Sweepovirus	1.13E-06	1.13E-06	8.1E-06	7.450973	475.6676	947.7721	1757.882	1597.733	939.096	875.324
Min Sweepovirus	0	1.13E-06	7.9E-06	7.9E-06	8.16E-05	628.5868	1509.004	1250.351	702.278	7.893666
MAX Sweepovirus + SPCSV	0.014468	852.8457	746.4793	669.0086	942.4085	786.9534	1703.259	1537.459	1537.856	1735.219
MIN Sweepovirus + SPCSV	1.13E-06	0.04321	438.6693	472.8187	630.6163	641.6988	1296.964	1268.757	996.9116	1138.146
Positivo Sweepovirus	7.52E-07	5.33E-10	1.35E-07	4.954494	317.1117	167.4278	111.4614	133.3446	134.0231	572.0401
Negativo Sweepovirus	3.76E-07	2.67E-10	6.79E-08	2.496471	158.5558	151.7575	137.4162	214.038	102.7949	295.3902
Positivo Sweepovirus + SPCSV	0.009644	349.9096	167.7368	68.01838	167.0303	82.80769	158.9926	110.9606	325.6026	207.737
Negativo Sweepovirus + SPCSV	0.004822	502.8928	140.0732	128.1715	144.7619	62.44691	247.3033	157.7418	215.3423	389.3367
Sweepovirus Cub5	1	2	3	4	5	6	7	8	9	10
Sweepovirus	0.00491	3.76E-07	5.07E-05	2.74E-06	8.16E-05	0	0	0	15.8698	319.3308
Sweepovirus + SPCSV	0.302641	1.14E-06	0.090188	0	0.628068	0.000436	533.028	246.285	612.1125	607.0508
SD sweepovirus	0.0045	6.52E-07	7.42E-05	4.74E-06	5.02E-09	0	0	0	27.48613	553.0908
SD sweepovirus + SPCSV	0.524181	1.09E-08	0.110684	0	1.087569	0.000613	461.7439	424.492	642.449	538.5592
MAX Sweepovirus	0.00884	1.13E-06	0.000136	8.21E-06	8.16E-05	0	0	0	47.60805	957.9851
Min Sweepovirus	1.13E-06	0	7.9E-06	0	8.16E-05	0	0	0	0.00047	0.006349
MAX Sweepovirus + SPCSV	9.35E-06	1.15E-06	0.213717	0	1.883884	0.001144	810.4175	736.4441	1281.578	1027.867
MIN Sweepovirus + SPCSV	0.907913	1.13E-06	2.54E-05	0	8.28E-05	8.16E-05	0	0	0.608034	0.11868

Positivo Sweepovirus	0.00393	7.52E-07	8.57E-05	5.47E-06	5.8E-09	0	0	0	31.73825	638.6542
Negativo Sweepovirus	0.004908	3.76E-07	4.28E-05	2.74E-06	2.9E-09	0	0	0	15.86933	319.3245
Positivo Sweepovirus + SPCSV	-0.30263	1.25E-08	0.123529	0	1.255816	0.000708	277.3895	490.1591	669.4656	420.8161
Negativo Sweepovirus + SPCSV	-0.60527	6.37E-09	0.090163	0	0.627986	0.000354	533.028	246.285	611.5045	606.9321

Sweepovirus										
Mex31	1	2	3	4	5	6	7	8	9	10
Sweepovirus	0.000379	1.665749	1.871397	577.4552	917.0753	432.9506	808.6229	692.2866	1319.052	1805.246
Sweepovirus + SPCSV	0.719946	730.0389	1425.478	1216.063	1517.444	1415.807	1143.977	1220.31	1904.441	2345.819
SD sweepovirus	0.000405	2.747613	3.058543	516.9569	794.8195	322.4819	454.7123	600.7339	1063.866	514.7659
SD sweepovirus + SPCSV	1.246683	213.6296	309.5075	215.5026	106.2334	91.12509	141.859	90.34994	206.3195	348.5508
MAX Sweepovirus	0.00081	4.837071	5.401228	997.1546	1406.722	782.3901	755.6418	1214.594	2207.445	2393.452
Min Sweepovirus	5.7E-06	0.160175	0.006945	7.9E-06	0.000106	146.8147	1287.505	35.81335	140.0914	1437.017
MAX Sweepovirus + SPCSV	2.159491	975.6518	1726.277	1464.89	1605.192	1512.265	1241.53	1288.1	2023.815	2639.328
MIN Sweepovirus + SPCSV	0.000114	587.3993	1107.941	1089.368	1399.336	1331.168	981.242	1117.738	1666.204	1960.575
Positivo Sweepovirus	0.000431	3.171322	3.529831	419.6994	489.6464	349.4396	-52.9811	522.3071	888.3926	588.2054
Negativo Sweepovirus	0.000373	1.505574	1.864453	577.4552	917.0752	286.1358	-478.882	656.4732	1178.961	368.2293
Positivo Sweepovirus + SPCSV	1.439545	245.6129	300.7988	248.8271	87.74768	96.45732	97.55336	67.79013	119.3742	293.5097
Negativo Sweepovirus + SPCSV	0.719832	142.6396	317.5369	126.6944	118.1085	84.6398	162.7349	102.5717	238.2371	385.2433

Sweepovirus										
Jam12	1	2	3	4	5	6	7	8	9	10
Sweepovirus	0.833546	0.00015	2.058719	0.026324	0.21886	1348.002	0	0	0.135269	1.141039
Sweepovirus + SPCSV	30.92703	0.036952	92.36105	441.0673	58.19488	1271.242	821.7744	1027.149	1443.16	1973.86
SD sweepovirus	1.432472	0.000178	1.693077	0.043663	0.372771	223.5558	0	0	0.140016	1.621417
SD sweepovirus + SPCSV	52.61947	0.045965	157.0505	762.2605	100.4692	222.9853	391.7057	374.9155	383.1181	185.1393
MAX Sweepovirus	2.487623	0.000356	3.08397	0.076738	0.649283	1605.216	0	0	0.289755	3.011438
Min Sweepovirus	0.005527	4.71E-05	0.104513	0.000671	0.000415	1200.483	0	0	0.016734	0.133734

MAX Sweepovirus + SPCSV	91.68358	0.090028	273.7007	1321.25	174.2065	1528.654	1136.125	1391.265	1675.275	2185.319
MIN Sweepovirus + SPCSV	0.010724	0.010314	0.350241	0.423583	0.022945	1137.346	382.9589	642.2945	1000.957	1840.923
Positivo Sweepovirus	1.654076	0.000206	1.02525	0.050415	0.430423	257.2148	0	0	0.154486	1.870399
Negativo Sweepovirus	0.828019	0.000103	1.954207	0.025652	0.218444	147.5189	0	0	0.118535	1.007306
Positivo Sweepovirus + SPCSV	60.75655	0.053075	181.3397	880.1824	116.0117	257.4114	314.3504	364.1151	232.115	211.4595
Negativo Sweepovirus + SPCSV	30.9163	0.026638	92.01081	440.6437	58.17193	133.8958	438.8155	384.8549	442.2038	132.9369

Sweepovirus										
StV1	1	2	3	4	5	6	7	8	9	10
Sweepovirus	277.2776	526.9347	926.9143	1157.469	932.8376	1022.308	962.7443	845.2813	549.5883	986.0024
Sweepovirus + SPCSV	16.9733	1263.178	2181.711	2257.936	1350.156	1613.766	1604.435	1570.596	1789.858	2173.663
SD sweepovirus	471.0388	553.9509	838.1453	1015.533	816.2555	887.7725	844.521	734.0967	628.2778	881.0407
SD sweepovirus + SPCSV	16.56336	368.9128	417.2577	186.5964	224.8096	28.41472	185.0846	29.57021	124.7871	160.7557
MAX Sweepovirus	821.1846	1104.44	1638.399	1906.811	1516.319	1600.429	1578.843	1322.901	1234.663	1756.939
Min Sweepovirus	4.130762	0.007292	2.991004	1.662659	0.054538	0.122579	0.071022	0	0.321442	25.66424
MAX Sweepovirus + SPCSV	33.11148	1455.988	2424.908	2472.961	1487.078	1633.092	1721.305	1589.973	1932.324	2351.893
MIN Sweepovirus + SPCSV	0.015212	837.813	1699.911	2138.532	1090.701	1581.14	1391.041	1536.56	1699.933	2039.626
Positivo Sweepovirus	543.907	577.5055	711.4849	749.3419	583.481	578.1206	616.0989	477.6194	685.0752	770.9365
Negativo Sweepovirus	273.1468	526.9274	923.9233	1155.806	932.783	1022.185	962.6733	845.2813	549.2668	960.3382
Positivo Sweepovirus + SPCSV	16.13818	192.8095	243.1969	215.025	136.922	19.32631	116.8698	19.37774	142.4661	178.2298
Negativo Sweepovirus + SPCSV	16.95809	425.3653	481.8004	119.4042	259.4548	32.62544	213.3943	34.03584	89.92477	134.0372

Anexo 26: Evaluación del sinergismo del *Sweet potato leaf curl virus* [(SPLCV) (aislamiento sweepovirus-StV1)] con el *Sweet potato chlorotic stunt virus* (SPCSV) en planta de camote transgénico cultivar 'Huachano' que expresa el gen ARNasa3 del SPCSV. (A) planta sana 'Huachano' (1), Planta transgénica ARNasa3 no infectada (2), SPCSV infectando plantas 'Huachano' (3), aislamiento sweepovirus-StV1 infectando plantas 'Huachano', aislamiento sweepovirus-StV1 infectando planta transgénica ARNasa3 y aislamiento sweepovirus-StV1 y SPCSV infectando plantas 'Huachano'. La infección simple del SPCSV y SPLCV no induce síntomas en la planta Huachano (3 y 4, respectivamente). Hojas con síntomas de enrollamiento hacia arriba se puede observar en la co-infección con ambos virus en la planta transgénica ARNasa3 "Huachano" y en planta "Huachano" (5 y 6, respectivamente). B) Detección de SPLCV por Dot-blot. Acumulación de ADN de SPLCV en infección simple y doble (con el SPCSV en planta transgénica ARNasa3 "Huachano").

Anexo 27: Purificación de los pequeños ARN de interferencia (siRNA) en gel de agarosa al 3%. Los siARN de muestras de camote variedad Huachano: A la izquierda: (1) Camote sano, (2) con sweepovirus-StV1 (infección simple), (3) con sweepovirus y SPCSV (infección doble) y (4) planta transgénica (RNAsa 3) con sweepovirus-Stv1 (infección simple); a la derecha: (5) con SPFMV (infección simple), (6) con SPCSV (infección simple) y (7) con SPFMV y SPCSV (infección doble). M: marcador iARN (New England BioLabs).

Anexo 28: Ensamblaje del sweepovirus-San Vicente (StV1) a partir del secuenciamiento a gran escala de los pequeños ARN de interferencia (siARN) producidos por la planta.Ensamblaje de sweepovirus-Svt1 (en infección simple). El ensamblaje se realizó enfrentando contigs obtenidos con el programa velvet con la secuencia consenso (genoma completo) del sweepovirus-StV1 obtenido por el secuenciamiento tradicional (Macrogen) utilizando el programa Seqman (DNAstar). Las contigs que tenían su secuencia en la misma orientación viral se representan con una línea continua, y las que tienen su secuencia en la orientación inversa se representa con una línea discontinua.

Anexo 29: Síntomas de pararetroviruses [*Sweet potato vein clearing virus* (SPVCV) y *Sweet potato collusive virus* (SPCV)] en camote transgénico cultivar 'Huachano' que expresa el gen RNase3 del SPCSV. (a, c) no transgénico 'Huachano' infectado con SPVCV y SPCV, respectivamente. (b, d) Plantas transgénicos 'Huachano' expresando la RNase3 e infectadas con SPVCV y SPCV, respectivamente. (e) Detección por hibridación (Dot-blot) de SPVCV en camote transgénico cultivar 'Huachano' frente a plantas no transgénicas. N.I., planta no infectada; F, la detección de SPCV por ensayo de inmunoabsorción ligado a enzima en membrana de nitrocelulosa (NCM-ELISA); 1, 2, planta no infectados 'Huachano'; 3, 4, SPCV infectaron plantas 'Huachano'; 5, 6, SPCV en plantas transgénicas RNase3; 7, 8, SPCV en co-infección con SPCSV. (Cuellar et al, 2011).